
Proceedings of Recent Advances in Natural Language Processing, pages 32–40,
Hissar, Bulgaria, 7-13 September 2013.

A Semi-supervised Learning Approach to Arabic Named Entity
Recognition

Maha Althobaiti, Udo Kruschwitz, and Massimo Poesio
School of Computer Science and Electronic Engineering

University of Essex
Colchester, UK

{mjaltha, udo, poesio}@essex.ac.uk

Abstract

We present ASemiNER, a semi-
supervised algorithm for identifying
Named Entities (NEs) in Arabic text.
ASemiNER does not require annotated
training data, or gazetteers. It also can
be easily adapted to handle more than
the three standard NE types (Person,
Location, and Organisation). To our
knowledge, our algorithm is the first
study that intensively investigates the
semi-supervised pattern-based learning
approach to Arabic Named Entity Recog-
nition (NER). We describe ASemiNER
and compare its performance with dif-
ferent supervised systems. We evaluate
this algorithm by way of experiments to
extract the three standard named-entity
types. Ultimately, our algorithm out-
performs simple supervised systems and
also performs well when we evaluate
its performance in order to extract three
new, specialised types of NEs (Politicians,
Sportspersons, and Artists).

1 Introduction

Named Entities (NEs) are textual references via
proper names, such as first and last names, loca-
tions, and companies. Detecting NEs within un-
structured text and classifying them into prede-
fined categories of names is known as Named En-
tity Recognition (NER) (Grishman and Sundheim,
1996).

Arabic NER has been given great amount of at-
tention over the past fifteen years. A number of
Arabic NER systems have been developed using
three approaches, which have been investigated
thoroughly in the literature of NER. These ap-
proaches are rule-based (Shaalan and Raza, 2007;
Shaalan and Raza, 2009), Machine Learning (ML)

(Benajiba et al., 2007; Benajiba and Rosso, 2007;
Benajiba and Rosso, 2008; Abdul-Hamid and Dar-
wish, 2010) and hybrid (Abdallah et al., 2012;
Oudah and Shaalan, 2012).

Over the past decade, some studies have ex-
plored the possibility of solving the problem of
NER with a reduced level of supervision. These
studies proposed semi-supervised and unsuper-
vised systems, which no longer require annotated
datasets and can be easily adapted to new types
(Nadeau et al., 2006; Etzioni et al., 2005; Liao and
Veeramachaneni, 2009; Liu et al., 2011).

This paper introduces ASemiNER, an Arabic
semi-supervised NER system built under minimal
supervision. Gazetteers (predefined lists of NEs)
and annotated corpora are not required by ASem-
iNER. That is, ASemiNER is a bootstrapping al-
gorithm that takes a few examples of a particular
NE type as input and iteratively induces and learns
patterns, which are used to extract more examples.
Extraction patterns are induced and generalised
automatically from data using very general criteria
that require no human intervention, and no prior
knowledge of the language or the corpus domain.
In addition to the fact that ASemiNER extracts and
recognises the three standard NEs (Person, Loca-
tion, and Organisation names), it has proven to be
an adaptable system that can be easily modified
to extract new NEs without the need for analysing
the dataset or collecting and tagging new large cor-
pora.

The remainder of this paper is structured as fol-
lows: Section 2 includes background information
on Arabic NER, including recent work. Section
3 illustrates the architecture of the proposed al-
gorithm. Section 4 describes the corpora used in
the experiments and the preprocessing steps used
to prepare them. The experimental setup and the
evaluation results are reported and discussed in
Section 5. Finally, the conclusion features com-
ments regarding our future work.

32

2 Background

2.1 State-of-the-art Arabic NER

Arabic has started to gain a significant amount
of focus in large-scale projects, such as Global
Autonomous Language Exploitation (GALE)1

(Nadeau and Sekine, 2007). In addition, re-
searchers have been making an effort over the past
fifteen years to boost the performance of Arabic
NER task.

Many Arabic NER researchers have employed
rule-based techniques (Mesfar, 2007; Shaalan and
Raza, 2009) that require experts. Thus, many
ML methods, including Supervised Learning (SL)
techniques, have been investigated in order to
learn NE annotated decisions from training data.
The most common SL techniques used for NER
are Maximum Entropy (Benajiba et al., 2007),
Support Vector Machine (Benajiba et al., 2008),
and Conditional Random Fields (CRF) (Benajiba
and Rosso, 2008)

Abdallah et al. (2012) proposed a hybrid NER
system for Arabic in which they integrate the rule-
based approach with the ML-based approach in or-
der to optimise overall performance. Oudah and
Shaalan (2012) contribute to the Arabic hybrid
NER approach by investigating three different ML
approaches including Decision Trees, SVM, and
Logistic Regression, along with different features.
Their system outperforms the state-of-the-art Ara-
bic NER when applied to ANERcorp.

AbdelRahman et al. (2010) presented an inte-
gration approach between two machine learning
techniques, CRF and semi-supervised pattern gen-
eration where the generated patterns were used as
CRF features. Mohit et al. (2012) also investi-
gated the problem of NER in Arabic Wikipedia us-
ing semi-supervised domain adaptation technique.
They trained a model on newswire text based on
standard supervised method. Then, they adapted
the model with self-training on unlabeled target-
domain data.

2.2 Semi-supervised techniques

Semi-supervised learning (SSL) is a relatively re-
cent approach in the NLP community. It is still
active and is likely to be improved and tested
with various NLP tasks, including NER. The most
common SSL technique is bootstrapping, which
only requires minimal supervision, namely, a set

1http://projects.ldc.upenn.edu/gale/

of seeds in order to initiate the learning process
(Nadeau and Sekine, 2007).

An early study that influenced later works
(Riloff and Jones, 1999) propounds that the algo-
rithm begins with a set of seed examples of a par-
ticular entity type (e.g., London is entity of type
city). Then, all contexts (e.g., “State of <X >”,
“seminars in <X >”) found around these seeds in
a large corpus will be gathered, ranked, and used
to find new examples. Pasca et al. (2006) used the
same bootstrapping technique employed in (Riloff
and Jones, 1999), but they applied the technique
to very large corpora and managed to generate one
million facts with a precision rate of about 88%.

Etzioni et al. (2005) proposed a system called
“KnowItAll” that aims to automate the process of
extracting large collections of facts, such as names
of cities or movies from the web, in a domain-
independent and scalable manner, starting with a
set of predicates (e.g., City, and Country) and a
set of generic extraction patterns. Furthermore,
Nadeau et al. (2006) proposed a named-entity
recognition system that combines named entity
extraction inspired by the study of Etzioni et al.
(2005) with a simple form of named-entity disam-
biguation. Their study’s remarkable performances
compete with baseline supervised approaches.

In 2009, Liao and Veeramachaneni proposed a
simple semi-supervised learning algorithm using
CRF. the algorithm starts with a small amount of
labeled data (L) and a classifier that is trained on
L. Then, the data D are extracted from unlabeled
data using the trained classifier. The extracted data
D with high confidence are added to the training
data. At each iteration, the classifier trained on
the previous training data is used to tag unlabeled
data and so on (Liao and Veeramachaneni, 2009).
Baroni et al. (2010) presented an algorithm that in-
duces semantic information from naturally occur-
ring text without supervision and requiring a small
amount of pre-encoded knowledge, POS tagging,
lemmatization of the corpus, and a set of extrac-
tion templates defined over POS sequences.

3 Methodology

Like most other semi-supervised algorithms, our
algorithm contains 3 components, as shown in
Figure 1.

33

Figure 1: The Three Components of ASemiNER

Our algorithm begins with a seed list of a few
examples of a given NE type (e.g., ‘Muhammad’
and ‘Obama’ can be used as seed instances for
entity of type person) and learns patterns that are
used to extract more examples (candidate NEs).
These examples will be sorted and used again as
seed instances for the next iteration.

3.1 Pattern Induction
3.1.1 Initial Patterns
ASemiNER uses a similar approach to that which
was adopted in Baroni et al. (2010) to infer pat-
terns, but with some modifications. Our algorithm
infers a set of surface patterns that contain seed in-
stances in the training corpus. So, for each seed in-
stance x, we first retrieve all sentences containing
the term x. Since words preceding or following the
target word may be useful for determining its cat-
egory, the algorithm extracts a number of tokens2

on each side of the seed x without crossing sen-
tence boundaries. Figure 2 is an example of ini-
tial patterns containing the seed instance (Muham-
mad) and its surrounding tokens.

Figure 2: Example of Initial Pattern

We will refer to each “Token/POS-tag” pair as
“TP pair” (e.g., ‘indicated/VBD’ represents one
TP pair). Noun tokens in TP pairs are kept in
their inflected form, while verb tokens are replaced
with their roots. For example, (katabt ‘wrote’)3

and (taktub ‘writes’) will be changed to (katab
‘write’).

For each particular type of NEs (e.g., Person),
2Following a few trials, we found that a suitable number

of tokens is 7.
3Throughout the entire paper, Arabic words are repre-

sented as follows: (Qalam transliteration ‘English transla-
tion’).

lists of “trigger” words4 (nouns and verbs) are pro-
vided as input. The lists of trigger nouns are semi-
automatically extracted from randomly selected
Arabic Wikipedia articles. Specifically, we extract
nouns that appear most frequently before or after
the NE and stored them as trigger nouns. Trigger
verbs are the most frequent verbs (stems) that ap-
pear before or after NE in the Arabic Wikipedia
articles. Trigger verbs and nouns, which surround
NEs, are identified in order to find the most com-
mon Arabic NE indicators. Some examples of
trigger nouns are: (alsayd ‘Mr.’), (alsaydh ‘Mrs.’),
and (bn ‘the son of’) for a person’s name; (mady-
nah ‘city’), and (wilaayah ‘state’) for location.

3.1.2 Generalisation

In the next step, the initial patterns are gener-
alised. Therefore, all extracted initial patterns
should complete the following steps in order to
generate the final patterns:

1. TP pairs that contain nouns, and verbs are
stripped of their “Token” parts, unless they
are in the corresponding lists of trigger
words. For example, TP pair (alsayd/NN
‘Mr./NN’) will stay unchanged since (alsayd
‘Mr.’) is in the list of trigger nouns, while
(qalam/NN ‘pen/NN’) will be changed to
only ‘ / NN’ as (qalam ‘pen’) is not among
trigger nouns.

2. TP pairs that contain prepositions are not
changed.

3. TP pairs that contain other parts of speech
categories (e.g., proper noun, adjective, co-
ordinating conjunction) are stripped of their
“Token” parts. For instance, the token (mu-
fyd/JJ ‘useful/JJ’) will be converted to only ’
/JJ’ without the “Token” part.

4. All POS tags used for verbs (e.g., VBP, VBD,
VBN) are converted to one form: VB.

5. All POS tags used for nouns (e.g., NN, NNS)
are converted to one form: NN.

6. All POS tags used for proper nouns (e.g.,
NNP, NNPS) are converted to one form:
NNP.

4Also known as keywords or indicators that form a win-
dow around the NE.

34

7. The seed instance is replaced with NE
class tag (e.g., <PersonName>, <Loca-
tion>, <Organisation>).

Figure 3 shows the final pattern resulting from
the initial pattern, after the constrained processes
mentioned above are applied:

Figure 3: Example of Final Pattern Produced by
ASemiNER

All final patterns that are generated from the al-
gorithm and their frequencies are first computed,
and then gathered to form the pattern set (P). In the
final step, two more patterns were generated from
every pattern in P. Therefore, the algorithm split
every final pattern into two parts, where each seed
instance is located in the leftmost or rightmost po-
sition in the pattern. The two patterns generated
from our previously mentioned example can be
seen in Figure 4.

Figure 4: Two More Patterns Generated from the
Final Pattern

The rationale behind this is to increase the gen-
erality of the patterns by making them shorter in
length, thus increasing their ability to collect more
candidate NEs in the matching process against the
text. For example, the short pattern “Dr./NN <Per-
sonName >” might successfully match more NEs
in the text than the long pattern illustrated in Fig-
ure 3. However, short patterns, which have TP-
pairs containing no “Token” parts at all, but POS-
taggings, are a source of noise. Therefore, the
final patterns set (P) is filtered every time a new
pattern is added to it. Thus, repeated patterns are
not added. In addition, any pattern consisting of
less than 6 TP-pairs5 should contain at least one

5Informal experiments show us that a pattern with less
than six TP-pairs is more likely to be a noisy pattern, espe-
cially if its TP-pairs do not contain “Token” parts at all.

TP-pair with “Token” part. Consequently, the pat-
tern “/VB /NN <PersonName >/NNP /NNP” is re-
jected and not added to the set (P).

3.2 Instance Extraction

In this phase, ASemiNER retrieves the set of in-
stances I from the training corpus that match any
of the patterns in P. First of all, we should make
sure that the generalisation steps used in inducing
patterns are applied to the training corpus in or-
der to prepare it for the matching process (e.g.,
VBD, VBP, and VBN are converted to VB and
so on). The matching final patterns in P against
the corpus is conducted using regular expressions
(regex). For example, the regex for the pattern
“ /VB alductur/NN <PersonName >/NNP” is de-
picted in Figure 5.

Figure 5: Regex Automatically Generated from a
Final Pattern

Since the absence of capitalisation in Arabic,
Arabic POS taggers might mistake some organi-
sations and locations for nouns (NN) or adjectives
(JJ), especially meaningful names. For example,
(alwlaayaat almutHdah alamrykyh ‘United States
of America’) might be tagged as alwlaayaat/NNS
almutHdah/JJ alamrykyh/JJ. The ASemiNER sys-
tem automatically generates regexes from final
patterns without modifying them, regardless of
whether the POS tags assigned to the proper nouns
by POS tagger are accurate or not.

An informal experiment showed that most
proper Arabic names are 2 or 3 tokens in length.
Therefore, in order to increase the number of NEs
collected in each iteration, we allowed the ASem-
iNER system to automatically add the information
of average NE length to the produced regexes, as
seen below:

Figure 6: Regex with Average NE Length

We have also noticed that increasing the aver-
age length of proper names to more than 2 tokens
increases the recall but negatively affects the pre-
cision and quality of the collected NEs.

35

3.3 Instance Ranking/Selection

ASemiNER ranks all examples6 in I according
to the number of different patterns that are
used to extract them (Baroni et al., 2010). For
example, candidate NE that is extracted by 5
distinct patterns will be ranked before the one
that is extracted by only 2 distinct patterns. We
avoid the use of plain frequencies as a criterion
since some bad examples appear more in the
text in a relatively similar context and can be
extracted by only one pattern in (P). Meanwhile,
the good examples might appear less in the text,
but in different contexts, and can be extracted
by more than one pattern in (P). Therefore, the
high frequency threshold does not always produce
good examples. In addition, pattern variety is a
better cue to semantics than absolute frequency.

ASemiNER ranks the examples according to
distinct patterns, and discards all but the top m,
where m is set to the number of examples from the
previous iteration, plus one. These m instances
will be used in the next iteration, and so on. For
example, if we start the algorithm with 10 seed
instances, the following iteration will start with
11, and the next one will start with 12, and so on.
This procedure is necessary in order to ensure that
bad instances from the previous iteration are not
included in the next one.

Moreover, information theory approaches is
commonly used in text mining (Turney et al.,
2010). For that reason, we tried to apply an
Information-theory approach to examine the
plausibility of candidate NEs, which are extracted
by our system. Hence, we used Pointwise Mutual
Information (PMI) statistics to measure the
association strength of the instance i in (I) across
each pattern in (P). A reliable instance is one
that is associated with as many patterns in P as
possible.

pmi(i) =
∑
pεP

log |i,p||i|∗|p|

In this case, |i, p| is the frequency of the in-
stance i extracted by pattern p. |i| is the frequency
of the instance in the corpus. The corpus should
be decliticized, clitics should be separated from
words, in order to reduce data sparseness and to
compute the correct frequencies for each word in
the corpus text sequence. |p| is the frequency of
the pattern p in the corpus.

6Also known as instances or candidate NEs.

4 Datasets

ASemiNER does not require any kind of anno-
tated corpora or any type of gazetteers. However,
our selection of corpora was based on the inten-
tion to compare ASemiNER with other systems.
We chose two commonly used corpora in order
to evaluate and compare our system with existing
systems. These datasets are ANERcorp and ACE
2005.

ANERcorp contains more than 150,000 tokens
(11% of the tokens are NEs). It is composed of a
training corpus and a test corpus built and tagged
especially for the NER task by Benajiba et al.
(2007). We chose to evaluate our proposed sys-
tem with the ANERcorp test corpus because it is
commonly used in literature for comparing with
existing systems. More details about ANERcorp
are given in (Benajiba et al., 2007).

The second dataset used in the training phase is
ACE 2005. It is available from the Linguistic Data
Consortium (LDC) and has more than 113,000 to-
kens. The genres utilised in ACE 2005 are Broad-
cast News, NewsWire, and WebLogs.

Ten percent of the training data was dedicated
to the validation set which was used to validate the
effectiveness of the trained models. It also helped
assign appropriate values to several parameters in
our system, such as the number of initial seeds, the
criterion to stop the training process, and so on.

ANERcorp and ACE corpora were pre-
processed in order to prepare them for our pro-
posed algorithm. Thus, sentence detection was ap-
plied to the corpora. Then, we conducted clitic
tokenization, since neglecting clitics may cause a
loss of important information when generating the
patterns. We chose decliticization scheme ‘D2’
in which conjunctions, prepositions, and future
marks are separated from each token (Habash and
Sadat, 2006).

Each verb in the corpus is changed to its root
from which it is derived. We used root stem-
mer, namely Khoja’s stemmer (Khoja and Gar-
side, 1999), instead of using a light stemmer,
which sometimes fails to conflate related forms
that should group together, as our goal was to pro-
duce a sound set of general patterns.

Regarding POS-tagging, we used AMIRA
toolkit (Diab, 2009) and chose Reduced Tag Set
(RTS), which neglects inflections in Arabic word
categories, since our proposed method does not re-
quire any deep morphological information related

36

to gender, number, or definiteness. This informa-
tion is unnecessary, considering our aim is to make
the algorithm generally applicable to languages
other than Arabic.

5 Experiments & Results

We developed several experimental models ac-
cording to three parameters that are defined in our
proposed algorithm: the number of initial seeds,
the ranking measure, and the number of iterations.
The ANERcorp test corpus was used to evaluate
every trained model. Regarding the NE type, we
had two levels of experiments: in Experiment 1
we trained models to identify the standard NEs
(Person, Location, Organisation) in order to com-
pare our system with existing systems; Experi-
ment 2 involved the identification of specialised
NEs (Politicians, Sportspersons, and Artists).

5.1 Experiment 1: Standard NEs
We started with a simple model, which was trained
on the ANERcorp corpus and passed through the
three components only once. For each NE class,
we only started with five seed instances. We re-
ferred to this model as ‘Simple-Model-5’. We
also trained two more models, Simple-Model-10
and Simple-Model-20, which only differed from
Simple-Model-5 in the number of seed instances
for each NE class; the number of seeds were 10
and 20 respectively.

Table 1 shows the precision and recall of these
models for each NE class when applying them to
the ANERcorp test corpus.

Table 1: Results of Simple-Model-5, Simple-
Model-10, and Simple-Model-20

Based on these results, the number of iterations
was set to ten for all coming experiments, because
we recognised that increasing the number of itera-
tions to more than ten loops makes no significant
improvement in the performance of the system

(improvement <0.01). We started with 20 seed
instances for each NE class and the training cor-
pus was ANERcorp. Candidate NEs were ranked
according to the number of distinct patterns in or-
der to select those that ranked the highest as seeds
for the next iteration, as explained in section 3.3.
We referred to these trained models, one model for
each NE class, as ‘Model-A(NE class)’.

We also used Pointwise Mutual Information
(PMI) as a ranking measure for candidate NEs in-
stead of using the number of distinct patterns. Ta-
ble 2 shows the outcome of evaluating the trained
models on the ANERcorp test corpus.

The results obtained using PMI as a measure
to select the seed instances for the next iteration
revealed generally low performance and particu-
larly low recall. This can be attributed to the
PMI’s biased towards infrequent words (Turney et
al., 2010), which means less patterns are extracted
for the next iteration. Using PMI, the precision
was not affected at all, since very few patterns are
added into set P in each iteration. In general, PMI
results in a performance lower than that achieved
when using the number of distinct patterns as a re-
liable measure for seed selection.

Table 2: The Performance of Model-A on the AN-
ERcorp Test Corpus and the Effect of Using PMI

In the next step, a large corpus, which is a com-
bination of the ANERcorp training set and ACE
2005, was used in the training phase. We referred
to the trained models resulting from this experi-
ment as ‘Model-B(NE class)’. Using large train-
ing data increases the recall of the trained models
with a small negative effect on precision. How-
ever, the total F-measure is better when using a
large corpus, rather than training our model on
small training data.

Table 3 summarises the trained models with
their values for each parameter. It also shows the
performance of each model when applying them to

37

the ANERcorp test corpus by computing its aver-
age F-measure for the three standard NEs: person,
location, and organisation.

Table 3: Different Trained Models with their Pa-
rameters and their Performance on the ANERcorp
Test Corpus

Based on all of our previous experiments, we
have concluded that the following parameters give
the best results: the number of initial seeds is 20,
the number of iterations is 10, and the ranking
measure is the number of distinct patterns used in
extraction candidate NEs. Therefore, for the sake
of simplicity, we refer to our system that used the
trained models with the previously mentioned pa-
rameters as “ASemiNER”.

In comparison with different supervised NER
systems (Benajiba et al., 2007; Benajiba and
Rosso, 2007; Benajiba and Rosso, 2008) when
applied on the ANERcorp test corpus, ASem-
iNER can outperform a sensible supervised sys-
tem, which depends on maximum entropy and a
set of features. It still cannot compete, however,
with more complex supervised systems. Table 4
shows the results of the comparison.

Table 4: The Comparison Between Three Differ-
ent Supervised Systems and our System when Ap-
plied on the ANERcorp Test Corpus

5.2 Experiment 2: Specialised NEs
Although most common types of entities inves-
tigated in literature are names of people, organi-

sations, and locations, there are many specialised
domains that require new annotated corpora and
systems to recognise their special NEs (Althobaiti
et al., 2012). The recent increase in the num-
ber of social networks and specialised domains
shows the need to obtain systems that can be eas-
ily adapted to identify different, new types of NEs,
regardless of the domains.

In this section, we show how well the sys-
tem recognises new types of NEs, politicians,
sportspersons and artists. These new types have
been chosen because they constitute the largest
percentage of persons’ names in ANERcorp.
Thus, all annotated persons’ names in ANER-
corp must be re-annotated using one of four tages:
POL, ART, SPORT, and Other. First of all, a
guideline was formulated to distinguish the at-
tributes of each class where each new type has
been defined, described, and determined. After
that, one of the authors re-annotated test corpus
for evaluation purposes.

Unlike supervised learning, which may require
additional examples in the training data for new
categories of NE, our semi-supervised approach
used the ANERcorp training data without any ad-
dition or modification. The methodology was ap-
plied without any major modifications. The mod-
ification is only related to generating new lists of
trigger nouns and verbs for each type of new NEs
(i.e., politicians, sportspersons, artists). They were
generated in the same way explained in section
3.1. We manually checked each list to retain only
verbs that have a high probability to indicate a spe-
cific type of NE. So, verbs like (entakhab ‘elect’),
and (Swwat ‘vote’) can be useful in the case of
politician entities.

The performance in this task is comparable to
that of standard named entities. Table 5 compares
the performance of ASemiNER when extracting
standard NEs and the three specialised NEs.

Table 5: The Performance of ASemiNER on the
ANERcorp Test Corpus in order to Extract Both
Standard & Specialised NEs

For sportspersons, the low recall is possibly due

38

to the impact of the lower number of varied con-
texts in which seeds occur. So, sportspersons con-
stitute only 19% of all person names that exist in
the training corpus, and they occur in a few con-
texts. Thus, the diversity of contexts in which
seeds appear plays an important role in obtaining
a trained model with good performance. The re-
maining recall errors can be attributed to the di-
versity of categories. Accordingly, sportspersons
can be broken down into other categories, such as
“football players”, “golfers” and “wrestlers”. In
contrast, politician entity recognition has a higher
recall than sportspersons. This can be attributed
to two facts: 1) Politicians make up 44% of the
people names in the training corpus, and 2) An ef-
ficient model results from using initial seeds like
‘Bush’ or ‘Muhammad’, since such examples oc-
cur frequently and in a variety of contexts in the
training corpus. Overall, our semi-supervised sys-
tem proved to be easily adaptable when extending
the NE hierarchy. In addition, ASemiNER per-
forms just as well when recognising the standard
person category. Even more, our system high-
lighted the importance of the manner in which ini-
tial seeds are chosen in any semi-supervised ap-
proach.

6 Conclusion

All in all, we advance the the state-of-the art
Arabic NER by avoiding the need for supervision,
adopting a novel solution for the Arabic NER
problem, and handling specialised NE types. Our
solution is a semi-supervised approach in which
our system (ASemiNER) produces semantic
information from naturally occurring text with
limited supervision. Each NE type, therefore,
only requires a seed list made up of a few ex-
amples. Furthermore, in terms of experiments,
ASemiNER outperforms sensible supervised
systems. Admittedly our algorithm does not
perform as well as complex supervised systems,
however, its extremely limited dependence on
supervision more than compensates for this point.
Moreover, ASemiNER can be easily adapted to
identify new types of NEs and does not generate
problems typical of supervised methods that
require annotated training data, and demand more
effort and time to extract specialised types of NEs.

References
Sherief Abdallah, Khaled Shaalan, and Muhammad

Shoaib. 2012. Integrating rule-based system with
classification for arabic named entity recognition. In
Computational Linguistics and Intelligent Text Pro-
cessing, pages 311–322. Springer.

Samir AbdelRahman, Mohamed Elarnaoty, Marwa
Magdy, and Aly Fahmy. 2010. Integrated machine
learning techniques for arabic named entity recogni-
tion. IJCSI, 7:27–36.

Ahmed Abdul-Hamid and Kareem Darwish. 2010.
Simplified feature set for arabic named entity recog-
nition. In Proceedings of the 2010 Named Entities
Workshop, pages 110–115. Association for Compu-
tational Linguistics.

Maha Althobaiti, Udo Kruschwitz, and Massimo Poe-
sio. 2012. Identifying named entities on a univer-
sity intranet. In Computer Science and Electronic
Engineering Conference (CEEC), 2012 4th, pages
94–99. IEEE.

Marco Baroni, Brian Murphy, Eduard Barbu, and Mas-
simo Poesio. 2010. Strudel: A corpus-based seman-
tic model based on properties and types. Cognitive
Science, 34(2):222–254.

Yassine Benajiba and Paolo Rosso. 2007. Anersys 2.0:
Conquering the ner task for the arabic language by
combining the maximum entropy with pos-tag infor-
mation. In IICAI, pages 1814–1823.

Yassine Benajiba and Paolo Rosso. 2008. Arabic
named entity recognition using conditional random
fields. In Proc. of Workshop on HLT & NLP within
the Arabic World, LREC, volume 8, pages 143–153.

Yassine Benajiba, Paolo Rosso, and José Miguel
Benedı́ruiz. 2007. Anersys: An arabic named entity
recognition system based on maximum entropy. In
Computational Linguistics and Intelligent Text Pro-
cessing, pages 143–153. Springer.

Yassine Benajiba, Mona Diab, Paolo Rosso, et al.
2008. Arabic named entity recognition: An svm-
based approach. In Proceedings of 2008 Arab In-
ternational Conference on Information Technology
(ACIT), pages 16–18.

Mona Diab. 2009. Second generation amira tools for
arabic processing: Fast and robust tokenization, pos
tagging, and base phrase chunking. In 2nd Inter-
national Conference on Arabic Language Resources
and Tools.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Un-
supervised named-entity extraction from the web:
An experimental study. Artificial Intelligence,
165(1):91–134.

39

Ralph Grishman and Beth Sundheim. 1996. Mes-
sage understanding conference-6: A brief history. In
COLING, volume 96, pages 466–471.

Nizar Habash and Fatiha Sadat. 2006. Arabic prepro-
cessing schemes for statistical machine translation.
In NAACL. ACL.

Shereen Khoja and Roger Garside. 1999. Stemming
arabic text. Lancaster, UK, Computing Department,
Lancaster University.

Wenhui Liao and Sriharsha Veeramachaneni. 2009.
A simple semi-supervised algorithm for named en-
tity recognition. In Proceedings of the NAACL HLT
2009 Workshop on Semi-Supervised Learning for
Natural Language Processing, pages 58–65. Asso-
ciation for Computational Linguistics.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In ACL, pages 359–367.

Slim Mesfar. 2007. Named entity recognition for
arabic using syntactic grammars. In Natural Lan-
guage Processing and Information Systems, pages
305–316. Springer.

Behrang Mohit, Nathan Schneider, Rishav Bhowmick,
Kemal Oflazer, and Noah A Smith. 2012.
Recall-oriented learning of named entities in arabic
wikipedia. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 162–173. Association
for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

David Nadeau, Peter Turney, and Stan Matwin. 2006.
Unsupervised named-entity recognition: Generating
gazetteers and resolving ambiguity. Advances in Ar-
tificial Intelligence.

Mai Oudah and Khaled F Shaalan. 2012. A pipeline
arabic named entity recognition using a hybrid ap-
proach. In COLING, pages 2159–2176.

Marius Pasca, Dekang Lin, Jeffrey Bigham, Andrei
Lifchits, and Alpa Jain. 2006. Organizing and
searching the world wide web of facts-step one: the
one-million fact extraction challenge. In AAAI, vol-
ume 6, pages 1400–1405.

Ellen Riloff and Rosie Jones. 1999. Learning dic-
tionaries for information extraction by multi-level
bootstrapping. In AAAI, pages 474–479.

Khaled Shaalan and Hafsa Raza. 2007. Person name
entity recognition for arabic. In Proceedings of the
2007 Workshop on Computational Approaches to
Semitic Languages: Common Issues and Resources,
pages 17–24. Association for Computational Lin-
guistics.

Khaled Shaalan and Hafsa Raza. 2009. Nera: Named
entity recognition for arabic. Journal of the Ameri-
can Society for Information Science and Technology,
60(8):1652–1663.

Peter D Turney, Patrick Pantel, et al. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research,
37(1):141–188.

40

