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Abstract

We compare two different methods in

domain adaptation applied to constituent

parsing: parser combination and co-

training, each used to transfer information

from the source domain of news to the tar-

get domain of natural dialogs, in a set-

ting without annotated data. Both methods

outperform the baselines and reach similar

results. Parser combination profits most

from the large amounts of training data

combined with a robust probability model.

Co-training, in contrast, relies on a small

set of higher quality data.

1 Introduction

Research on parsing has mostly concentrated on

parsing the Penn Treebank (Marcus et al., 1993).

As a consequence, most parsers have probability

models that are optimized for the syntactic an-

notations in this treebank and more generally for

the language in the treebank. This means that a

parser trained on the Penn Treebank will show a

severe degradation in performance when used for

parsing data from another domain (McClosky et

al., 2010). More recently, research has started on

adapting parsers to new domains so that the degra-

dation in parsing is minimized. One of the first

venues at which domain adaptation was targeted

was the 2007 CoNLL shared task on dependency

parsing (Nivre et al., 2007).

One of the challenges in domain adaptation for

parsing is the lack of annotated data in the target

domain. Research has covered a range of differ-

ent approaches, all geared towards providing auto-

matically labeled data in the target domain to add

as training data. Approaches include ensembles

of parsers, self-training, and methods for selecting

high quality sentences to reduce the noise (see sec-

tion 2 for details). The most promising approach at

present is an approach by McClosky et al. (2010),

which automatically selects a domain that is the

most similar to the target domain.

In our current work, we investigate domain

adaptation for constituent parsing, in a setting

where no labeled data in the target domain is avail-

able. More specifically, we compare two differ-

ent approaches: One approach is based on an en-

semble of parsers, the other one uses co-training

with two different parsers. Both approaches reach

moderate improvements over the baseline, and we

are interested in seeing the advantages and disad-

vantages of those two promising methods. The

source domain for our experiments is the Penn

Treebank; the target domain consists of sponta-

neous dialogs based on cooperative tasks involv-

ing navigation on a map or in a search envi-

ronment. For the unlabeled target domain data,

we use the Edinburgh Map Task (HCRC) corpus

(Thompson et al., 1996), and the Indiana Cooper-

ative Remote Search Task (CReST) corpus (Eber-

hard et al., 2010) as test set.

The remainder of the paper is structured as fol-

lows: In section 2, we discuss related work. Sec-

tion 3 introduces the two methods that we will

compare, and section 4 describes the experimen-

tal setup. In section 5, we first discuss the results

of the individual approaches, and then attempt a

comparison and an error analysis. In section 6, we

conclude and describe future work.

2 Related Work

Domain adaptation can be divided into two differ-

ent scenarios: one where a small set of annotated

data from the target domain is available, and one

where no annotated target data is available. Early

work on domain adaptation for parsing shows that

not having target domain data makes the task ex-

tremely challenging: In the CoNLL 2007 shared

task on dependency parsing (Nivre et al., 2007),

no team submitting results for the out-of-domain
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setting improved much over the baseline. Dredze

et al. (2007), for example, presented three ap-

proaches to domain adaptation: modifications to

the feature set, using a parser ensemble, and target

focused learning, but they reached the best results

by using all the available data. The best perform-

ing system (Sagae and Tsujii, 2007) used a combi-

nation of two different models of an LR parser and

then selected identically parsed target sentences to

add to the training set of the final parser. This ap-

proach outperformed the baseline of Dredze et al.

(2007) by approximately 1%.

McClosky et al. (2006) use self-training in com-

bination with a PCFG parser and reranking. They

train the parser and reranker on the Penn Treebank,

then parse and rerank a small set of target domain

data. They reach an error reduction of 28% in the

target domain. However, Sagae (2010) shows that

while the reranking approach by McClosky et al.

(2006) reaches higher F-scores than a self-training

approach without reranking, the latter actually per-

forms better in a semantic role labeling task.

Reichart and Rappoport (2007), in contrast, use

a small annotated data set in the target domain for

self-training without reranking. I.e., they train the

parser on their small target domain data set and

then perform self-training on more unlabeled data.

They evaluate their parser in terms of annotation

cost, and they show a 50% reduction in annotation

cost.

Chen et al. (2008) work on domain adaptation

without labeled target data: They parse the target

data with a dependency parser. But rather than

using the full parses as additional training data,

they only add short-distance dependencies, which

can be parsed more reliably. They gain approx.

1% over adding all sentences in Chinese. Kawa-

hara and Uchimoto (2008) use a similar approach:

They train a classifier to recognize reliably parsed

sentences to add to the training set. This method

outperforms the source domain baseline as well as

all CoNLL 2007 systems by approx. 1%.

Finkel and Manning (2009) extend the work

by Daume III (2007), who investigated a method

for selecting general features that hold across do-

mains. Finkel and Manning (2009) apply this

method to dependency parsing, by using a hier-

archical Bayesian model. They show an improve-

ment of their approach over training on data from

all domains in 4 out of 6 domains.

McClosky et al. (2010) investigate the auto-

matic selection of source domains that are use-

ful for parsing a target domain. Thus, the parser

can adapt per document to a new target domain.

They use different similarity metrics to determine

the similarity of different source domains to the

target domain and feed those into a regression

model. They show that their model outperforms

self-training, a uniform model as well as the best

single domain for training selected by an oracle.

Miceli Barone and Attardi (2012) perform do-

main adaptation for dependency parsing using

unannotated data. They integrate a transductive

SVM as classifier, which can handle labeled and

unlabeled examples as training data, into a shift-

reduce dependency parser. They also reach an im-

provement in the area of 1% on Italian.

This overview shows that most work concen-

trates on domain adaptation when no annotated

data in the target domain is available or when the

target domain is unknown. Our work also focuses

on a scenario where there is only unlabeled target

domain data available. We compare co-training, a

method that has not been used successfully for do-

main adaptation in parsing before, and a simpler

approach based on an ensemble of three different

parsers.

3 Domain Adaptation Methods

3.1 Parser Combination

A simple way of creating additional, labeled train-

ing data in a new domain is to use an ensemble

of parsers and then select the sentences on which

the parsers agree. This parser combination method

takes advantage of the different biases built into

different parsing algorithms; agreement between

parsers should translate into a greater likelihood

that the agreed upon parse will be correct.

In practice, the ensemble of parsers is trained

on an available annotated data set in the source

domain, i.e., the Penn Treebank (PTB) for pars-

ing. They are then used to parse a corpus of unan-

notated data in the target domain. The sentences

from the unannotated target domain on which the

parsers agree are added to the original source do-

main gold-standard annotated data, and one (or

more) parser is retrained on the resulting union.

Originally, this method was used by van Hal-

teren et al. (2001) to improve part of speech tag-

gers. Following Sagae and Tsujii (2007) and

(Chen et al., 2008), we adapt the approach to the
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task of parsing by retraining with agreed upon

parses from only a part of the ensemble as well as

with partial trees. This will lead to more training

data, though potentially of a lower quality.

3.2 Co-Training

Co-training, as proposed by Blum and Mitchell

(1998), is a semi-supervised machine learning ap-

proach that uses two different “views” of the data

to train two specialized classifiers, which provide

additional training data for each other. In co-

training for domain adaptation of parsers, we fol-

low Goldman and Zhou (2000) in assuming two

different parsers rather than two different feature

sets. In other words, the different views come

from two parsers built on different parsing algo-

rithms, i.e., with different biases. The source-

trained parsers are used to parse the unlabeled tar-

get data, providing a confidence score with each

parse. The parsers each parse sentences from a

pool of m randomly selected sentences from the

set of unlabeled target domain data. The output

of each parser is ranked by confidence scores, and

the n-best parsed sentences from each parser are

added to the original training data for the next cy-

cle. Then the set of sentences is replenished from

the unlabeled data set. This process is repeated

until no further improvement on the development

set is observed. Because the parsers have different

algorithms and, theoretically, different strengths,

each should be able to learn from highly-confident

training data provided by the other.

4 Experimental Setup

4.1 Data Sets

We use the following data sets: The Penn Tree-

bank (PTB) (Marcus et al., 1993) serves as the

training set from the source domain. The PTB

training files were modified to remove any gram-

matical functions not present in our target domain

(see below). All experiments use either sections 2-

11 (as in the 2007 CoNLL shared task on domain

adaptation), or sections 2-21 (the standard training

set for parsing).

Our target domain is dialog text taken from

cooperative map tasks. The test corpus consists

of Cooperative Remote Search Task (CReST) di-

alogs, in which a searcher collects and deposits

items throughout a search location (a series of

connected offices) at the guidance of a director,

who has a map of the location and communicates

instructions remotely by mobile telephone. The

original CReST corpus contains a small number

of novel tags to handle phenomena that are com-

mon in dialog data but not in newspaper text, such

as imperative verbs. These tags were converted

to their closest equivalents in the PTB tagset. The

syntactic annotation of the CReST corpus includes

constituent and dependency annotations. We use

the constituent annotation, which follows the PTB

annotation (Santorini, 1991). In contrast to the

PTB, the CReST annotations use a subset of the

grammatical functions from the Penn Treebank:

subject, predicate, location, direction, and tempo-

ral modifications. For our experiments, 5 dialogs

(1 137 sentences) of the CReST corpus were re-

served for development, and 18 dialogs (4 518 sen-

tences) were used as the test set.

The Human Communication Research Center

Map Task Corpus (HCRC, also known as the Edin-

burgh Map Task) (Thompson et al., 1996) is used

as the unlabeled target domain set. HCRC con-

sists of 128 dialogs. In each dialog, both partic-

ipants had a map of the same area, but the maps

differed in the landmarks featured in given loca-

tions, and participants could not see their partners’

maps. One map included a route, and the holder of

that map was asked to verbally guide the other par-

ticipant to redraw the route on his or her map. We

ignore all annotations in the corpus and only use

the transcribed sentences. The full corpus contains

27 084 sentences. When one-word sentences are

removed (as described below), 18 738 sentences

remain. Note that this corpus shares many char-

acteristics with the CReST corpus, but there are

differences in the domain: the environments, land-

marks, and the task itself are different, and in

HCRC, neither participant is physically present in

the mapped location. Furthermore, dialectal dif-

ferences exist, in that 61 of the 64 HCRC partici-

pants were from the Glasgow, Scotland area, while

the 46 CReST participants were from the US.

4.2 Parsers

Both experiments use the Berkeley Parser (Petrov

et al., 2006). For parser combination, we also use

the Bikel Parser (Bikel, 2004) and LoPar (Schmid,

2000), and for co-training, the Stanford Parser

(Klein and Manning, 2003).

Bikel’s parser is a probabilistic context-free

(PCFG) parser with a probability model based on

Collins’s model 2 (Collins, 1999); the Berkeley
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parser performs split-merge cycles on the train-

ing data to automatically induce a PCFG with op-

timized syntactic categories. Collins’ model 2

(Collins, 1997) is a generative model based on

bigram probabilities, dependencies between pairs

of words, as well as sub-categorization frames

for head-words. LoPar was used in concert with

these two parsers for the parser combination ex-

periments due to its human accessible grammar

files: rule counts can be directly modified and new

rules added to the LoPar grammar. Thus, we can

add partially agreeing sentences, in the form of in-

dividual rules, from the HCRC data. For the co-

training experiments, we used the Stanford parser

instead of Bikel’s because the co-training exper-

iments require the parsers to generate confidence

scores for each parse. The Berkeley parser pro-

duces such scores, Bikel’s does not. The Berkeley

parser’s training was limited to 5 split-merge cy-

cles in order to avoid overfitting to the PTB.

In all experiments, sentences longer than 40

words were excluded from training and testing.

All parsers were trained on the source domain

training sets of PTB sections 2-11 and 2-21. All

experiments use gold POS tags for the PTB and

CReST. HCRC is tagged with TnT (Brants, 2000),

trained on the full PTB.

4.3 Parser Combination

The three parsers were used to parse the HCRC

corpus. Agreement among the three was deter-

mined by bracketing alone (unlabeled condition),

and bracketing along with node labels (labeled

condition). For the unlabeled condition, the labels

to add to training are simply taken from the parser

with the highest overall baseline, i.e. Berkeley.

LoPar alone was chosen as our test parser for

the experiments that involve adding agreeing rules

directly to the training. For the other experiments,

we also used the Berkeley parser and Bikel’s

parser as final parsers.

4.4 Co-Training

For co-training, the value of the n best sentences

added to the training set per cycle was chosen be-

tween 20 and 500, and a minimum of four co-

training cycles were performed. The size of the

pool of randomly selected sentences to parse, m,

was chosen from values ranging from 250 to 1500.

Optimal combinations of n and m were deter-

mined by a non-exhaustive search on the PTB 2-11

training set and the CReST development set. The

optimal values for n and m were found to be 20

and 500, respectively. Then, we repeated the ex-

periment with the PTB 2-21 training set.

We used a single training set for both parsers;

i.e., after each cycle, the n-best parsed sentences

from each parser were added to a common train-

ing set, rather than passed to a unique training

set for the opposite parser. Initial experiments

showed that the set of n-best ranked sentences

was comprised almost entirely of single-word sen-

tences, leading to a decrease in performance from

the baselines. Consequently, we removed all one-

word sentences from the raw target domain data.

4.5 Evaluation

For evaluation, we used the standard evalb soft-

ware1 and report F1-scores, based on labeled pre-

cision and recall. We performed significance tests

using Dan Bikel’s Randomized Parsing Evaluation

Comparator2.

5 Results

5.1 Parser Combination

For the experiments on parser combination, we

report three baselines, one baseline per parser.

Then, we investigate agreement across 3 parsers

and across 2 parsers.

Agreement across 3 parsers. Here, we report

results for the following experiments:

1. SENTLAB adds HCRC sentences on which

the 3 parsers agree on labeled analyses.

2. SENTUNLAB adds HCRC sentences on

which the 3 parsers agree on bracketing but

not necessarily on labels.

3. RULES adds individual context free rules to

training on which the 3 parsers agree.

The third condition can only be used with LoPar

as the final parser, the other two conditions are

used in combination with each parser.

In table 1, we present the results for these ex-

periments. We also experimented with conditions

where we removed one-word HCRC sentences

from the additional training data. However, the

F-scores with one-word sentences removed were

very close to their counterparts, if not somewhat

lower. For this reason, we do not report them.

1http://nlp.cs.nyu.edu/evalb/
2
http://www.cis.upenn.edu/˜dbikel/

software.html#comparator
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Experiment sec. 2-11 sec. 2-21

Berkeley baseline 71.30 72.24

Bikel baseline 71.93 71.94

LoPar baseline 70.41 70.75

Berk.+SENTUNLAB 65.86 69.46

Berk.+SENTLAB 70.49 69.41

Bikel+SENTUNLAB 67.16 69.36

Bikel+SENTLAB 68.04 68.64

Lo.+SENTUNLAB 70.37 72.15

Lo.+SENTLAB 70.50 71.42

Lo.+RULES 70.58 71.37

Table 1: Results of the parser combination on the

CReST test set (F1). We report labeled F1.

The results show that the baseline parsers profit

only marginally from the larger training set in

the second column. Note that the results are

lower than normally reported for in-domain pars-

ing. This is due to the fact that the two domains

are very different. LoPar performs lower than its

two counterparts, the Berkeley parser and Bikel’s,

as is expected, since it is a PCFG parser with a

straightforward probability model.

When we add the training data from HCRC

to the source training, both the Berkeley parser

and Bikel’s parser degrade in performance while

LoPar’s performance increases over its baseline. A

major source of error lies in CReST’s many one-

word sentences: 1 638 out of 4 518. In CReST,

the vast majority (1 580) of the one-word sentence

parses have INTJ as the unary node. The ex-

tended grammars used by LoPar closely matches

this distribution, with a majority of the one-word

sentence parses being dominated by the INTJ

unary node. The Berkeley and Bikel parsers, in

contrast, have a strong preference to label the

unary nodes as FRAG. Despite being trained on the

same additional data, LoPar is not as subject to this

errant distribution. This may be due to the fact that

the probability models in the Berkeley and Bikel

parsers are more finely tuned to the PTB and thus

more brittle to noisy data, whereas LoPar uses a

simpler model and is more robust.

For LoPar, providing additional training data

from HCRC in all 3 variants improves the F-scores

by a small margin over its baseline, with only one

exception: In the experiment where we train LoPar

on the small training set and add all sentences on

which all three parsers agree, we see a small loss

in the F-score. The second trend that can be ob-

served is that LoPar trained on the large source

domain data set profits more from the additional

target domain data than when it is trained on the

smaller source domain set.

The best performing condition given the small

source domain training set is the one in which we

add individual rules, RULES. Given the larger

source domain training set, the best performing

condition is the one using sentences with un-

labeled agreement, SENTUNLAB. Thus, if the

parser has a solid, large grammar from the source

domain, it can use the large but noisy addition

to its grammar while the smaller source domain

grammar requires more high quality additions. In

the setting with the small source domain gram-

mar, RULES adds 8 966 additional rules, SENT-

LAB adds 3 135 rules, and SENTUNLAB adds

25 764 rules. However, note that even the best per-

forming LoPar variant cannot outperform the re-

sults by the Berkeley baseline (or the Bikel base-

line, in the setting with the smaller source domain

training set).

Agreement across 2 parsers. We now turn to

the experiments with enforced agreement based on

a dyad of parsers. In table 2, we present results

from the experiments with the relaxed condition,

for each possible dyad of parsers, combined with

LoPar as the final parser. We also retrained the

Berkeley and the Bikel parser on the extended data

sets, but the results were far below the ones for

LoPar. This is interesting in itself because LoPar,

as the weakest baseline parser, is capable of prof-

iting the most from the additional target domain

data. We assume that this is a consequence of

LoPar’s simple, but robust probability model.

The best performer for both sizes of source

domain data is the combination of the Berkeley

parser and Bikel’s in the unlabeled sentence condi-

tion (BERKELEY/BIKELSENTUNLAB), which is

also the experiment where LoPar has the most ad-

ditional training, adding either 50 050 rules (sec.

2-11 experiments) or 53 123 rules (sec. 2-21 ex-

periments) (cf. 312 614 rules in sec. 2-11 baseline,

662 266 in sec. 2-21 baseline). Also worth not-

ing is the fact that LoPar is taking training from

the agreements from the other two parsers. LoPar

profits the most from the sentences selected by the

combination of parsers that have different biases.

In this way, the parser combination approach is

similar to co-training. Note that when we enforce

agreement between two parsers only, the addi-
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Experiment F1 (sec. 2-11) F1 (sec. 2-21)

Berkeley baseline 71.30 72.24

Bikel baseline 71.93 71.94

LoPar baseline 70.41 70.75

LoPar+BERKELEY/BIKELSENTLAB 71.26 72.77†

LoPar+BERKELEY/LOPARSENTLAB 70.51 71.36

LoPar+BIKEL/LOPARSENTLAB 70.15 71.10

LoPar+BERKELEY/BIKELSENTUNLAB 73.41† 73.66†

LoPar+BERKELEY/LOPARSENTUNLAB 70.43 72.22

LoPar+BIKEL/LOPARSENTUNLAB 72.87‡ 73.29†

LoPar+BERKELEY/BIKELRULES 71.52 72.22

LoPar+BERKELEY/LOPARRULES 70.62 71.20

LoPar+BIKEL/LOPARRULES 70.49 71.35

Table 2: Results for LoPar with HCRC training, based on 2 parsers, on the CReST test set. †=significance

at p < 0.001 over the best performing baseline, ‡ at p < 0.005.

tional training data boosts LoPar’s accuracy to im-

prove over both the Berkeley and the Bikel base-

lines. We also see that in this condition, there is

only a minimal difference between the small and

the large source domain training set.

We also looked at the influence of quantity of

(additional) training data on the results. In gen-

eral, more training data leads to better results. As

expected, PTB sections 2-21 perform better than

sections 2-11, but as more and more data is added,

the results converge, leading us to the conclusion

that as more reliable target domain training data

is available, the size of the initial source domain

training set becomes less important. However,

there must be a critical mass of additional train-

ing data before results start to improve, with more

data required for a smaller source domain train-

ing set. This might suggest that the other parser

combinations may not have resulted in this critical

mass; in other words, that the HCRC corpus may

be too small as a target domain data set given a

parser combination setting.

5.2 Co-Training

In the co-training setting, the additional training

set is produced by two individual parsers, the

Berkeley and Stanford parser. The selection of re-

liable sentences is based on parser confidence val-

ues, i.e., the probabilities associated with parses.

The additional sentences are added in cycles. We

stopped the co-training process after 10 cycles.

The results on the CReST development set for 6

cycles are given in Table 3.

The results show that both parsers reach lower

Training PTB 2-11 PTB 2-21

Parser Berk. Stan. Berk. Stan.

Baseline 68.24 67.83 69.18 68.39

Cycle 1 68.06 67.89 70.04 68.40

Cycle 2 69.68 68.10 69.49 68.40

Cycle 3 69.29 68.03 68.64 68.40

Cycle 4 70.40 68.25 68.68 68.51

Cycle 5 68.35 68.37 69.21 68.46

Cycle 6 70.31 68.36 69.97 68.43

Table 3: F-scores for 6 cycles (development data).

baseline results on the development set than in

parser combination. It is also obvious the Berke-

ley parser outperforms the Stanford parser and that

the larger, source domain training set has only a

minimal effect on parser accuracy.

For the smaller training set, the Berkeley parser

reached optimal results in the fourth co-training

cycle and the Stanford parser in the fifth cycle.

With n set at 20, these scores represent the addi-

tion of 160 and 200 target domain sentences to the

training set, respectively. For the larger training

set, the Berkeley parser reached optimal perfor-

mance in the first cycle, and the Stanford parser

in the fourth cycle, meaning 20 and 160 sentences

were added, respectively.

We then used the grammars from the optimal

cycle and PTB training set in order to parse the

test set using both parsers. The results of these

settings, along with the parsers’ baselines on the

test set are shown in Table 4. These results show

that both parsers reach higher F-scores than on the

development set. Moreover, the development set
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Training sec. 2-11 sec. 2-21

Parser Berk. Stan. Berk. Stan.

Baseline 71.30 70.58 72.24 71.48

Optimized 72.11† 70.63† 73.11† 71.60†

Table 4: F-scores for co-training on the test set.

†=significance at p < 0.001 over the baseline.

scores saw significantly higher improvements; the

greatest improvement overall came from the com-

bination of Berkeley and PTB 2-11, which rose

from a baseline of 68.24 to 70.40 in the fourth cy-

cle. The best results on the test set, for both PTB

training sizes, are reached by the Berkeley parser,

with an F-score of 72.11 given the small training

set and an F-score of 73.11 given the larger train-

ing set. The results are surprising given that only a

very small number of target domain sentences was

added to the source domain training set.

5.3 Discussion

We are now in a position to compare the results of

the two domain adaptation methods. A first com-

parison shows that both methods reach a similar

performance: Given the larger PTB training set,

the parser combination method reaches an F-score

of 73.66 while co-training reaches 73.11. How-

ever, these results are obtained by different parsers

and by training on different amounts of target do-

main training sentences: While the parser combi-

nation approach reaches the highest results based

on using LoPar, co-training favors the Berkeley

parser. And while parser combination adds 15 200

sentences from the HCRC corpus (including one-

word sentences), the best co-training results are

reached by adding only 20 sentences. Also, the

best performing parser combination took approx-

imately 3.5 hours while the best performing co-

training experiment (which took only 1 cycle) re-

quired 2.5 hours on the same cluster.

Error analysis. In examining the results of our

two approaches, unsurprisingly, we found that a

large proportion of the errors are related to the

considerable differences between the source and

target domain. Newspaper text is more formal than

spontaneous dialogs. Moreover, some phenomena

that occur frequently in CReST are absent or rare

in the PTB training data. For example, sentence-

initial “and” is a prominent feature of CReST, but

naturally, not so frequent in the PTB. There are

no sentences that begin with “and” in the train-

ing set, which makes them a challenge for the

parsers. Thus, in our best co-training experiment,

the Berkeley parser relied heavily on the generic X

label. However, this label is not used in this con-

text in the gold standard. Notably, the distribution

of these labels in the Stanford parses as well as in

the parser combination parses is similar to that of

the gold standard. However, all parse models have

a tendency to assume such sentences are fragmen-

tary and thus should be grouped under the FRAG

label.

In general, fragmentary cases, which are abun-

dant in CReST, are difficult for parsers to learn

since they often require global information to de-

cide that a constituent is incomplete. All parsers

tend to either posit an extra element FRAG where

there should be none, or omit it when it should be

there. This can have a devastating effect on the

F-scores of short sentences, which are extremely

frequent in CReST.

6 Conclusion and Future Work

We performed domain adaptation for constituent

parsing using two different methods. Our target

domain consists of spontaneous dialogues involv-

ing collaboration between speakers. In the com-

parison of parser combination versus co-training,

both methods outperform their respective base-

lines, and they reach a similar performance on the

test set. We can conclude that the best parser com-

bination adds more target domain sentences to the

source domain training set while the co-training

technique is faster. Potentially, LoPar could also

profit from the small number of sentences chosen

in the co-training experiment, but we assume that

their number is too small to have an effect on the

rather robust probability model.

For the future, we are planning to extend our ex-

periments: First, we are planning to add the Stan-

ford parser to the parser combination experiments.

Then, we will use both domain adaptation meth-

ods for dependency parsing. Since both the Penn

Treebank and CReST are available in dependency

format, we can perform these experiments on the

same data sets.
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