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Abstract
We introduce a system that learns the par-
ticipants of arbitrary given scripts. This
system processes data from web experi-
ments, in which each participant can be re-
alized with different expressions. It com-
putes participants by encoding semantic
similarity and global structural informa-
tion into an Integer Linear Program. An
evaluation against a gold standard shows
that we significantly outperform two in-
formed baselines.

1 Introduction

Scripts (Schank and Abelson, 1977) represent
commonsense knowledge about the events that
stereotypically constitute a certain activity. For in-
stance, the “restaurant” script might specify that
the patron enters, the waiter shows the patron to
their seat, eventually the patron eats a plate of
food, and so forth. There has always been agree-
ment that script knowledge can be highly use-
ful for a variety of applications in artificial intel-
ligence and computational linguistics, including
commonsense reasoning for text understanding
(Cullingford, 1977; Mueller, 2004), information
extraction (Rau et al., 1989) and automated sto-
rytelling (Swanson and Gordon, 2008). But there
is hardly an area where the discrepancy between
the felt importance of a type of knowledge and the
inability to provide any substantial amount of this
knowledge for serious applications is greater.

Recently, several groups have tackled the prob-
lem using unsupervised methods for learning
script-like knowledge from text corpora or data
obtained through web experiments (Chambers and
Jurafsky, 2008; Chambers and Jurafsky, 2009;
Regneri et al., 2010). For the first time, they
open up a perspective to wide-coverage resources
of script knowledge. However, each of these ap-
proaches handles only specific aspects of script

information: Chambers and Jurafsky (2009) learn
narrative schemas and their participants; they
group verbs into schemas by virtue of shared par-
ticipants assuming that this is an indicator for be-
ing part of the same stereotypical activity, with-
out knowing the actual scenarios. The system of
Regneri et al. (2010) learns the temporal order of
events occurring in specific stereotypical scenar-
ios, but does not determine participants.

In this paper, we present a system that automat-
ically learns sets of participants associated with
specific scenarios. We take the approach of Reg-
neri et al. as our starting point. In this earlier work,
several experimental subjects described what hap-
pens in a given scenario in a web experiment; the
system then learns what event descriptions from
different subjects refer to the same event, and how
they are temporally ordered, using Multiple Se-
quence Alignment (Durbin et al., 1998). The spe-
cific problem we consider is to group the differ-
ent noun phrases occurring throughout a script into
equivalence classes, resulting in one class for each
participant. Our solution combines diverse sources
of information, including semantic similarity and
structural information from the sequence align-
ment, in an Integer Linear Program (Wolsey, 1998,
ILP). The desired equivalence classes then cor-
respond to an optimal solution of the ILP. We
not only show that our system significantly out-
performs a high-precision baseline, but also that
it substantially exploits global structural informa-
tion. The process is almost entirely unsupervised:
We rely on annotated data only for training a hand-
ful of similarity thresholds and for evaluation. We
expect our approach to scale up and help obtain
a broad-coverage knowledge base of scripts with
participants through web experiments.

Plan of the paper. The paper starts by reviewing
related work. We will then define the exact script
learning problem we tackle here. Next, we show
how participants can be learned, and then present

463



ESD 1 ESD 2 ESD3

1 put food on plate put food in bowl put food on dish
2 open microwave open door open oven
3 put plate in put food inside place dish in oven
4 close microwave close door close
5 � enter time select desired length
6 press start push button �
7 ...

Figure 1: Alignment for the MICROWAVE scenario.

the evaluation before we finally conclude.

2 Related Work

Many papers on scripts and their application per-
spectives have been published in the seventies
(Schank and Abelson, 1977; Barr and Feigen-
baum, 1981). Script knowledge was manually
modeled, and never exceeded a handful of do-
mains and implementations operating on them.

Scenario frames in FrameNet (Baker et al.,
1998) are another approach to modeling scripts
and their participants. They describe how a stereo-
typical activity is made up of smaller events
(frames), which share roles (frame elements) spec-
ifying people and objects involved in the events.

The supervised approach of Mani et al. (2006)
learns temporal event relations from TimeBank
(Pustejovsky et al., 2006).

All of these approaches rely on elaborate man-
ual annotation efforts, and so it is unclear how they
would scale to wide-coverage resources.

Chambers and Jurafsky (2008; 2009) exploit
coreference chains and co-occurrence frequency
of verbs in text corpora to extract narrative
schemas describing sequences of events and their
participants.1 Because this approach is fully un-
supervised, its coverage is in principle unlimited.
Each schema provides a family of verbs and ar-
guments related by the same narrative context.
Roughly speaking, event sequences are induced by
grouping verbs in the same schema if they tend
to share the same arguments. Within the schemas,
events are represented as verbs, while the rela-
tions between the verbs remain underspecified:
Two verbs of a schema might describe the same,
different or contradictory events. The aim here is
not to collect data describing predetermined activ-
ities, but rather to establish verb groups that share
an (unknown) underlying scenario.

Regneri et al. (2010) (henceforth, RKP) pro-
pose an alternative approach with complementary

1See http://cs.stanford.edu/people/nc/schemas

strengths and weaknesses. The starting point are
specific scenarios, and human users answer ques-
tions like “what happens in a restaurant?”. From
the data collected in this way, a mining algorithm
learns both which phrases describe the same sub-
event and how these sub-events are ordered tempo-
rally. This guided way of learning script data pro-
duces representations associated with known sce-
narios, and also opens up the possibility of learn-
ing about activities that are too stereotypical to be
elaborated much in text corpora (and which thus
can’t be induced from there). However, the ap-
proach is limited by its reliance on scenarios that
have to be determined beforehand. Tying in with
this previous work, we compute participants using
Integer Linear Programming to globally combine
information from diverse sources. ILP has been
applied to a variety of different problems in NLP
(Althaus et al., 2004; Barzilay and Lapata, 2006;
Berant et al., 2010), including coreference resolu-
tion (Denis and Baldridge, 2007; Finkel and Man-
ning, 2008).

3 Scripts and Participants

We formalize the problem of computing partic-
ipants of a script as one of computing equiv-
alence classes of mentions occurring in script-
related event descriptions. In this respect our task
is similar to coreference resolution.

Our algorithm takes the raw data and processed
outputs of RKP as its starting point. The RKP
data consist of a collection of event sequence de-
scriptions (ESDs), each of which is written by
one annotator to describe how a scenario plays
out. RKP compute an alignment table out of the
ESDs (Fig. 1) using Multiple Sequence Alignment
(Durbin et al., 1998, MSA). The columns of this
alignment table represent the original ESDs, pos-
sibly interspersed with some gaps (“�”). The non-
gaps in each row are aligned, and thus presumably
describe the same event in the scenario (cf. open
microwave, open door, and open oven in Fig. 1).
The MSA algorithm assumes a cost function for
substitutions (= aligning two non-gaps) and gap
costs for aligning gaps with non-gaps to compute
the lowest-cost alignment of the ESDs.

In our work, we compute script-specific partici-
pants using the alignment tables. For example, we
want to find out that plate, bowl and dish fill the
same role in the microwave script. We call a men-
tion of a participant (typically a noun phrase) in
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some event description a participant description.
Our system is intended to group participant de-
scriptions into equivalence classes, which we call
participant description sets (PDS).

4 Computing Participants

Learning participants from aligned ESDs is done
in two steps: First, we identify candidate par-
ticipant descriptions in event descriptions. Then,
we partition the participant descriptions for each
scenario into sets. The sets correspond to script-
specific participants, their members are possible
verbalizations of the respective participants.

4.1 Identifying participant descriptions

We consider participant descriptions to be the
noun phrases in our data set, and thus reduce the
task of their identification to the task of syntac-
tic parsing. Parsing event descriptions is a chal-
lenge because the data is written in telegraphic
style (cf. Fig. 1). The subject (typically the pro-
tagonist) is frequently left implicit, and nouns lack
determiners, as in start microwave. In our experi-
ments, we use the Stanford parser (Klein and Man-
ning, 2003). Under the standard model, parsing ac-
curacy for phrase structure trees is only 59% on
our data (evaluated on 100 hand-annotated exam-
ple sentences). The scores for dependency links
between predicates and direct objects indicate how
many noun phrase heads are correctly identified.
Here the standard parser reaches 81% precision.
The most frequent and most serious error is mis-
classification of the phrase-initial verb (like start)
as a noun, which often leads to subsequent errors
in the rest of the phrase.

Our available dataset of event descriptions is
much too small to serve as a training corpus of
its own. To achieve sufficient parsing accuracy, we
combine and modify existing resources to build
the parser model: we re-train the parser on a cor-
pus consisting of the Penn Treebank (Marcus et
al., 1993) and modified versions of the ATIS and
Brown corpora (Dahl et al., 1994; Francis and
Kucera, 1979). Modification consists in deleting
all subjects in the sentences and deleting the de-
terminers. To maintain accuracy on whole sen-
tences, the original version of the modified corpora
is added to the training set as well. The adapta-
tion raises the accuracy for whole phrase structure
trees to 72%, and the direct object link precision
to 90%.

Out of those parses, we can now extract all
noun phrases for further processing. The last step
for participant identification consists in adding the
“implicit protagonist” whenever the subject posi-
tion in the parse tree is empty.

4.2 Participant Description Sets
The next task consists in the actual learning of
script participants, more specifically: We will pro-
pose a method that groups participant descriptions
occurring in the ESDs for a given scenario into
participant description sets (PDSs) that comprise
different mentions of one participant.

We assume that two token-identical participant
descriptions always have the same word sense and
represent the same participant, not only in one
ESD, but across all event descriptions within a
scenario. This extends the common “one sense
per discourse” heuristic (Gale et al., 1992) with a
“one participant per sense” assumption on top of
that. The resulting loss of precision is only mini-
mal, and we can take participant description types
(PTs) rather than tokens to be basic entities, which
drastically reduces the size of the basic entity set.

We also exploit structural information given in
the alignment tables: If two PTs occur in aligned
event descriptions, we take this as a piece of evi-
dence that they belong to the same participant. In
the example of Fig. 1, this supports identification
of “time” and “desired length”.

We complement this structural indicator by se-
mantic similarity information: In the example of
Fig. 1, the identification of “bowl” and “dish” is
supported by WordNet hyponymy. We use seman-
tic similarity information in different ways:

• WordNet synonymy of PTs, as well as syn-
onymy and direct hyponymy of the head of
multiword PTs (like full can and full con-
tainer) guarantee participant identity

• A WordNet based semantic similarity score is
used as a soft indicator of participant identity

We combine all these information sources by
modeling the equivalence-class problem as an In-
teger Linear Program (Wolsey, 1998, ILP). An ILP
computes an assignment of integer values to a set
of variables, maximizing a given objective func-
tion. Additional linear equations and inequalities
can constrain the possible value assignments.

The problem we want to solve is to deter-
mine for each pair pti and ptj in the set of PTs
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{pt1, . . . ,ptn} whether they belong to the same
equivalence class. We model this in our ILP by in-
troducing variables xij which can take the values
0 or 1; if xij takes the value 1 in a solution of the
ILP, this means that the tokens of pti and the to-
kens of ptj belong to the same PDS.

Objective function
We use the objective function to encode seman-
tic similarity and structural information from the
alignment. We require the ILP solver to maximize
the value of the following linear term:

n∑
i,j=1,i 6=j

(struc(pti, ptj) · sim(pti, ptj)− θ) · xij

(1)
sim(i, j) stands for the semantic similarity of pti

and ptj and is computed as follows:

sim(pti, ptj) =


lin(pti, ptj) + η if pti and ptj

are hyponyms
lin(pti, ptj) otherwise

(2)
For computing similarity, we use Lin’s

(WordNet-based) similarity measure (Lin, 1998;
Fellbaum, 1998), which performs better than
several distributional measures which we have
tried. Direct hyponymy is a particularly strong
indicator; therefore we add the empirically
determined constant η to sim in this case.
θ is a cutoff which is also optimized empirically.

Every pair with a similarity lower than θ adds a
negative score to the objective function when its
variable is set to 1. In the final solution, pairs with
a similarity score smaller than θ are thus avoided
whenever possible.

struc(i, j) encodes structural information about
pti and ptj , i.e. how tokens of pti and ptj are re-
lated in the alignment table. Eq. 3 defines this:

struc(pti, ptj) =



λ+ if pti and ptj from
same row

λ− if pti and ptj from
same column and unrelated

1 otherwise
(3)

If pti and ptj are aligned at least once (i.e.,
their enclosing event descriptions are paraphrase
candidates), struc(i, j) takes a constant value λ+

greater than 1, thus boosting the similarity of pti

and ptj . If the tokens of pti and ptj occur in the
same column (i.e., they are alternately used by the
same subject in an ESD) and the two types have no
direct WordNet link, struc(pti, ptj) takes a con-
stant value smaller than 1 (λ−) and lowers the
similarity score. Both values are empirically op-
timized.

Hard Constraints
We add a constraint xij = 1 for a pair i, j if one of
the following conditions holds:

• pti and ptj share a synset in WordNet

• pti and ptj have the same head (like laundry
machine and machine)

• pti and ptj are both multiword expressions,
their modifiers are identical and their heads
are either synonyms or hyponyms

Furthermore, if pti is the implicit protagonist, we
add the constraint xij = 1 if ptj is a first or second
person pronoun, and xij = 0 otherwise.

Finally, we ensure that the ILP groups the par-
ticipant types into equivalence classes by enforc-
ing symmetry and transitivity. Symmetry is triv-
ially encoded by the following constraint over all
i and j:

xij = xji (4)

Transitivity can be guaranteed by adding the fol-
lowing constraints for each i, j, k:

xij + xjk − xik ≤ 1 (5)

This is a standard formulation of transitivity, used
e.g. by Finkel and Manning (2008).

5 Evaluation

We evaluate our system against a gold standard of
10 scenarios. On average, one scenario consists of
180 event descriptions, containing 54 participant
description types realized in 233 tokens. The sce-
narios are EAT AT A FAST FOOD RESTAURANT,
RETURN FOOD (IN A RESTAURANT), PAY WITH

CREDIT CARD, TAKE A SHOWER, FEED A PET

DOG, MAKE COFFEE, HEAT SOMETHING IN A MI-
CROWAVE, MAIL A LETTER, BUY SOMETHING

FROM A VENDING MACHINE, and DO LAUNDRY.
The VENDING MACHINE and LAUNDRY scenar-
ios were used for parameter optimization. The pa-
rameter values we determined were θ = 5.3, η =
0.8, λ+ = 3.4 and λ− = 0.4. We solve the ILP
using LPSolve (Berkelaar et al., 2004).
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SCENARIO
PRECISION RECALL F-SCORE

full sem align base full sem align base full sem align base

LAUNDRY* 0.85 0.76 0.53 0.93 0.75 0.83 0.89 0.57 0.80 0.79 0.67 0.70
VENDING M.* 0.80 0.74 0.57 0.84 0.78 0.83 0.97 0.62 0.79 0.78 0.72 0.72

FAST FOOD 0.82 0.65 0.55 0.87 0.82 0.85 0.84 0.70 0.82 0.74 0.66 0.78
RETURN FOOD 0.80 0.78 0.53 0.88 0.44 0.52 0.63 0.34 0.57 0.62 0.57 0.49

COFFEE 0.85 0.77 0.53 0.92 0.80 0.81 0.98 0.68 0.82 0.79 0.68 0.78
FEED DOG 0.81 0.67 0.53 0.90 0.88 0.92 0.94 0.57 0.84 0.78 0.68 0.70

MICROWAVE 0.89 0.78 0.55 0.93 0.84 0.84 0.89 0.70 0.86 0.81 0.68 0.80
CREDIT CARD 0.90 0.82 0.60 0.94 0.54 0.54 0.64 0.40 0.67 0.65 0.62 0.56
MAIL LETTER 0.92 0.78 0.54 0.96 0.88 0.88 0.93 0.74 0.90 0.83 0.68 0.84

SHOWER 0.87 0.79 0.57 0.94 0.83 0.83 0.86 0.66 0.85 0.81 0.69 0.77

AVERAGE* 0.85 0.75 0.55 0.91 0.75 0.79 0.86 0.60 • 0.79 • 0.76 0.66 0.71
AVERAGE 0.86 0.76 0.55 0.92 0.75 0.77 0.84 0.60 • 0.79 0.75 0.66 0.71

Figure 2: Results for the full system, the system without structural constraints (sem), the system with
structural information only (align) and the naive baseline. Participant descriptions with the right head
are considered correct. Starred scenarios have been used for parameter optimization, average* includes
those scenarios, the unmarked average doesn’t. A black dot (•) means that the difference to the next lower
baseline is significant with p < 0.05. The difference between full and base is significant at p < 0.001.

5.1 Gold Standard

We preprocessed the 10 evaluation scenarios by
aligning them with the RKP algorithm. Two an-
notators then labeled the 10 aligned scenarios,
recording which noun-phrases referred to the
same participant. Specifically, the labelers were
shown, in order, the sets of aligned event de-
scriptions. For instance, for the microwave script,
they would first encounter all available alterna-
tive descriptions for putting food on some dish.
From each aligned description, the annotators ex-
tracted the participant-referring NPs, which were
then grouped into blocks of coreferent mentions.
After all sets of component-event descriptions
had been processed, the annotators also manually
sorted the previously extracted blocks into coref-
erent sets. Implicit participants, typically missing
subjects, were annotated, too. For the evaluation,
we include missing subjects but do not consider
other implicit participants. Each annotator labeled
5 of the scenarios independently, and reviewed the
other annotator’s work. Difficult cases, mostly re-
lated to metonymies, were solved in consultation.

5.2 Baseline and Scoring Method

The system sorts participant descriptions into their
equivalence classes, thus we evaluate whether the
equivalence statements are correct and whether the
classes it found are complete. Speaking in terms
of participant description sets, we evaluate the pu-
rity of each set (whether all items in a set belong
there) and the set completeness (whether another

set should have been merged into the current one).

5.2.1 Baselines
We compare our system with three baselines: As
a naı̈ve baseline (base), we group participant de-
scriptions together only if they are string-equal.
This is equivalent to just employing the type-
abstraction step we took in the full system and ig-
noring other information sources.

Additionally, we show the influence of the
structural information with a more informed base-
line (sem): we replicate our full system but just
use the semantic similarity including all hard con-
straints, without any structural information from
the alignment tables. This is equivalent to setting
struc(i, j) in equation 1 always to 1.

In order to show that semantic similarity and the
alignment indeed provide contrastive knowledge,
we test a third baseline that contains the structural
information only (align). Here we group all noun
phrases i and j together if struc(i, j) > 1 and the
pair (i, j) meets all hard constraints.

All parameters for the baselines were optimized
separately using the same scenarios as for the full
system.

5.2.2 Scoring Method
Because the equivalence classes we compute are
similar to coreference sets, we apply the b3 evalu-
ation metric for coreference resolution (Bagga and
Baldwin, 1998). b3 defines precision and recall as
follows: for every token t in the annotation, take
the coreference set Ct it is assigned to. Find the
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np-matching PRECISION RECALL F-SCORE
full sem align base full sem align base full sem align base

Gold Tokens 0.92 0.81 0.54 0.97 0.86 0.88 0.96 0.71 0.89 0.84 0.70 0.81
Matching Head 0.86 0.76 0.55 0.92 0.75 0.77 0.84 0.60 0.79 0.75 0.66 0.71
Strict Matching 0.82 0.74 0.52 0.91 0.70 0.71 0.77 0.59 0.74 0.71 0.62 0.71

Figure 3: Averaged evaluation results for three scoring methods: Gold Tokens uses gold standard seg-
mentation. Matching head uses parsing for PD extraction and phrases with the right head are considered
correct. Strict requires the whole phrase to match.

setCt+gold that contains t in the gold standard, and
assign precisiont and recallt:

precisiont =
|Ct ∩ Ct+gold|

|Ct|
(6)

recallt =
|Ct ∩ Ct+gold|
|Ct+gold|

(7)

Overall precision and recall is averaged over all
tokens in the annotation. Overall F1 score is then
computed as follows:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(8)

Unlike in coreference resolution, we have the
problem that we compare gold-standard anno-
tations against tokens extracted from automatic
parses. However, the b3-metric is only applicable
if the gold standard and the test data contain the
same set of tokens. Thus we apply b3sys, a vari-
ant of b3 introduced by Cai and Strube (2010).
b3sys extends the gold standard and the test set such
that both contain the same set of tokens. Roughly
speaking, every token that appears in the gold stan-
dard but not in the test set is copied to the latter
and treated as singleton set, and vice versa. See
Cai and Strube for details.

With the inaccurate parser, noun phrases are
often parsed incompletely, missing modifiers or
relative clauses. We therefore consider a partici-
pant description as equivalent with a gold standard
phrase if they have the same head. This relaxed
scoring metric evaluates the system realistically by
punishing parsing errors only moderately.

5.3 Results
5.3.1 Scores
Figure 2 shows the results for our system and
three baselines. full marks the complete system,
sem is the baseline without structural informa-
tion, align uses exclusively structural information
and base is the naı̈ve string matching baseline.

The starred scenarios were used for parameter op-
timization and excluded from the final average
score. (The AVERAGE* row includes those scenar-
ios.) In terms of the average F-Score, we outper-
form the baselines significantly (p < 0.05, paired
two-sample t-test on the f-scores for the different
scenarios) in all three cases. The system differ-
ence to the naı̈ve baseline even reaches a signifi-
cance level of p < 0.001. While the naı̈ve baseline
always gets the best precision results, the align-
baseline performs best for recall. The latter is due
to the numerous alignment errors, which some-
times lead to a simple partition in subjects and ob-
jects. Our system finds the best tradeoff between
precision and recall, gaining 15% recall on aver-
age compared to the naı̈ve baseline and just losing
about 6% precision. sem and the naı̈ve baseline
differ only moderately. This shows that seman-
tic similarity information alone is not sufficient
for distinguishing the different participant descrip-
tions, and that the exploitation of structural infor-
mation is crucial. However, the structural infor-
mation by itself is worthless: high precision loss
makes align even worse than the naı̈ve baseline.

Fig. 3 compares the same-head scoring met-
ric described in the previous section (Matching
Head) against two other approaches of dealing
with wrongly recognized NP tokens: Strict Match-
ing only accepts two NP tokens as equivalent if
they are identical; Gold Tokens means that our
PDS identification algorithm runs directly on the
gold standard tokens. This shows that parsing ac-
curacy has a considerable effect on the overall per-
formance of the system. However, our system ro-
bustly outperforms the baselines regardless of the
matching approach.

5.3.2 Example Output

Fig. 4 illustrates our system’s behavior showing its
output for the MICROWAVE scenario. Each rectan-
gle on the left represents one PDS, which we rep-
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Figure 4: The participants we extracted for the MICROWAVE scenario, and a participant-annotated excerpt
from the original graph. Descriptions in italics indicate sorting mistakes, asterisks (*) mark parsing mis-
takes. Dotted boxes frame PDSs that actually belong together but were not combined by the algorithm.

resent by an icon in the graph to the right.2 The
participant types in the sets are ordered by fre-
quency, starting with the most frequent one. The
labels of the sets are script role labels and were
introduced for readability. Note that the structural
alignment information allows us to correctly clas-
sify plate and container, and stop and button,
as equivalent, although they are not particularly
similar in WordNet. However, especially for rare
terms, our algorithm seems too strict: it did not
combine the three power setting PDSs. Also, we
cannot tell start from stop buttons, which is mainly
due to the fact that most people did not distinguish
them at all but just called them button(s) (some
microwaves just have one button). The separate
grouping of start is also related to parsing errors:
start was mostly parsed as a verb, even when used
as object of push.

The right part of Fig. 4 shows a version of the
RKP temporal script graph for this scenario, with
all NP tokens replaced by icons for their PDSs.
Ten of its nodes are shown with their temporal or-
dering, marked by the edges and additionally with
encircled numbers. Alternative PDSs are marked
with their absolute frequencies. As the subject is
always left out in the example data, we assume
an implicit protagonist in all cases. The figure
demonstrates that we can distinguish the partici-
pants, even though the event alignment has errors.

6 Conclusion

We have presented a system that identifies script
participants from unlabeled data by grouping
equivalent noun phrases together. Our system

2We omit some PDSs in the presentation for lack of space.

combines semantic similarity and global structural
information about event alignments in an ILP. We
have shown that the system outperforms baselines
that are restricted to each of these information
sources alone; that is, both structural and similar-
ity information are essential.

We believe that we can improve our system in a
number of ways, e.g. by training a better parser or
switching to a more sophisticated semantic simi-
larity measure. One particularly interesting direc-
tion for future work is exploiting participant in-
formation to improve the alignments; this would
allow us to merge the “put food in microwave”
nodes in the graph of Fig. 4, which look identical
once noun phrases have been abstracted into par-
ticipants. We could achieve this by jointly model-
ing the event alignment problem and the partici-
pant identification problem in the same ILP.

While our approach to learning participants is
unsupervised once some parameters have been op-
timized on a small amount of labeled data, we can
only obtain a large-scale knowledge base of scripts
if we can collect large amounts of scenario de-
scriptions. Thus the next step must demonstrate
that this can be done, without requiring the man-
ual selection of scenarios to ask people about. A
promising approach is collecting data through on-
line games; this has been shown to be successful
in other domains (e.g. by von Ahn and Dabbish
(2008)), and we are optimistic that we can apply
this here as well.
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