Towards a Structured Representation of Generic Concepts and Relations
in Large Text Corpora

Archana Bhattarai
Department of Computer Science
The University of Memphis
abhattar@memphis.edu

Abstract

Extraction of structured information from
text corpora involves identifying entities
and the relationship between entities ex-
pressed in unstructured text. We propose
a novel iterative pattern induction method
to extract relation tuples exploiting lexi-
cal and shallow syntactic pattern of a sen-
tence. We start with a single pattern to
illustrate how the method explores addi-
tional paterns and tuples by itself with in-
creasing amount of data. We apply fre-
quency and correlation based filtering and
ranking of relation tuples to ensure the cor-
rectness of the system. Experimental eval-
uation compared to other state of the art
open extraction systems such as Reverb,
textRunner and WOE shows the effective-
ness of the proposed system.

1 Introduction

Traditional information extraction methodologies
tend to extract a predefined relation between
named entities annotated in a different process.
While this method might be useful and accurate
for smaller data with limited entity types and re-
lations, it cannot scale to extract entities and their
relationships in web due to the sheer volume and
heterogeneity of data. Thus open domain infor-
mation extraction systems such as Reverb (Fader
et al., 2011), TEXTRUNNER (Yates et al., 2007)
and NELL (Carlson et al., 2010) have received
added attention in recent times. Extracting ma-
chine readable structured information from free
text is the basis of most of the semantic analytical
systems. With these units of semantic informa-
tion, a lot of applications requiring semantic in-
formation processing such as finding the semantic
similarity between two unit of texts, semantic in-
ference, automated question-answering etc can be
visualized with better performance.

65

Vasile Rus
Department of Computer Science
The University of Memphis
vrus@memphis.edu

Existing work on pre-defined relation extraction
have implemented methods of supervised, semi-
supervised, bootstrapped and unsupervised classi-
fication(Zhao and Grishman, 2005), (Kambhatla,
2004) (Bunescu and Mooney, 2006) (Zelenko et
al., 2003). For open information extraction meth-
ods, since they do not have predefined relations,
it is very hard if impossible to generate labeled
data for all potential relations in large text cor-
pora. In this paper, we propose an iterative pat-
tern induction based extraction system CREATE
(Concept Representation and Extraction through
Heterogenous Evidence), to extract relation tuples
from large text corpora. We will start with a single
selective pattern and iteratively add tuples and pat-
terns in the corresponding collection. This method
is easily usable in any domain since it does not re-
quire any labeled data. We ensure the selectivity
of the pattern by filtering the patterns with statis-
tics such as frequency and average pointwise mu-
tual information (PMI) and specificity of the pat-
tern. CREATE works under the assumption that
sentences have a pattern of expressing information
and this pattern is followed by multiple sentences.
If we can explore these patterns in a language, we
can extract tuples from all the sentences to build
an automated system. One of the simplest cases
of such a pattern is a sentence that only has two
nouns and a verb in between. For example, for
the sentence ”Google bought Youtube”, the part-
of-speech structure will be ’NNP VBD NNP” and
hence it is easy to identify two nouns as concepts
and the verb as a relation between these two con-
cepts. Thus, the tuple, bought(Google, Youtube)
can be extracted with high confidence. The beauty
of this system is that it gracefully identifies such
patterns without requiring any human input and
expands itself with the addition of every sentence
on the system. The state of the art system that is
closest to CREATE in terms of tuple generation
is Reverb (Fader et al., 2011). The core idea of

Proceedings of Recent Advances in Natural Language Processing, pages 65-73,
Hissar, Bulgaria, 7-13 September 2013.

Reverb is to identify a relation and extract con-
cepts in the immediate left and right of the rela-
tion to form a tuple. The system takes a greedy
approach where it only considers concepts that are
adjacent to relations. Moreover, they also ignore
the information that might change the context of
the tuple in the sentence. For example, for the sen-
tence "RSV in older children and adults causes
a cold.”, Reverb extracts tuple causes(adults, a
cold) with confidence 0.6799. This approach has
two disadvantages, first; it extracts invalid tuple
as it ignores complete sentence context, second; it
misses correct tuple causes(RSV, cold) because of
its greedy nature. We overcome both the disadvan-
tages in CREATE. Although, Reverb does not re-
quire training data to extract tuples, it does require
labeled data to determine the confidence of a tu-
ple. CREATE does not require labeled data other
than the seed pattern at any stage of the process.
With enough iterations and larger corpus, CRE-
ATE is able to extract the tuple causes(RSV, cold)
correctly with high confidence.

Few of the properties that we exploit for the fil-
tering of tuples are as follows:

e Patterns and tuples have dual dependence.
Patterns can be used to extract tuples and tu-
ples can be used to identify patterns.

If a tuple is generated from two different sen-
tences using two different patterns, then the
confidence of the tuple is highly increased.

If a pattern only produces high quality tuples,
then the pattern is considered to be of high
confidence.

e Web is highly redundant. This redundancy
can be exploited to evaluate the correctness
of a tuple.

Our approach is to learn the patterns in an itera-
tive manner as in DIPRE (Brin, 1999) and Snow-
ball (Agichtein and Gravano, 2000). We extend
the work one step further to iteratively extract tu-
ples with open relations from large text corpora.
We follow the standard step of extracting patterns
based on known tuples, extracting tuples based on
known patterns and evaluating and refinining pat-
terns based on inherent statistics to obtain high
precision tuples and patterns.

We make the following contributions in this pa-
per.

66

We extend and adapt pattern based tuple ex-
traction to perform open information extrac-
tion.

We propose a method of domain independent
pattern generation.

With the patterns generated in step 2, we pro-
pose a method of relation tuple extraction.

We propose an effective method to re-
fine/rank extracted tuples and patterns with-
out human supervision.

2 Related Work

One of the major goals of open information ex-
traction is to build automated system that can
read textual data to a deeper extent compared to
bag of words model. Carlson et. al (Carlson et
al., 2010) use semi-supervised bootstrapping ap-
proach to continuously read and update the knowl-
edge base with an Expectation Maximization like
algorithm. Other systems that are tied to a partic-
ular structure are (Suchanek et al., 2007), (Auer
et al,, 2007), (Wu and Weld, 2010) which fo-
cus on more structured part of large factual col-
lections such as Wikipedia based on wikipedia-
centric properties. The first true open informa-
tion extraction system TEXTRUNNER, obtained
training data applying some heuristics rules over
dependency parsing of the training corpus. Us-
ing these training samples, sequence based classi-
fiers were trained and more tuples were extracted.
The WOE systems (Wu and Weld, 2010) intro-
duced by Wu and Weld make use of Wikipedia
as a source of training data for their extractors,
which leads to further improvements over TEX-
TRUNNER (Yates et al., 2007). Wu and Weld
also show that dependency parse features result
in a dramatic increase in precision and recall over
shallow linguistic features, but at the cost of ex-
traction speed. Semisupervised methods start with
a few manually provided domain independent ex-
traction patterns that will extract training tuples.
Statsnowball works under the principle of iterative
pattern and tuple generation using Markov Logic
Network (Zhu et al., 2009) and show improved
extraction compared to TEXTRUNNER. Reverb
(Fader et al., 2011) extracts on simple logic of ex-
tracting probable entities/concepts connected with
a relation term adjacently. While it does not re-
quire seed data or training data to extract rela-
tion tuples, it depends on manually analysed data

for the confidence evaluation of a tuple. Unsu-
pervised methods generally exploit the character-
istic of the text source, perform deep or shallow
parsing and extract the patterns and cluster these
patterns to extract relations. Yan et. al. (Yan
et al., 2009) used the characteristics of wikipedia
and performed clustering of patterns to extract re-
lations without human supervision. They report
a precision as high as 84% with deep linguistic
parsing. Other works (Syed and Finin, 2010) also
use wikipedia for ontology development for en-
tities. (Min et al., 2012) extract relation tuples
based on entity similarity graph and pattern sim-
ilarity. Probabilistic topic based models (Chang et
al., 2009) (Yao et al., 2011) have also been used to
infer relation between entity-pairs. These models
assume relation tuples as atomic observations in
documents rather than word observations in stan-
dard LDA model.

3 Problem Definition

We formulate the problem of rela-
tion tuple extraction as a binary clas-
sification problem. Given a sentence
S = (wlw2;.;el.;wj;..rl;wk..;e2;:;wn)

where el and e2 are the entities of interest, r1
is the relation of interest, and w1, w2....wj...wk
is the context of the tuple in the sentence s, the
classification function,

rasy ={ 1,

Here T'(S) is a feature set extracted from
the sentence as a context. The classifica-
tion model is built based on context, indepen-
dent of entities and relations. A context or a
pattern of a tuple in a sentence is a 4-tuple
(left,middle_left, middle_right,right) where
left is the sequential list of entities and words
that occur before first argument in the tuple,
middle_left is the list of words that occur be-
tween first argument and relation, middle_right
is the list of words that occur between relation and
second argument and right is the list of words that
occur after second argument in the sentence unless
another relation is detected.

The classification function f(7°(S)) = 1 if the
pattern of the tuple T in the sentence S exists
in pattern database.the degree of similarity of the
context of probable tuple is greater than thresh-
old similarity with one of the contexts existing in
context-base.

if el and e2 are related by r1
otherwise

67

4 Create Tuple/Pattern Extraction
Methodology

Given a set of documents containing sentences,
our goal is to extract relation tuples with high-
est recall and precision. As explained earlier,
our system is designed to utilize the dual depen-
dence of tuple with pattern and pattern with tu-
ple. As a starting point, we use a seed pattern
p = (¢,0,0,¢) that will generate tuples from
text corpus. These tuples are then used to gen-
erate extraction patterns which in turn generate
more tuples just like in Snowball. All the ex-
tracted tuples and patterns in the process are not
guaranteed to be correct. A good tuple should
be syntactically and semantically correct as well
as articulate, autonomous and informative. Sim-
ilarly, a good pattern should achieve a good bal-
ance between two competitive criteria; specificity
and coverage. Specificity means the pattern is
able to identify high-quality relation tuples; while
coverage means the pattern can identify a statis-
tically non-trivial number of good relation tuples.
Hence, in the process, we have a self evaluating
system which evaluates and filters out invalid tu-
ples and patterns based on their statistical prop-
erties. The overall system can be broken down
into several modules, each of which perform an
isolated task such as concept extraction, relation
extraction, probable tuple generation, tuple verifi-
cation etc. The system architecture of the overall
system has been depicted in figure 1 and the algo-
rithm is shown in Table 1. The sub-modules are
explained in detail in the subsequent sub-sections.

Generate tuples’

patterns

Extracted Extracted
patterns Tuples

Document:

Tuple
Refinement

Pattern
Refinement

Figure 1: Overall System Architecture

Feature:We consider lexical and shallow parse
information as features for relation extraction.

Lexical and shallow NLP techniques are robust
and fast enough for a problem like ours where ex-
traction needs to be performed at web scale. Al-
though, our concept extraction module can be eas-
ily replaced with named entity extractor, we pri-
marily use part-of-speech tagging and chunking
results for concept/relation extraction. All the sen-
tences in our data sets are parsed using a opennlp
(Baldridge et al., 2004) part-of-speech tagger.

Seed Pattern: We start with a fairly general and
yet very strict pattern that will extract tuples from
a sentence. The seed pattern, ps = {¢, ¢, ¢, ¢}
meaning there is an empty left context, empty mid-
dle left context, empty middle right context and
empty right context. As an example, let us con-
sider a sentence “Temperature is ultimately regu-
lated in the hypothalamus”, our process extracts
two concepts “Temperature” and ’the hypothala-
mus” and relation “’is ultimately regulated in”. The
left context (context before concept 1) in this case
is empty, middle left context (context between
concept 1 and relation) is also empty and similarly,
middle right and right contexts are empty. This is
a fairly specific pattern for a tuple to be valid and
moreover, this pattern is domain independent and
can be applied to any domain for english language.
We have a running example showing the steps in
table 2.

Concept Extraction Module: We extract con-
cepts in the sentence based on noun phrases. We
remove starting and trailing stopwords in noun
phrases. If noun phrases contain conjunction, we
break down noun phrase into two concepts.

Relation Extraction Module: To extract rela-
tions, we extract the longest sequence of words
such that it starts with verb or is a sequence of
noun, adjective, adverb, pronoun and determiner
or a sequence of preposition, particle and infinitve
marker. If any pair of matches are adjacent or
overlap in a sentence, we merge them to a single
relation. This method has been proven to be effec-
tive in (Fader et al., 2011).

Probable Tuple Extraction: For each relation
r € R and for every combination of ¢c;andc; € C,
such that ¢; occurs before r and no other relation
occurs between ¢; and r and c; occurs after r and
no other relation occurs between c; and r in the
sentence, we create a probable tuple t = (¢;, 7, ¢;).

Tuple Pattern Extraction: For each tuple ¢ =
(ci, 7, cj) in sentence s, we extract the sequence
of words in sentence that occurs between begin-

ning of sentence and concept c;. If a relation oc-
curs before ¢;, we start with the end of closest rela-
tion. This is the left context. Similarly we extract
middle_left context as the sequence of words be-
tween ¢; and relation r. Middle_right context is
the sequence of words between relation r and c;.
Right context is the sequence of words between
c; and either another relation 7, (if exists) or end
of the sentence. We experiment with three types
of patterns, first: purely lexical(only use lexicons
for pattern generation), second: purely syntactic
(only use part of speech tags for pattern genera-
tion) and third: mixed pattern(a combination of
lexicons and part of speech tags. For mixed pat-
tern, we replace all nouns, verbs, adjectives and
adverbs with their part of speech tags and leave
preposition, particle and other words to use lexi-
cons.

Iteration: Our system is an iterative process
and gets better qualitatively and quantitatively
with each iteration. The number of iteration is
highly dependent on the application of interest,
pattern database size, size of corpus and time sen-
sitivity of the system. We experimented on a
smaller sample of data to see the convergence of
the algorithm. We also iterated over a large cor-
pus to see the effect of iteration on number of pat-
terns and tuples. Since the extraction algorithm
is based in active learning methodology, the sys-
tem can perform quite well with iteration count as
small as 2 in large corpus.

Algorithm 1 Iterative Pattern Induction
Input: Pattern, P = {seed_pattern},

Tuples, T = {¢}

Sentences, S = {s1, $2,....5n}
Output: Patterns, P = {p1,p2,...Pz}»

Tuples, T = {t1,t2,ts....ty}

1: for every S; € Sdo
2: Cprop = {1, C2,..cj } «— extractConcepts(S;)
3: Rprob = {71, 72...7h} <« extractRelations(S;)
4: psent = replaceConceptsRelations(Cprob, Rprob)
5: Tp',‘gb = {tl, ,.tu} —
extract ProbableTuples(Cprob, Rprob)
6: end for
7: for every t; € Tprop do
8: pattern, p; = extractPatternFor(S;, ps)
9:if p; EP&&tjééT
10: T.add(t;), P.update(p;)
11: elseifp; ¢ P && t; €T
12: P.add(p:), T.update(t;)
13: elseifp; € P && t; €T
14: P.update(p;), T.update(t;)
15: end if
16: end for

Table 1: Iterative Pattern Induction Algorithm

Search

causes

weight gain

- Data Source - hd|
Sentence

My doctor refuses to agree that these meds can cause weighi
Steroids can also cause weight gain and muscle loss, which ¢
So Actos and Avandia can cause weight gain, because insulir
| have not heard of esipram, but there are a number of antide
In addition, some medical conditions that mimic depression -
| know stress can cause weight gain specifically about the mic
Estrogen, prednisone and other steroids, and antiarthritic druc

But a diet with the same number of calories -- just less meat -

Figure 2: Concept based Search User Interface

Argl Relation Arg ll
meds cause weight gain
steroids cause weight gain
avandia cause weight gain
antidepressants cause weight gain
hypothyroidism cause weight gain
stress cause weight gain
prednisone cause weight gain
calories cause weight gain

Parameter | Value

seed pat_ (()b? ¢a ()b))

tern

sentence Sunscreen may also cause drying of

skin.

concepts Conceptl=Sunscreen, Concept2=skin

relations relation=may also cause drying of

sentence Conceptl relation Concept2.

pattern

probable may_also_cause_drying_of(sunscreen,

tuple skin)

Table 2: Running Example of Tuple and Pattern
Extraction

5 Tuple Refinement

5.1 Tuple and Pattern Filtering

We employ a holistic approach for concepts and
relations extraction that enforces coherence in re-
lations and concepts in tuples . To ensure validity
of extracted tuples, we select patterns and tuples
that occur more than « (3 in our experiments) and
0 (2 for medical and 1 for wikipedia for our exper-
iments) times respectively. Also, total frequency
of a pattern p in a relation r is defined as the sum
of the frequencies of p in all entity pairs that have
relation r. We define confidence of a tuple as fol-
lows:

ZpGPt f(pi)
f(Pmaz,)log(N)

Conf(t) = (1)

where f(p;) is the frequency of pattern p; for
relation r such that tuple t also has relation r. Here,
f (Pmaz,) is the frequency of pattern that has max-
imum frequency for relation r and N is the to-
tal number of distinct patterns that match tuple t.
Note here that confidence conf(t) can be greater
than 1 depending on the number of patterns that
extract tuple t.

5.2 Tuple relevance

Traditional vector space model based relevance
cannot be applied to concept based relevance
paradigm. Hence we employ PMI based relevance
for tuple retrieval. If el is the query entity for
which search is executed, then the relevance of a
tuple is calculated in terms of PMI between query
entity el and second argument in tuple that con-
tains el as first argument. PMI between entities
el and e2 is defined as

P(e1,e2)
PMI(ei,es) =lo
(e1,e2) gP(el,e)P(eg,e))
=logN 2
ni.n9
PMI
NPMI(e1,es) = eren) g

—logP(e1,e2)

where N: the total number of tuples in the
corpus, P(ej,e2) = nja/N=the number of sen-
tences containing tuples that have e; and ey as

arguments, P(ej,e) = ni/N : the probability
that the entity e; cooccurs with entity e in tuples,
P(ea,e) = ny/N : the probability that the entity
ez cooccurs with entity e in tuples.

6 Prototype and Experiments

6.1 System Prototype

We built the system prototype based on the process
explained in this paper for two datasets, namely;
wikipedia and medical sites. We crawled 10 med-
ical information sites and collected sentences talk-
ing about medicine. The prototype provides a tu-
ple searching interface and a concept-graph based
navigation system. We demonstrate the usefulness
of the system with medical information and eval-
uate against few relations in wikipedia. Figure 2
shows a snapshot of the prototype for medical data
for another example.

6.2 Comparison with Open Information
Extraction Systems

We compared the result of our system with other
systems such as Reverb, TextRunner and WOE.
For evaluation purpose, we used the test set of 500
sentences used in Reverb system evaluation(Fader
et al., 2011). The figures shows the quantitative
comparison of our system compared to reverb and
woe. It has to be noted however that this result
does not evaluate the iterative process of create.
The distinctive advantage of create is seen when
applied to a relatively larger corpus where the sys-
tem is applied iteratively.

freque
patﬂerns

115
96
77
58
39 J

20/

1
0 1

iteration

7

2 3 4 5 6

Figure 3: Effect of Iteration on Number of patterns

Figure 3 and figure 4 show the effect of iteration
with the CREATE algorithm. It shows that in ini-
tial iterations, there is a rapid increase in number
of patterns and tuples. However it starts to con-
verge with higher iterations. For proof of concept,

70

frequenc tuples
1496
1197
898
//
599
300
1 iteration
0 1 2 3 4 5 6 17

Figure 4: Effect of Iteration on Number of tuples

we experimented with a sample data that we cre-
ated with medical sentences. It shows that tuple
and pattern generation converges in 5 iterations.

0.9

0.85

0.8

0.75

wo¢eE

create textrunner

reverb

Figure 5: Comparison of CREATE performance
with Reverb, WOE and TextRunner

Figure 5 shows the comparison of CREATE
with Reverbm WOE and TextRunner. We see im-
proved recall at around 92% and precision around
75% for create which outperforms all other sys-
tems. Similarly, figure 6 shows the effect of it-
eration on the performance of CREATE system.
We see the same effect of rapid increase in per-
formance in initial iterations and then it gets stabi-
lized after few iterations.

We also experimented with the performance
based on different patterns. Figure 7 shows that
recall for POS pattern is the highest but the preci-
sion is highest with mixed pattern.

6.3 Wikipedia Tuple Extraction

We used Semantically Annotated Snapshot of the
English Wikipedia (Atserias et al., 2008) to extract

Relation Gold | Create (to- | Precision | Recall
Data | tal/correct)
bornIn(x,Atlanta) 440 341/303 88.8 68.8
bornIn(x,Zurich) 108 87/75 86.23 69.4
graduatedFrom(x,Stanford) 456 403/345 85.6 75.6
graduatedFrom(x,Princeton) | 582 464/385 82.9 66.1
presidentOf(x,United States) | 44 65/39 60 88.86
Table 3: Data statistics for wikipedia.
120+ frequency Data Wikipedia | Medical
Document count 1431178 348284
100 recall Sentence count 36117170 | 4049238
80 o Tuple count 6945440 | 1535293
precision Relation count 1847116 706359
60 Relation with freq > 9 1131 1865
Concept count 2673192 106263
40 Extraction latency (for 5 hrs 2hrs
20 single iteration)
0 ueration Table 4: Data Statistics.
o 1 2 3 4 5 6 7

Figure 6: Effect of Iteration on Tuple Extraction
Performance with confidence 0.6

precision/recall
" S‘\Q\:%gﬂ: Fed
recall-lexical
precision-mixed
70 precision-pos
precision-lexical
50 con fidence
0 20 40 60 80 100

Figure 7: Precision/ Recall variance with Confi-
dence

relation tuples as the first large dataset. The SW1
corpus is a snapshot of the English Wikipedia
dated from 2006-11-04 processed with a number
of public- available NLP tools. We chose to use
this data as it has been processed and has infor-
mation on shallow parsing such as POS tags and
named entities on seven categories. To demon-
strate the interchangeability of concept extraction
module , we used the named entities as concepts

71

for relation extraction. We then generated tuples
from data. Since it is not possible to evaluate all
the relation tuples extracted from wikipedia, we
performed samples evaluation of the system for
few sampled relations and tuples. We compared
the performance of our system based on precision
and recall compared to Dbpedia. The evaluation
in terms of precision and recall is shown in Table
4. Precision and recall are given by the following
equations

|(correct docs) ((retrieved docs)|
|(retrieved docs)|

@

precision =

|(correct docs) [\(retrieved docs)|
|(relevant docs)|

(&)

recall =

7 Conclusion

We have qualitatively and quantitavely demon-
strated the effectiveness and usefullness of our
system and overall relation extraction systems.
With increasng data being available, the value and
importance of systems such as CREATE is ever in-
creasing. We have demonstrated the prospects of
relation extraction systems. At the same, we also
need to be aware of the challenges that need to be
solved before we can realize a fully functional ma-
chine reading system.

References

Eugene Agichtein and Luis Gravano. 2000. Snow-
ball: Extracting relations from large plain-text col-
lections. In Proceedings of the fifth ACM conference
on Digital libraries, pages 85-94. ACM.

Jordi Atserias, Hugo Zaragoza, Massimiliano Cia-
ramita, and Giuseppe Attardi. 2008. Semantically
annotated snapshot of the english wikipedia. Pro-
ceedings of the Sixth International Language Re-
sources and Evaluation (LREC’08).

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722—735. Springer.

Jason Baldridge, Tom Morton, and Gann Bierner.
2004. The opennlp maxent package in java. URL:
http://maxent. sourceforge. net.

Michele Banko, Michael J Cafarella, Stephen Soder-
land, Matt Broadhead, and Oren Etzioni. 2009.
Open information extraction for the web. University
of Washington.

Sergey Brin. 1999. Extracting patterns and relations
from the world wide web. In The World Wide Web
and Databases, pages 172—183. Springer.

Razvan Bunescu and Raymond Mooney. 2006. Subse-
quence kernels for relation extraction. Advances in
neural information processing systems, 18:171.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In Proceedings of the
Twenty-Fourth Conference on Artificial Intelligence
(AAAI 2010), volume 2, pages 3-3.

Jonathan Chang, Jordan Boyd-Graber, and David M
Blei. 2009. Connections between the lines: aug-
menting social networks with text. In Proceedings
of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
169-178. ACM.

Nilesh Dalvi, Ravi Kumar, Bo Pang, Raghu Ramakr-
ishnan, Andrew Tomkins, Philip Bohannon, Sathiya
Keerthi, and Srujana Merugu. 2009. A web of con-
cepts. In Proceedings of the twenty-eighth ACM
SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 1-12. ACM.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1535-1545. Association for Computational
Linguistics.

Nanda Kambhatla. 2004. Combining lexical, syntac-
tic, and semantic features with maximum entropy
models for extracting relations. In Proceedings of

72

the ACL 2004 on Interactive poster and demonstra-
tion sessions, page 22. Association for Computa-
tional Linguistics.

Bonan Min, Shuming Shi, Ralph Grishman, and Chin-
Yew Lin. 2012. Towards large-scale unsuper-
vised relation extraction from the web. International

Journal on Semantic Web and Information Systems
(IJSWIS), 8(3):1-23.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697-706. ACM.

Zareen Syed and Tim Finin. 2010. Unsupervised
techniques for discovering ontology elements from
wikipedia article links. In Proceedings of the
NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Read-
ing, pages 78-86. Association for Computational
Linguistics.

Fei Wu and Daniel S Weld. 2010. Open information
extraction using wikipedia. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 118—127. Association for
Computational Linguistics.

Yulan Yan, Naoaki Okazaki, Yutaka Matsuo, Zhenglu
Yang, and Mitsuru Ishizuka. 2009. Unsupervised
relation extraction by mining wikipedia texts using
information from the web. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1021-1029. Association for
Computational Linguistics.

Limin Yao, Aria Haghighi, Sebastian Riedel, and An-
drew McCallum. 2011. Structured relation discov-
ery using generative models. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1456-1466. Association
for Computational Linguistics.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. Textrunner: open information
extraction on the web. In Proceedings of Human
Language Technologies: The Annual Conference of
the North American Chapter of the Association for
Computational Linguistics: Demonstrations, pages
25-26. Association for Computational Linguistics.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. The Journal of Machine Learning Re-
search, 3:1083-1106.

Shubin Zhao and Ralph Grishman. 2005. Extract-
ing relations with integrated information using ker-
nel methods. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, pages 419-426. Association for Computational
Linguistics.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and
Ji-Rong Wen. 2009. Statsnowball: a statistical ap-
proach to extracting entity relationships. In Pro-
ceedings of the 18th international conference on
World wide web, pages 101-110. ACM.

73

