An Algorithm of Identifying Semantic Arguments of a Verb from
Structured Data

Minhua Huang
Department of Computer Science

Graduate School and University Center

City University of New York
New York, U.S.A
mhuang@gc.cuny.edu

Abstract

We discuss a method for identifying se-
mantic arguments of a verb from a sen-
tence. It differs from existing methods by
an unique feature that represents all se-
mantic arguments of a verb in a syntactic
parse tree. The feature is a path in which at
least one of the children of a node is a root
of a subtree that associates with a semantic
argument. Experiments on WSJ data from
Penn TreeBank and PropBank show that
our method achieves an average of preci-
sion 92.3% and an average of recall 94.2%
on identifying semantic arguments of over
six hundred verbs.

1 Introduction

Semantic argument identification is one of the sub-
tasks of semantic role labeling (Gildea and Juraf-
sky, 2002) (Chen and Rambow, 2002) (Hacioglu,
2004b) which classifies a sequence of words as-
sociated with a semantic argument of a verb but
does not assign its role. It is the most difficult task
in semantic role labeling. Moreover, it is one of
the core techniques for a machine to understand
the semantics of a sentence. For instance, in the
sentences Lisa cut the ribbon with a pair of scis-
sors. and The ribbon was cut by Lisa with a pair
of scissors, cut is the verb. Semantic arguments
of cut will be Lisa, the ribbon, and a pair of scis-
sors, where Lisa is the one who performs the ac-
tion of cutting, the ribbon is the material to be cut
by Lisa, and a pair of scissors is the tool used for
cutting. For semantic role labeling, arguments of
cut need to be determined. Then, each argument
will be assigned to a label, such as agent, theme,
and instrument in the example. In this report, we
presents an algorithm for finding a semantic argu-
ment of a verb which is the first task required for
assigning a role for the verb.

568

Robert M. Haralick
Department of Computer Science

Graduate School and University Center

City University of New York
New York, U.S.A
haralick@aim.com

Over the years, two approaches have been dis-
cussed by researchers, such as methods developed
based on hierarchical trees (Gildea and Jurafsky,
2002) (Hacioglu, 2004b) (Hacioglu, 2004c) and
methods developed based on flat chunks (Hacioglu
and Ward, 2003) (Hacioglu, 2004a). In almost
all the methods of the first approach, a syntactic
tree is transformed into a sequence of constituents.
Each semantic argument of a verb is represented
by a set of constituents. Each constituent is rep-
resented by a set of features. These features are
extracted based on linguistic knowledge and local
knowledge of the tree structure. Finally, sophisti-
cated classifiers such as support vector machines
or maximum entropy modeling classifiers are em-
ployed to identify semantic arguments of each
verb. In contrast to these methods, our method
is based on the idea that if a sentence has a cor-
respondent labeled rooted tree (parser tree), a se-
mantic argument of a verb in the sentence will be
associated with a labeled rooted subtree. Hence,
all semantic arguments of a verb in the sentence
will be represented by a set of labeled rooted sub-
trees. For each verb node v, there exists a path
from node a to node b, from which, all roots of the
subtrees will be extracted. Obviously, all semantic
arguments of a verb are represented by an unique
feature — a path.

We find the path for a verb in a labeled rooted
tree associated with a sentence by the probabilis-
tic graphical model discussed in the paper (Huang
and Haralick, 2009). This model is fast, uses less
memory, and is very effective on text data. We
construct the path by starting from a verb node and
determining the next node by selecting the node
that has the largest probability value among the
adjacent nodes which have not been encountered
yet. Then, a sibling or a child of a node in the path
is identified as a root of a subtree associating with
a semantic argument of the verb.

We have tested our method on the WSJ data

Proceedings of Recent Advances in Natural Language Processing, pages 568-573,
Hissar, Bulgaria, 12-14 September 2011.

the 00 section from Penn TreeBak and PropBank
(Weischedel et al., 2007). There are a total of
233 trees associating with about 600 verbs and
2000 semantic arguments. The evaluation metrics
we have used are precision, recall, and f-measure.
By applying 10-folder cross validation technique,
we have obtained an average of precision 92.64%,
an average of recall 94.94%, and an average of
f-measure 93.81%. Our experiments show that
our method is particularly effective for identifying
such semantic arguments, which them are associ-
ated with a sequence of consecutive words. Our
method is less effective for semantic arguments,
which they are associated with two or more se-
quences of consecutive words (separated by other
phrases). Details are shown in Section 4. We are
doing more experiments on CoNLL-2005 shared
task data set to further verify our method.

The paper is organized into six sections. Sec-
tion two defines a labeled rooted tree and forest;
section three discusses the algorithm; section four
demonstrates empirical results; section five shows
related research and comparisons; and section six
gives a conclusion.

2 A Labeled Rooted Tree and a Labeled
Rooted Forest

A rooted tree 1" is a 3-tuple (V, E/,r), where V' is
a finite set of vertices, £ C V x V is a finite set
of edges, and r € V is the root that all edges of
T are directed away from it. The tree-order is the
partial ordering on V for any v,u € V,u < v if
and only if the unique path from the root r to v
passes through u.

In T, the root r is a unique minimal vertex and
has level 0. An edge (x < y) in E is an ordered
pair (z,y) € (V x V) s.t. < y and there exists
noz € V withz < z < y. In this case, x is a
parent of y and y is a child of x. If two nodes!
x, y have the same parent z, x and y are called
siblings. Any node y is on the unique path from r
to x is called an ancestor of x. In this case, x is
a descendant of y. The sub-tree rooted at node x
is the tree induced by descendants of . A node
with no children is an external node or a leaf. A
node that is not a leaf node is an internal node. The
largest depth of a node in 7" is the height of T'.

'In a rooted tree, a vertex can be also called a node.

569

2.0.1 Definition of a Labeled Rooted Tree

A labeled rooted tree is a 5-tuple (V, E,r, A, L).
It is a rooted tree with additional two elements: a
labeling alphabet A and a labeling function L :
V' — A that assigns labels to vertices.

2.0.2 Definition of a Labeled Rooted Forest

A labeled rooted forest is a set of labeled rooted
trees, s.t. ' = {T;|i = 1...N} where T; is a
labeled rooted tree.

3 The Method

3.1 Defining the Task

Let T = (V,E,r, A, L) be a labeled rooted tree
associated with a sentence, where A is defined
by (Weischedel et al., 2007). Let 7w be a set of
labels associated with verbs, s.t. m C A. Let
C = {C1,C>} be a set of class categories, where
C1 represents that a path will be extended from the
current node to an adjacent node; Cy represents
that a path will not be extended from the current
node to an adjacent node.
The task can be stated as follows:

e Form a path P(z) = 7,— ...,— 7k,
where x € V, L(z) € m, and z is not a
node in P’'(y), P’(y) is a path that has been
already formed previously. Each 7, € V,
k=1,....K

— find a sequence nodes < 71, ..., Tk >,
S.t.
< Tlyeney TK >
= argmazrp(ci,...,cx,b1,...,bK)
bi,....bx

— where ¢;, € C, by is one of adjacent
nodes of by_1, bp_1,br € V, bp_1bi. €
E.

e Formasetofroots R(x) = {r;li=1... M},
where 7; < 7, L(r;) € myand 1 < k < K.

e Form a labeled rooted forest F(x) =
{T1,...Ty}, where each T; is a labeled
rooted tree, rooted as r;, and induced by the
descendants of r;.

e T; associates with a semantic argument of x.

Figure 1 illustrates the labeled rooted tree for
the sentence Mrs. Hills said that the U.S. is
still concerned about “disturbing developments in

e ———

NPERI— —— T TT— =

A : ||
- ./ .\- / \ - oom
NNP NNF wvED SEAR
M) smid IN

Hillz | sl \

that \P_EBJ
e
VBZ - T
DT NNP ADVEP.TMT ADJIP-FRD
o = .
| ‘ T — —
the U= gy HE VBN FF
- e -
e i
gty <cooceroed IN ¢ NF
| L T
abouwt 7 g
PP-LOC anq PP-LOC
/ \ /\ / \ / \
VEC NWE IN NP VEC NP

disturbing

daw :-In:--pmant!

||] N T T

in MNP contlowlog o NN o MNP

Ealaysim

Turkey SloW prograss

Figure 1: Mrs. Hills said that the U.S. is still concerned about "disturbing developments in Turkey and

continuing slow process in Malaysia”.

Turkey and continuing slow process in Malaysia”.
m={VB,VBN,VBG,VBZ,VBP,VBD} C
A.

3.2 The Algorithm

3.2.1 Obtaining < 7, ...

We use equation (1) proposed by (Huang
and Haralick, 2010b) (Huang and Haral-
ick, 2009) to obtain the probability value of

yTK >

plery . ek, b1, ... bK).

p(ct, ... cr, b1, .., bK)
K

=[] p(biz1lbici)p(bis1|bs, ci)p(biles)p(c:)
i—1
K

= [Pbi-1,bi,bit1,) (D)
=1

We use the equation (2) to find a sequence of op-
timal nodes < 7,...,7x > in T, where 7; # 7j,
i,7 =1,...,.K, 75117, € F and 137,41 € E but
Ti1Tit1 € E

< Tiyeey, TK >=

argmaz {p(b2|b1, c1)p(bilei)p(ci)}
c1€Cb1,b'EE

argmaz {p(bis2, c2)p(bs b2, c2)p(bz|c2)p(c2)}

ca€C,by,b/EE

570

argmaz {p(bx_1|bx, cx)p(bx|cx)p(cx)}

cx€Cbi b'EE

2
Note: ¥ is anode in a path, b'b, € E, k = 1...K.

3.2.2 Time Complexity

For each node by, we need to assign a cy, s.t.

Pr = mam{P(bk,l,bk,bkﬂ,ck) ’ CL € C}

To compute a P(bg_1, bx, bg+1,cx), we need to
have four multiplications. To obtain the maximum
probability value Py, we need to have M — 1 com-
parisons. In the case of a path of N nodes, we have
T.=4+«N+x(M—-1)x(L—1)=0O(N*xM * L)
Note: M is the cardinality of C', L is the maximum
degree of a node in the tree, and N is the length of
the path.

3.2.3 Memory Complexity

Because the global maximum probability is de-
termined by each local maximal probability, for
a path of N symbols, we only need to store the

information of the current node. That is, we need
only store M probability values in order to find the
maximal probability value. Therefore,

M, =M = O(M)

3.24 An Example of a Path

The path P(x), where L(x) =VBN (associating
with the verb concern) in Figure 1 is VBZ —
VP — ADJP — PRD — V BN in Figure 2.

¥FP
b W

ADIP.PRD

//

VEN

Figure 2: All the semantic arguments of the verb
concern can be extracted from this path.

3.2.5 Finding a set of roots ; € R(z)

Let Q(z) denote a set of nodes in path P(z) and
let R(x) denote a set of roots we want to find.

o R(z) = ¢, Q) = {m[l <i< K}

o If Q(x) # ¢ continue the following proce-
dure:

1. Foreach 7; € Q(x)

2. For all siblings of 7, find z, s.t. L(z) &
mand z € {mli = 1,..., K}, R(z) «
R(z) U{z}

3. For all children of 7;, if none of chil-
dren z, L(Z) € m, GOTO 4. Otherwise,
find y, s.t. L(y) € mand y & {1;]i =
1,...,K}, R(z) «— R(z) U{y}

4. Qz) — Qz) — {n}

e Otherwise, stop the procedure and return
R(x).

3.2.6 Building a Labeled Rooted Forest F'(x)

Let T" be a original labeled rooted tree, R(x) be a
set of roots of subtrees that we want to build, and

1. For each r; € R(x), we assign r; to the vari-
able . We initialize 7; with only a vertex r;.
We visit a.

2. For {a, 8} € E, and (3 has not been visited,
we attach {a, G} to T;.

571

3. Assign (8 to « and visit a. Go to 2.

e If o = r;, then the labeled rooted tree 7T;
has been built. F'(x) «— F(x)UT;

o If a # r;, backtrack from « to its parent
B in T'. Then assign (3 to o and go to 2

Figure 3 illustrates a labeled rooted forest for
verb concern for the labeled rooted tree corre-
sponds to the sentence Mrs. Hills said that the
U.S. is still concerned about “disturbing develop-
ments in Turkey and continuing slow process in
Malaysia”.

4 Experiments

We have tested our method on data set developed
by (Weischedel et al., 2007), specifically, the WSJ
section 00 from Penn Treebank and PropBank. A
total of 233 trees associates with 233 sentences
and 621 verbs, each verb has an average of three
semantic arguments, hence about 2000 semantic
arguments are in total. The evaluation metrics we
have used are precision , recall, and f-measure
(F1). Moreover, we have used 10-fold cross vali-
dation technique to obtain the average result.

For each sentence, Treebank provides a corre-
sponding parse tree while PropBank provides cor-
responding semantic arguments of predicates in
the sentence. These trees were generated by a
statistic parser from corresponding sentences with
an average accuracy 95%. These semantic argu-
ments of predicates in PropBank were generated
manually.

From the experiment, among 621 verbs, we
found 621 paths in total. By excluding 30 types of
paths of which occurs less than 2 times, six types
of paths are remained. Among these remaining
patterns, 86% paths fall in the first three patterns.
Table 1 shows these patterns.

Moreover, a set of labeled rooted subtrees man-
aged by labeled rooted forests are obtained based
on the procedure described in Section 3.2.5. The
test results are shown in Table 2. Note, the pre-
cision (recall or f-measure) is obtained by apply-
ing 10-fold cross validation. On the average, each
time, among the %0 semantic arguments that have
been classified, about 93% semantic arguments are
correctly identified and 7% semantic arguments
are classified wrong. By checking these classi-
fied instances, we found that our method is very
effective in the case of a semantic argument being
a sequence of consecutive words. However, if a

ADVP-TMP

RE

still

T1

F

about

NP-5BJ

DT NNF

T2

N

Turkey

slow progress MMalay=ia

Figure 3: A labeled rooted forest F' = {T1,T5,T3} for verb concern for the sentence Mrs. Hills said
that the U.S. is still concerned about “disturbing developments in Turkey and continuing slow process in

Malaysia”.
Table 1: Six Types of Paths .
NO | % Path
1 62.1 | vBZ(VBD,VBG,VBP,VBN,VB) — VP
2 | 14.2 MD(TO) — VP — VP — VB
3 10.1 VBP(VBZ,VBD) — VP
— VP> VBN
4 4.2 VBD(VBZ,VBN) — VP
—~RB—>VP VB
5 2.4 TO - VP VP —>VB— VP — VBN
6 2.2 MD — VP — RB— VP
— VBP(VB) —» VP — VBN

Table 2: testing result on W.SJ data

Files Precision Recall F-Measure
%o % %o

WSJ

20,37,49,89

Average 92.335 | 94.1675 | 93.2512

Standard-

Deviation 0.6195 | 0.5174 0.4605

semantic argument consists of two or more word
fragments, separated by some phrases, our algo-
rithm is less effective. For example, the sentence:
He wants to see for instance the movie Superman.
Our methods can not distinguish the semantic ar-
gument of want from the phrase for instance. The
reason is that this phrase is the part of leaves of the

572

tree induced from one of the roots determined by
our algorithm. This suggests us that in order to ex-
clude phrases from a semantic argument, we need
to develop a method so that a set of subroots can be
found. Each of them corresponds to a fragment of
a semantic argument. Then, these fragments must
be combined together to obtain the semantic ar-
gument. Moreover, other misclassified instances
are generated by errors carried in original syntac-
tic trees.

5 Related Researches and Comparisons

Methods for identifying semantic arguments of
predicates in a sentence can be divided into
two categories with respect to the representa-
tion of the sentence, namely tree-related (Gildea
and Jurafsky, 2002) (Hacioglu, 2004b) (Hacioglu,
2004c) and chunk-related (Hacioglu and Ward,
2003) (Hacioglu, 2004a) semantic argument iden-
tifiers. While systems are built use the first ap-
proach are more accurate, systems are build use
the second approach are very efficient and robust.

In the first approach, a sentence is represented
by a syntactic tree (Gildea and Jurafsky, 2002)
or some variants, such as a dependence tree (Ha-
cioglu, 2004c) obtained from a syntactic tree. For
each predicate in a tree, a set of syntactic con-
stituents (non-terminals) is extracted. Each con-
stituent is determined by a set of features derived
from sentence structure or a linguistic context de-
fined for the constituent. These features may be

predicate lemma, path from constituents to the
predicate, phrase type, dependency relations be-
tween predicates and constituents, position of con-
stituent with respect to it predicate, voice, head
word stem, sub-categorization. Classifiers such
as support vector machines and maximum en-
tropy models have been employed to identify con-
stituents into one of semantic arguments of predi-
cates.

In the second approach, semantic argu-
ment identification is formulated as a chunking
task (Hacioglu, 2004a). For each predicate in a
sentence, each word in the sentence is classified
into three categories which are inside a semantic
argument, outside a semantic argument, or begin a
new semantic argument by using a set of features
defined for the word. These features may be the
lexicon of the word, the POS of the word, and the
syntactical phrase chunks. Then, a bank of SVM
classifiers, a one-versus-all classifier, can be used
for each class.

Our method is based on syntactic trees. How-
ever, our method differs from others in several
ways. Instead of linearly transforming a syntac-
tic tree into a sequence of syntactic constituents,
we directly traverse the tree from top to bottom
and left to right to find a set roots, each of them
corresponds a semantic argument of a verb. More-
over, instead of finding a set of features for each
semantic arguments of a verb based on the linguis-
tic knowledge or syntactic structure, we find our
feature, a path, by the method proposed by (Huang
and Haralick, 2010a). This method is simple, fast,
and uses less memory. In contrast with other meth-
ods, our feature represents not one semantic argu-
ment but all semantic arguments of a verb. Fur-
thermore, instead of finding semantic arguments
of a verb by using complex classifiers such as sup-
port vector machine or maximum entropy models,
we determine the semantic arguments of a verb
only by setting simple rules of looking up relatives
of each node in our path. We argue that our feature
is the most effective, efficient, and simplest feature
compared with the existing methods.

6 Conclusion

An algorithm for identifying semantic arguments
of a verb in a sentence has been discussed through-
out this paper. The method is developed based on
the argument that a link must exist from a verb to
its all semantic arguments if a sentence is struc-

573

tured syntactically with the root vertex been la-
beled with S and the leaf vertices been labeled
with lexicon of words in the sentence. A seman-
tic argument of a verb in the sentence can be rep-
resented as a labeled rooted subtree rooted at an
internal node and induced by its all descendants.
Therefore, to find semantic arguments of a verb
is to find a set of such subtrees, more precisely,
a set of roots. In our method, we apply a proba-
bilistic graphical model to extract such a link — a
path. Then we determine these roots from the path
by a set of predefined rules. Experiments are con-
ducted on WSJ data set from Penn Treebank and
PropBank. Results demonstrate that our method is
effective.

References

John Chen and Owen Rambow. 2002. Use of deep
linguistic features for the recognition and labeling
of semantic argument. In Proceedings of EMNLP-
2003.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labelling of semantic roles. Computational Linguis-
tics, pages 245-288.

Kadri Hacioglu and Wayne Ward. 2003. Target word
detection and semantic role chunking using support
vector machines. In Proceedings of HLT/NAACL-
03.

Kadri Hacioglu. 2004a. A lightweight semantic
chunking model based on tagging. In Proceedings
of HLT/NAACL-04.

Kadri Hacioglu. 2004b. A semantic chunking model
based on tagging. In Proceedings of HLT/NACCL-
2004.

Kadri Hacioglu. 2004c. Semantic role labeling using
dependency trees. In Proceedings of Coling 2004,
pages 1273-1276, Geneva, Switzerland, Aug 23—
Aug 27. COLING.

Minhua Huang and Robert M. Haralick. 2009. Discov-
ering patterns in texts. In 2009 IEEE International
Conference on Semantic Computing, pages 59-64.

Minhua Huang and Robert M. Haralick. 2010a. Dis-
covering semantics of a word from a sentence. In
2010 International Conference on Artificial Intelli-
gence and Pattern Recognition, pages 51-57.

Minhua Huang and Robert M. Haralick. 2010b. Rec-
ognizing Patterns in Texts. River.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
and Eduard Hovy. 2007. Ontonotes release 2.0 with
ontonotes db tool v. 0.92 beta and ontoviewer v.0.9
beta. In http://www.bbn.com/NLP/OntoNotes.

