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Abstract

We present a novel method for FrameNet-
based semantic role labeling (SRL), fo-
cusing on limitations posed by the limited
coverage of available annotated data. Our
SRL model is based on Bayesian cluster-
ing and has the advantage of being very ro-
bust in the face of unseen and incomplete
data. Frame labeling and role labeling are
modeled in like fashions, allowing cascad-
ing classification scenarios. The model is
shown to perform especially well on un-
seen data. In addition, we show that for
seen data, predicting semantic types for
roles improves role labeling performance.

1 Introduction

The majority of recent work in semantic role la-
beling (SRL) has been carried out on PropBank-
style semantic argument annotations (Palmer et
al., 2005), rather than on FrameNet-style annota-
tions (Ruppenhofer et al., 2006). FrameNet dif-
fers from PropBank in that FrameNet annotations
are more strongly semantically driven. FrameNet
generalizes over different parts of speech and can
assign the same sense (frame) to a noun and a verb
as in (1), where both competition and play are as-
signed the COMPETITION frame. Also, FrameNet
assigns semantic roles not only to syntactic argu-
ments of the target but also to constituents which
are not directly syntactically dependent on the tar-
get but can be semantically understood as filling a
role, e.g., Wivenhoe Town in (1a).

(1) a. [Wivenhoe Town]Participant1 have never won
the competitionCompetition.

b. [Olympiakos]Participant1 playsCompetition

[against Aris Salonica]Participant1 [in
Piraeus]Place.

A major challenge for FrameNet-style SRL is
posed by the limited coverage of available anno-
tated data. The FrameNet lexicographic corpus

was annotated on a frame-by-frame basis, select-
ing individual example sentences for each lexical
unit (LU), or pairing of lemma and frame. This
means that many common lemmas are missing
from FrameNet, and for those that are included
the number of example sentences is often rela-
tively small and not in accordance with distribu-
tions found in naturally-occurring texts.

FrameNet’s well-known coverage gaps translate
directly to drops in labeling performance, motivat-
ing the development of systems which are more
robust in the face of sparse data. For example,
the supervised SRL system Shalmaneser (Erk and
Padó, 2006) obtains a frame labeling accuracy of
93% on FrameNet 1.2 (with a 90-10 training-test
split), but the same system’s performance drops to
47% accuracy when trained on FrameNet 1.3 and
tested on texts with full frame-semantic annota-
tions (Palmer and Sporleder, 2010). Similarly, Das
et al. (2010) report a 60% frame labeling F-Score
on SemEval-07 data, but of 210 unseen lemmas,
their system predicts just four frames correctly.1

In general the term unseen could refer to un-
seen frames, unseen lemmas, or unseen LUs. As
further discussed in Section 4, we are interested
in unseen LUs: cases in which the system has
not been exposed to a particular pairing of lemma
and frame. We propose a novel method for SRL
based on Bayesian clustering. The model is well
suited to deal with incomplete data, both in terms
of missing feature values and in terms of feature-
label combinations not seen in the training data.

2 Related Work

While early FrameNet-style SRL systems (Gildea
and Jurafsky, 2002; Erk and Padó, 2006, among
others) are unable to make predictions for LUs not
seen in the training data, several more recent stud-

1Under the SemEval-07 partial matching scheme, a ma-
jority of the other frame predictions receive partial credit.
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ies have addressed the coverage issue. For exam-
ple, Das et al. (2010) introduce a latent variable
ranging over seen targets, allowing them to infer
likely frames for unseen words, and the SRL sys-
tem of Johansson and Nugues (2007) uses Word-
Net to generalise to unseen lemmas. In a simi-
lar vein, Burchardt et al. (2005) propose a system
that generalizes over WordNet synsets to guess
frames for unknown words. Pennacchiotti et al.
(2008) compare WordNet-based and distributional
approaches to inferring frames and conclude that
a combination of the two leads to the best results,
while (Cao et al., 2008) discuss how different dis-
tributional models can be utilised. Several ap-
proaches have also addressed other coverage prob-
lems, e.g., how to automatically expand the num-
ber of example sentences for a given lexical unit
(Padó et al., 2008; Fürstenau and Lapata, 2009).

Another related approach is that of generalizing
over semantic roles. Baldewein et al. (2004) use
the FrameNet hierarchy to model the similarity of
roles, boosting seldom-seen instances by reusing
training data for similar roles, though without sig-
nificant gains in performance. The most exten-
sive study on role generalization to date (Matsub-
ayashi et al., 2009) compares different ways of
grouping roles—exploiting hierarchical relations
in FrameNet, generalizing via role names, util-
ising role types, and using thematic roles from
VerbNet—with the best results from using all
groups together.

3 Model

We formalize frame and role assignment using
an extended version of the construction learning
model of Alishahi and Stevenson (2010). The
model uses Bayesian clustering for learning argu-
ment structure constructions: each construction is
a grouping of individual predicate usages which
probabilistically share form-meaning associations.
These groupings typically correspond to general
constructions in the language such as intransitive,
transitive, and ditransitive. By detecting similar
usages and clustering them into constructions, the
model forms probabilistic associations between
syntactic positions of arguments with respect to
the predicate, and the lexical semantic properties
of the predicate and the arguments.

We model frame and role assignment in this
fashion, where the most probable values for a
missing frame or the semantic roles of arguments

are predicted based on the acquired constructions
(or clusters), and the extracted features from the
corpus. This strategy provides a number of advan-
tages. First, the model can easily deal with incom-
plete data; that is, input instances for which any
number of features are missing can be seamlessly
clustered or considered for prediction, based on
the similarity of their features with those in the ex-
isting clusters. Moreover, a single core prediction
mechanism is used for a variety of tasks (e.g. pre-
dicting a missing frame label, role, or role type),
which can lead to cascading prediction. For exam-
ple, for a partial (i.e. unannotated) frame instance,
the best role type for each argument can be pre-
dicted based on the available features, and then ar-
gument roles can be predicted based on those fea-
tures and the predicted role types.

An important characteristic of this model is its
generalizability. It uses a full Bayesian prediction
model, which takes into account the contribution
of every cluster to predicting the best value for
a missing feature. This way, there is no built-in
difference between predicting a frame label or se-
mantic role for seen versus unseen instances. Nat-
urally, the outcome of prediction will be more ac-
curate if the model has seen several instances sim-
ilar to a test instance (i.e., from the same lexical
unit or lemma). But even for unseen instances, the
model is still capable of generalizing the proper-
ties of the training instances given that there are
similarities between their available features, such
as the syntactic pattern and the semantic properties
of the predicate and the arguments.

3.1 Clustering Frame Instances
From the FrameNet corpus, we extract for each
instance the nine features shown in Table 1. Dif-
ferent subsets of these features are used for the ex-
periments reported in Section 5.

An incremental Bayesian clustering process
groups each extracted frame instance with the
most similar existing cluster of instances. If no ex-
isting cluster has sufficiently high probability for
the new frame instance, a new cluster is created.

Adding a frame instance X to a cluster c is for-
mulated as finding the c with the maximum proba-
bility given X , where c ranges over the indices of
all clusters, with index 0 representing recognition
of a new cluster. Using Bayes rule, and dropping
P (X) which is constant for all c:

P (c|X) =
P (c)P (X|c)

P (X)
∼ P (c)P (X|c) (2)
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The prior probability P (c) is given by the rela-
tive frequency of the frame instances it contains,
over all observed instances. The posterior prob-
ability of an instance X is expressed in terms of
the individual probabilities of its features, which
we assume are independent, thus yielding a sim-
ple product of feature probabilities:

P (X|c) =
∏

i∈Features(X)

P (Xi|c) (3)

This probability is estimated using smoothed max-
imum likelihood:

P (Xi|c) =
∑

X′∈c match(Xi, X
′
i) + λ

nc + αiλ
(4)

where nc is the number of instances in cluster
c, and αi and λ are the smoothing factors. For
single-valued features (e.g. head word), the func-
tion match returns 1 if the two feature values are
identical, and 0 otherwise.

For features whose value is a set (semantic
properties of the predicate and arguments, word
classes), an exact match between two sets is rare.
We instead assume that the members of set-valued
features are independent of each other, and calcu-
late the probability of displaying a set Si on fea-
ture i in cluster c as:

P (Si|c) =
1

|Sc ∪ Si|
(
∏
s∈Si

P (s|c)×
∏

s∈Sc−Si

P (¬s|c))

(5)

where Sc is the superset of all the set values of fea-
ture i for members in cluster c. Likelihood prob-
abilities P (s|c) and P (¬s|c) are estimated as in
Eqn. (4), by counting members of cluster c whose
value for feature f does or does not contains s, re-
spectively. The product is rescaled by the size of
the union of the two sets, Sc ∪ Si.

3.2 Frame Identification and Role
Assignment

For any instance in the test set, both frame iden-
tification and role assignment can be modeled as
finding the most probable value for a target fea-
ture, given other available features.

The probability of an unobserved feature i dis-
playing value Xi given other feature values in an
instance X is estimated as:

P (Xi|X) =
∑

c

P (Xi|c)P (c|X) (6)

=
∑

c

P (Xi|c)P (c)P (X|c)

The conditional probabilities P (X|c) and
P (Xi|c) are determined as in the learning mod-
ule. Ranging over the possible values Xi of
feature i, the value of an unobserved feature can
be predicted by maximizing P (Xi|X):

BestValue(X, i) = argmax
Xi

P (Xi|X) (7)

Identifying a frame can be simulated
as finding the frame label Xframe with
the highest P (Xframe |X), or estimating
BestValue(X, frame). Similarly, assigning
roles or role types to the arguments of an instance
X is modeled as estimating BestValue(X, role)
or BestValue(X, role type), respectively.

4 Data

In this work we use the FrameNet 1.3 lexico-
graphic corpus to evaluate the performance of
our model on both seen and unseen data. This
corpus provides annotated example sentences for
each lexical unit (LU; frame-lemma pairing), doc-
umenting a range of syntactic and semantic us-
ages, and it consists of 139,439 annotated exam-
ple sentences distributed over 10,195 LUs. After
excluding 4161 sentences due to inconsistencies
with FrameNet definitions, we created two data
sets: seen and unseen.

Seen Data. In the seen set-up, we assume that
the model has complete information about each
instance’s lexicographic status. This means that
for frame labeling the model knows which frames
each target lemma can have and, further, has ac-
cess to the training instances for each of those
frames. Frame labeling is thus performed on a
lemma-by-lemma basis. For role labeling we as-
sume that the frame of the target lemma is known
(e.g., has been previously predicted, either auto-
matically or by an oracle), as well as that frame’s
role inventory, though it is not known which roles
are instantiated in the given test instance. Role la-
beling is thus performed on an LU basis.

To evaluate frame labeling, we split the set of
sentences by lemma and perform 5-fold cross-
validation. Cross-validation splits for role labeling
are done according to LU.

Unseen Data. To evaluate the performance of
our system on unseen data,we simulate a situa-
tion in which individual LUs are unseen; specif-
ically, we assume that the frame of a given LU has
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been seen before but not with the target lemma.2

We also allow the case that a target lemma has
been seen with a different frame. Note that while
having seen the target frame before will help the
model to select the correct frame, having seen
the target lemma is not necessarily helpful, as it
might lead the system to predict the incorrect seen
frame rather than the correct but previously unseen
frame.

To simulate the unseen condition for a given
LU, all annotated sentences for that LU are re-
moved from the training set and put into the test
set. To test our hypothesis that the performance of
correctly predicting a frame (and by extension also
the roles) for an unseen LU depends on the fre-
quency of the target frame after removing the LU,
we computed the inverse frequency of each LU,
i.e., the frame frequency summed over all other
LUs with the same target frame, and sorted the
set of LUs into three frequency bands based on
their inverse frequency. Each band contains ap-
proximately the same number of LUs, subject to
the constraint that LUs with the same inverse fre-
quency are grouped together. A test set was then
created by randomly selecting 10% of the LUs
from each band, making sure that the test set con-
tains each frame only once; the training set con-
sists of all remaining LUs. Because this configu-
ration does not allow proper cross-validation, in-
stead five random training-test splits were created
and tested.

5 Experiments

Automatic semantic analysis under the FrameNet
approach is generally modeled as a two-part pro-
cess: frame identification (Section 5.1) and role
assignment (Section 5.2). Having a frame label
for an instance’s target lemma is a prerequisite to
role assignment, as there is a distinct inventory of
possible role labels for the semantic arguments of
any given frame.3 We evaluate our model inde-
pendently on the two component tasks and then
perform a preliminary evaluation on the complete
semantic analysis task, taking a pipeline approach.

Features. The model uses nearly the same fea-
ture set for both prediction tasks, with a few ex-
ceptions. Table 1 shows which features are used

2This is in line with previous research on SRL for unseen
data; creating or inducing entirely novel frames is beyond the
reach of any current SRL system.

3Some role names appear in multiple frames, but they
cannot necessarily be assumed to be semantically equivalent.

FramePred RolePred Pipeline
target lemma G G G
target pos G G G
# args A G A
arg head A A* A
arg head POS A A* A
syn pattern A G A
WordNet props A A A
frame label - G M
role types - M/G M

Table 1: Features used for each task. G: gold-standard

feature values; A: automatically-obtained feature values; A*:

automatically-obtained feature values based on gold-standard

input; M: feature values predicted by our model

for each task and whether the feature values are
gold-standard or predicted.

Values for automatically-obtained argument-
related features are extracted from a metafeature
representation produced by the frame assignment
component of the Shalmaneser SRL system (Erk
and Padó, 2006). The automatic syntactic patterns
are then computed by aligning arguments with the
text and replacing the arguments with their phrase-
level syntactic categories.

WordNet features are extracted for each noun
and verb in the lexicon. First, all hypernyms are
extracted for the first sense of the word. In addi-
tion, one member from each hypernym synset is
added to the list of properties for the lexical item.

Baselines and reporting. For each task we cal-
culate an item baseline based on the number of
possible outcomes. In the case of frame identifi-
cation, the baseline reflects the number of frames
a target predicate can participate in. If an LU ex-
ists in the frame dictionary, the number of possi-
ble outcomes is equal to the number of potential
frame labels in the dictionary; if it does not, the
denominator will be the total number of frame la-
bels observed in the training data. For role label-
ing, the baseline reflects the number of roles avail-
able for labeling a given argument. Again, lemmas
appearing in the frame-role dictionary have fewer
possible labels. The baselines reported in Table 2
and Table 3 are the respective averages of all item
baselines across different data sets.

Because our clustering algorithm is incremental
and each training instance is processed only once,
the model’s performance in each task depends
on the order of input items in the training set.
In practice, though, no significant difference was
observed across different cross-validation folds.
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Frame Prediction
Seen Data Unseen Data Baseline

88.32 88.76 87.09

Table 2: Accuracy of frame predictions for seen and unseen

data, five-fold cross-validation.

Also, in the case of unseen data sets, no signifi-
cant difference was observed across different fre-
quency bands. Therefore, in the following sec-
tions, the reported results are averaged over all
three frequency bands (as well as over all cross-
validation folds).

5.1 Frame identification

For frame identification, we assume that the tar-
get lemma has been previously identified, and
the model’s predictions are constrained by a per-
lemma frame dictionary built from FrameNet.
This dictionary contains all LUs defined in
FrameNet, so constraining the model with the
frame dictionary is not equivalent to constraining
the model to the LUs seen in training. This latter
constraint is responsible for some of the coverage
problems faced by other supervised models, so re-
laxing this constraint helps our model.

Results. The results for frame prediction on
both seen and unseen data appear in Table 2. The
high baseline figure reflects the fact that many
lemmas in FrameNet appear with only a single
frame. In combination with the frame dictio-
nary, then, getting these right is a trivial matter.
Nonetheless, our model improves on the baseline
for both the seen and the unseen case. The latter
is particularly positive as it means that we are able
to infer the frame even for unseen LUs.

5.2 Role assignment

In a complete, end-to-end semantic role labeling
system, role assignment involves both determin-
ing the span of the semantic arguments and as-
signing role labels to them. As our focus in this
paper is the clustering model, we do not evalu-
ate on the argument identification task, but rather
assume gold-standard argument spans as input to
role assignment. Having perfect argument spans
greatly reduces the noisiness of both the argument
head features and the syntactic pattern, at the same
time improving the quality of the extracted Word-
Net features. Of course, assuming perfect input
to role assignment is unrealistic for any real-world
setting; thus we briefly report results on executing

Role Prediction
Seen Data Unseen Data

no types 60.00 46.31
predicted types 67.00 46.29
gold types 74.84 73.65
Baseline 11.95

Table 3: Accuracy of role assignment for seen and unseen

data, five-fold cross-validation, with and without semantic

types for roles.

the entire SRL pipeline in Section 5.3.
The model’s role label predictions are con-

strained using a frame-role dictionary extracted
from FrameNet. For each individual instance, the
set of available role labels is restricted to those de-
fined for the frame assigned to the target lemma.

Predicted role types. As an additional feature
for role assignment, we use semantic types on role
fillers, as given in FrameNet. For example, for the
frame COGITATION, the filler of the COGNIZER

role must be a Sentient entity. Most types corre-
spond to one or more WordNet synsets (Ruppen-
hofer et al., 2006). Unlike role names, these se-
mantic types are not specific to frames, but rather
shared across the lexicon.

In theory, these semantic types should be a
powerful feature for assigning role labels. How-
ever, gold-standard semantic types are available
for only a small part of the frame-specific roles de-
fined in FrameNet. Though some previous work
has used these semantic types to generalize over
roles (Matsubayashi et al., 2009), no system so
far has predicted role types to fill those gaps. To
address this particular coverage problem, we first
train a model on the available role types, predict
values for all role types in the test data, and in-
corporate the predicted types as a novel feature for
role assignment.

Results. Results for role assignment appear in
Table 3. All results improve on the baseline. Un-
surprisingly, gold standard role types lead to the
largest performance gain. However, it can be seen
that even when the role types are first predicted au-
tomatically, noticeable performance gains can be
obtained compared to not using type information
at all, at least for seen data. For unseen data auto-
matically inferred type information does not help,
possibly because the type prediction for LUs not
seen in the training data is too noisy. Predictably,
the results are lower for unseen data than for seen
LUs, however, the model degenerates gracefully
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Complete analysis
no types predict types

Seen Data 41.80 45.76

Table 4: Performance on role prediction as a pipeline task,

seen data only, five-fold cross-validation.

and is still able to correctly label almost every sec-
ond argument for unseen LUs.

5.3 Complete semantic analysis

To evaluate our model’s performance on complete
semantic analysis, we use a pipeline approach:
frame prediction, role type prediction, and role as-
signment. For all but the first task, predictions
from the prior stage of analysis are fed into the
model for the next. The only types of oracle in-
formation the model has access to are the target
lemma and its part of speech tag, and the frame
and role dictionaries described above.

Our results on seen data are in the same neigh-
bourhood as the state-of-the-art. For example, the
SEMAFOR system (Das et al., 2010) is reported
to reach an F1 score of 46.00 for full parsing using
oracle targets.

6 Conclusion

We present a Bayesian clustering and prediction
model for FrameNet semantic role labeling. The
proposed model is capable of generalizing its
knowledge of similar frame instances to novel
cases and is particularly competent in handling
previously unseen data. Our results show that the
model performs much better than chance in as-
signing semantic roles to arguments in an instance
of a lexical unit which has not been seen in the
training data. Also, the performance of the model
for frame prediction on test sets of unseen data is
as good as its performance on seen data.

We also propose a novel strategy which signifi-
cantly improves the accuracy of SRL for seen data:
we use all other features from an annotated in-
stance to predict the most probable role type, and
then use the predicted role type as an additional
feature for predicting the semantic role.

Although we do not improve on state of the art
results for frame prediction or role assignment, our
model offers better coverage than existing mod-
els. In the future, we plan to improve the perfor-
mance of our model by exploring the contribution
of additional features (such as word classes and

dependency relations between the arguments and
the predicate), and to evaluate our model on addi-
tional data sets such as SemEval 2007.
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