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Abstract

We introduce an incremental entity-
mention model for coreference resolution.
Our experiments show that it is superior to
a non-incremental version in the same en-
vironment. The benefits of an incremental
architecture are: a reduction of the num-
ber of candidate pairs, a means to over-
come the problem of underspecified items
in pairwise classification and the natural
integration of global constraints such as
transitivity. Additionally, we have de-
fined a simple salience measure that - cou-
pled with the incremental model - proved
to establish a challenging baseline which
seems to be on par with machine learn-
ing based systems of the 2010’s SemEval
shared task.

1 Introduction

With notable exceptions (Luo et al., 2004; Yang
et al., 2004; Daume III and Marcu, 2005; Cu-
lotta et al., 2007; Rahman and Ng, 2009; Cai and
Strube, 2010; Raghunathan et al., 2010) super-
vised approaches to coreference resolution are of-
ten realised by pairwise classification of anaphor-
antecedent candidates. A popular and often reim-
plemented approach is presented in (Soon et al.,
2001). As recently discussed in (Ng, 2010), the
so called mention-pair model suffers from several
design flaws which originate from the locally con-
fined perspective of the model:

• Generation of (transitively) redundant pairs,
as the formation of coreference sets (corefer-
ence clustering) is done after pairwise classi-
fication

• Skewed training sets based on pair generation
mechanics which lead to classifiers biased to-
wards negative classification

• No means to enforce global constraints such
as transitivity

• Underspecification of antecedent candidates

Mention-pair systems operate in a non-
incremental mode, i.e. all pairs are classified
prior to the construction of the coreference sets.
A clustering step is needed where, additionally,
inconsistencies (e.g. transitively incompatible
pairs) can be removed. This often is realised as
an optimisation step, where scores derived from
pairwise classification are used as weights in a
decision taking process that incorporates linguis-
tic constraints, e.g. (Finkel and Manning, 2008).
Although this overcomes the limitations of the
strictly local perspective of pairwise classifiers,
it still suffers from the problem of unbalanced
data (much more negative than positive examples
are generated). The large number of candidate
pairs, in general, is a problem, e.g. (Wunsch et al.,
2009).

These problems can be remedied by an in-
cremental entity-mention model, where candidate
pairs are evaluated on the basis of emerging coref-
erence sets. The amount of candidate pairs is re-
duced, since only one (virtual prototype) example
of each coreference set needs to be compared to
a new anaphor candidate1. Moreover, the prob-
lem of inconsistent decisions vanishes, since the
virtual prototype of a coreference set bears all the
known morphological and semantic information
of the elements of the set. If an anaphor candidate
is compatible with the prototype then it is compat-
ible with each member of the coreference set. A
clustering phase on top of the pairwise classifier
no longer is needed.

1We are aware of the fact that, linguistically speaking,
anaphoric expressions depend on previously mentioned enti-
ties (e.g. ’she’→ ’Clinton’), whereas coreferent expressions
do not always (e.g. ’Hillary Clinton’ ... ’United States Secre-
tary of State’). We use the terms ’anaphoric’ and ’anaphora’
to subsume both relations.
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We have compared our incremental entity-
mention model to a non-incremental mention-
pair version. The memory-based learner TiMBL
(Daelemans et al., 2007) was used for pairwise
classification. To define a simple baseline, we
adopted previous work on salience-based mod-
els for coreference resolution. It turns out that
our salience measure coupled with the incremen-
tal model performs quite well, e.g. it outperformes
the systems from the 2010’s SemEval shared task
on ’coreference resolution in multiple languages’
in our own post-task evaluation.

Our system uses real preprocessing (i.e. the
use of a parser (Schneider, 2008; Sennrich et al.,
2009)) and extracts markables (nouns, named enti-
ties and pronouns) from the chunks based on POS
tags delivered by the preprocessing pipeline.

We first introduce the incremental model,
present constraints on buffer list access, discuss
our filtering system and our approximation of
the binding theory. We then turn to our simple
salience measure initially used as a baseline. In the
empirical section, the impact of the incremental
entity-mention model on the number of candidate
pairs is quantified and a comparison of the variants
(incremental, non-incremental etc.) of our Ger-
man system on the TüBa-D/Z (Naumann, 2006) is
given. We also describe our post-task evaluation
with the 2010’s SemEval data, the results from
the BioNLP shared task on coreference resolution
in the biomedical domain and our results on the
CoNLL 2011 shared task development set.

2 Our Incremental Entity-mention
Model

Fig. 1 shows the base algorithm. Let I be the
chronologically ordered list of markables, C the
set of coreference sets (i.e. the coreference parti-
tion) and B a buffer where markables are stored,
if they are not anaphoric (but might be valid an-
tecedents). Furthermore, mi is the current mark-
able and⊕means concatenation of a list and a sin-
gle item.

The algorithm proceeds as follows: a set of an-
tecedent candidates is determined for each mark-
able mi (steps 1 to 7) from the coreference sets
(rj) and the buffer (bk). A valid candidate rj or
bk must be compatible with mi. The definition
of compatibility depends on the POS tags of the
anaphor-antecedent pair (in order to be coreferent,
e.g. two pronouns must agree in person, number

and gender, while two nouns, at least in German,
need not necessarily agree in gender).

If an antecedent candidate is already in a coref-
erence set (rj), mi is compared to the virtual pro-
totype of the set in order to reduce underspecifi-
cation. The virtual prototype bears information
accumulated from all elements of the coreference
set. For instance, assume a candidate pair ’Clinton
... she’. Since the gender of ’Clinton’ is unspeci-
fied, the pair might or might not be a good candi-
date. But if ’Clinton’ is part of a coreference set,
let’s say: {’Hillary Clinton’, ’she’, ’her’, ’Clin-
ton’} then we can derive the gender from the other
members and are more safe in our decision. The
virtual prototype here would be: singular, femi-
nine, human.

In languages such as German, where morpho-
logical information is much more discriminatory
than in English and where at the same time under-
specification appears quite often (e.g. the reflex-
ive pronoun ’sich’ might refer to any third person
noun phrase, be it singular or plural, masculine,
feminine or neutral), this is particularly helpful.

If no compatible antecedent candidates are
found, mi is added to the buffer (Step 8). If
there are compatible candidates in the candidate
list Cand, the most salient antei ∈ Cand (or, in
the machine learning setting, the most probable)
is selected (step 10) and the coreference partition
is augmented (step 11). If antei comes from a
coreference set, mi is added to that set. Otherwise
(antei is from the buffer), a new set is formed,
{antei, mi}, and added to the set of coreference
sets.

2.1 Restricted Accessibility of Antecedent
Candidates

As already discussed, access to coreference sets
is restricted to the virtual prototype - the concrete
members are invisible. This reduces the number
of considered pairs (from the cardinality of a set
to 1).

Moreover, we restrict access to buffer elements:
if an antecedent candidate, rj , from a coreference
set exists, then elements from the buffer, bk, are
only licensed if they are more recent than rj .

Although this rule is heuristic and no evaluation
of the impact of different versions of such a ’dis-
course model’ have been carried out yet, we be-
lieve that ’accessibility’ of antecedent candidates
along these lines is a fruitful notion. It might
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1 for i=1 to length(I)
2 for j=1 to length(C)
3 rj := virtual prototype of coreference set Cj

4 Cand := Cand ⊕ rj if compatible(rj , mi)
5 for k= length(B) to 1
6 bk:= the k-th licensed buffer element
7 Cand := Cand ⊕ bk if compatible(bk, mi)
8 if Cand = {} then B := B ⊕mi

9 if Cand 6= {} then
10 antei := most salient element of Cand
11 C := augment(C,antei,mi)

Figure 1: Incremental model: base algorithm

lead to cognitively adequate models for coref-
erence resolution, where cognitive burden deter-
mines which antecedent candidates are valid at all.
Clearly, future work must start with an evaluation
of our current setting.

2.2 Filtering and Training Based on
Anaphora Type

There is a number of conditions not shown in the
basic algorithm in Fig. 1 that define compatibil-
ity of antecedent and anaphor candidates based
on POS tags: Reflexive pronouns must be bound
to the subject governed by the same verb. Rel-
ative pronouns are bound to the next NP in the
left context. Personal and possessive pronouns
are licensed to bind to morphologically compati-
ble antecedent candidates (named entities, nouns2

and pronouns) within a window of three sentences.
Named entities must either match completely or
the antecedent must be longer than one token and
all tokens of the anaphor must be contained in the
antecedent (e.g. ’Hillary Clinton’ ... ’Clinton’).
Demonstrative NPs are mapped to nominal NPs
by matching their heads (e.g. ’The recent find-
ings’ ... ’these findings’). Definite NPs match with
noun chunks that are longer than one token3 and
must be contained completely without the deter-
miner (e.g. ’Recent events’ ... ’the events’). To li-
cence non-matching (bridging) nominal anaphora,
we apply hyponymy and synonymy searches in
WordNet (Fellbaum, 1998) and GermaNet (Hamp

2To identify animacy and gender of NEs, we use a list
of known first names annotated with gender information
and look up Wikipedia categories to map NEs to Word-
Net/GermaNet synsets. To obtain animacy information for
common nouns, we conduct a WordNet search.

3If we do not apply this restriction, too many false posi-
tives are produced - simple head matching appears to be very
noisy.

and Feldweg, 1997) respectively.
For the machine learning approaches we used

the standard features of mention-pair models (e.g.
(Soon et al., 2001)). We trained individual classi-
fiers per anaphora type, i.e. for nominal anaphora,
reflexive, possessive, relative and personal pro-
nouns. We manually tuned the feature selection
of each classifier. Both the mention-pair and the
entity-mention model share these features and fil-
ters.

2.3 Binding Theory as a Filter
There is another principle that nicely combines
with our incremental model and helps reducing the
number of candidates even further: binding theory
(e.g. (Büring, 2005)). We know that ’Clinton’ and
’her’ cannot be coreferent in the sentence ’Clinton
met her’. Thus, the pair ’Clinton’-’her’ need not
be considered at all. Furthermore, all mentions of
the ’Clinton’ coreference set, say {’Hillary Clin-
ton’, she, her, ’Clinton’}, are transitively exclusive
and can be discarded as antecedent candidates.

Actually, there are subtle restrictions to be cap-
tured here. We have not implemented a full-blown
binding theory on top of our dependency parsers.
Instead, we approximated binding restrictions by
subclause detection. ’Clinton’ and ’her’ are in the
same subclause (the main clause) and are, thus,
exclusive. This is true for nouns and personal pro-
nouns, only. Possessive and reflexive pronouns are
allowed to be bound in the same subclause.

2.4 An Empirically-based Salience Measure
In the pioneer work of (Lappin and Leass, 1994),
salience calculation included manually specified
weights for grammatical functions (e.g. sub-
ject got the highest score). The distance be-
tween the candidates and other properties are
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also taken into account in order to determine
salience. Such approaches suffered from a proper
empirical justification4. Consequently, machine-
learning approaches have replaced manually de-
signed salience measures. Now it is the classifier
that determines ’salience’.

Our salience measure is a variant of the one in
(Lappin and Leass, 1994). Instead of manually
specifying the weights, we derived them empir-
ically on the basis of the coreference gold stan-
dard (for German, this is the coreference annotated
treebank TüBa-D/Z ; for English, OntoNotes5 was
used). The salience of a dependency label, D, is
estimated by the number of true mentions in the
gold standard that bear D (i.e. are connected to
their heads with D), divided by the total number
of true mentions. The salience of the label subject
is thus calculated by:

Number of true mentions bearing subject

Total number of true mentions

For a given dependency label, this fraction indi-
cates how strong is the label a clue for bearing a
true mention. We get a hierarchical ordering of
the dependency labels (subject > object > pobject
...) according to which antecedent candidates are
ranked.

Clearly, future work will have to establish a
more elaborate calculation of salience to be used
for classification without machine learning. To
our surprise, however, this salience measure per-
formed quite well together with our incremental
architecture.

3 Evaluation

We evaluate our system in two languages (Ger-
man and English) and in two domains (newswire
text and abstracts from the biomedical domain).
We directly compare our incremental entity men-
tion model to the generative mention-pair model
on the basis of the German TüBa-D/Z corpus in
a 5-fold cross-validation. We also investigate the
competitiveness of the incremental model com-
pared to other systems in two tasks and languages:
SemEval6 (English and German) and BioNLP7

(English). Results of the CoNLL 20118 shared
task development data (English) are also provided.

4There are notable exceptions, e.g. (Ge et al., 1998),
where salience calculation is combined with statistics.

5http://www.bbn.com/ontonotes/
6http://stel.ub.edu/semeval2010-coref/
7https://sites.google.com/site/bionlpst/home/protein-

gene-coreference-task/
8http://conll.bbn.com/

3.1 Reducing the Number of Candidate Pairs

Anaphora Type Pos Neg
Mention-pair model (171526 instances)
Nouns 5626 5144
Relative pronouns 1428 2459
Reflexive pronouns 1372 728
Possessive pronouns 5346 21571
Personal pronouns 23025 104827
Total 36797 134729
Entity-mention model (40229 instances)
Nouns 1776 3787
Relative pronouns 1382 2330
Reflexive pronouns 462 530
Possessive pronouns 1416 8156
Personal pronouns 4023 16367
Total 9059 31170

Figure 2: Number of training instances per
anaphora type of Fold 1 of the TüBa-D/Z

Fig. 2 shows the number of training instances
of the first fold (about 5’000 sentences) from
the TüBa-D/Z both for the incremental and the
non-incremental algorithm. Overall a huge re-
duction by a factor of 4 (-131297 instances, -
76.55 %) can be observed when moving from the
non-incremental mention-pair to the incremental
entity-mention model. As we use the same fil-
ter set in all runs, no true mentions are deleted in
the incremental approach. The reduction in pos-
itives results from pairing an anaphor candidate
with only one virtual prototype of the coreference
set it belongs to as opposed to redundantly pairing
it with all members of its set. As during testing
only pairs consisting of the set’s virtual prototype
and the anaphor candidate are considered, this is
sufficient and the additional pairs are not needed.
The reduction in negatives results from the same
mechanism. Instead of pairing the anaphor with
all mentions of a set it does not belong to, only
one negative pair with the prototype is generated.
Additionally, some pairs are created with compat-
ible members from the buffer list.

The reason for the relatively minor reduction in
reflexive and relative pronouns is that the search
for antecedents is limited to the same sentence or
even a specific (sub-) clause. On the other hand,
we allow for possessive and personal pronouns
a window of three sentences wherein antecedent
candidates may be found. In the latter two cases,
the incremental approach to pair generation has a
more drastic impact on the number of training in-
stances (-64.44%, -84.05% resp.).
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3.2 TüBa-D/Z Model Comparison
We can see from the results (Fig. 3) that the in-
cremental entity-mention model outperforms the
mention-pair model. The entity-mention model
with the TiMBL classifier performed best by im-
proving recall (+ 7.01%) and losing some pre-
cision (- 0.79%) compared to the mention-pair
model. To our surprise, the simple salience ap-
proach performed quite well, losing only 0.85%
precision and 1.88% recall compared to its ma-
chine learning variant. Given that bridging
anaphora is not resolved in the salience mode, a
reduction in recall was to be expected. It still out-
performs the mention-pair model that implements
machine learning.

Model F1 P R
Mention-pair (TiMBL + ILP) 49.35 53.67 45.69
Entity-mention (TiMBL) 52.79 52.88 52.70
Entity-mention (salience) 51.41 52.03 50.82

Figure 3: CEAF scores of the 5-fold TüBa-D/Z
cross-validation

Overall the results of the TüBa-D/Z evaluation
are low, indicating that end-to-end coreference
resolution with real preprocessing is still a diffi-
cult problem. It is important to note that we im-
plemented a version of the CEAF metric which
does not account for singletons (i.e. coreference
sets with only one mention) because we believe
that finding singletons is not a crucial part of the
coreference resolution task and that it improves re-
sults artificially. We can see the difference of eval-
uating with or without singletons if we compare
these results with the ones from SemEval (Fig.
5), where singletons are considered in the eval-
uation process. The SemEval German task also
uses data from the TüBa-D/Z , allowing an ap-
proximate comparison of the results to illustrate
the effects of considering singletons in evaluation.
The CEAF F1-measure of our incremental model
reaches 76.8% on the SemEval data (Fig. 5), while
without singletons, we reach 52.79% in the TüBa-
D/Z evaluation (Fig. 3).

3.3 Error Analysis
We simulated perfect resolution of the individual
classifiers of the best performing system (Entity-
mention(TiMBL)) from the model comparison
(Fig. 4). We ran the system on the first fold (ca.
5000 sentences) of the TüBa-D/Z , resolving one
type of anaphora (e.g. nominal anaphora) using

gold standard information per run, while the other
anaphora types were resolved by the system.This
gives us an indication of the upper bounds of the
system: How good would our system be, if it re-
solved e.g. nominal anaphora perfectly?

with filters means that only pairs that pass the
filters are resolved. In the without filters mode, all
pairs of the corresponding anaphora type are re-
solved correctly, disregarding filter decisions. The
other anaphora types are resolved by the system in
both modes. The difference in performance be-
tween the with and without filtering mode indi-
cates how good our filters are: the smaller the dif-
ference, the better the filters (compare values hori-
zontally). The performance difference of the indi-
vidual classifiers with perfect resolution compared
to the overall system performance (right column,
compare vertically) indicates the difficulty of re-
solving that anaphora type.

For example, in the first row that indicates res-
olution performances of nominal anaphora we can
see that we roughly lose 10% in F1 measure due
to our nominal filters (72.70% - 62.61%). Com-
pared to the actual system performance in the last
row in the right column (53.86%) we see that we
lose an additional 9% in F1 measure because of
imperfect resolution of nominal anaphora (62.61%
- 53.86%). This sums up to a total loss of 19% in
F1 measure compared to system performance with
perfect resolution of nominal anaphora. Com-
pared to the minor difference of 1.8% F1 measure
between perfect and imperfect resolution of reflex-
ive pronouns (-1.5% through filtering and -0.3%
through imperfect classification) the difficulty of
resolving nominal anaphora becomes obvious.

3.4 SemEval 2010, BioNLP 2011 and CoNLL
2011

To get an indication of the competitiveness of our
incremental approach we carried out evaluations
over recent shared task data sets. The SemEval
coreference task (Recasens et al., 2010) focused
on coreference resolution in multiple languages
and comparing different evaluation metrics. The
test data for German was composed of the TüBa-
D/Z whereas the English data was gathered from
the OntoNotes corpus.

The main goal of the BioNLP protein/gene
coreference task was to resolve non-name-
containing mentions in protein/gene-interactions
to their appropriate name-containing antecedents
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Without filtering With filtering
F1 Precision Recall F1 Precision Recall

Nouns 72.70 69.53 76.17 62.61 63.70 61.55
Personal pronouns 60.42 62.05 58.88 58.86 60.64 57.19
Relative pronouns 56.25 57.91 54.68 55.97 57.65 54.39
Possessive pronouns 56.06 57.35 54.82 55.81 57.18 54.51
Reflexive pronouns 55.68 57.11 54.32 54.16 55.64 52.77
System - - - 53.86 54.64 53.09

Figure 4: CEAF scores for the simulation of perfect classification (upper bounds) of the individual
classifiers for the first 5000 sentences of the TüBa-D/Z .

and thereby improving overall recall of interaction
extraction (i.e. the main task). The test data con-
sists of abstracts gathered from PubMed.

As the SemEval training data for English and
German were not available at the time of our post-
task experiments, we were only able to evaluate
the salience based classification.

The SemEval coreference task offers many dif-
ferent settings. Since we are interested in real
end-to-end coreference resolution we evaluated
the open/regular setting, meaning that real prepro-
cessing components are used as opposed to perfect
gold standard preprocessing data. Results of the
SemEval task are given in Figure 5.

Except for the (recently questioned, e.g. (Luo,
2005; Cai and Strube, 2010)) MUC metric in the
English evaluation, the incremental model (incr)
achieved best results throughout the SemEval ex-
periments in both languages. All other systems
that competed in the task implemented a mention-
pair model. Overall, an improvement can be ob-
served compared to the other systems, mainly in
precision.

The simple salience based measure is not suited
for resolving bridging anaphora. Therefore, bridg-
ing anaphora was not resolved by the system in
these experiments (but still included in the evalu-
ation) which might be a reason for the relatively
low recall.

More recently, we have adapted our salience-
based incremental architecture to the biomedical
domain. Our results in the recent BioNLP 2011
shared task are competitive as well (see Fig. 6).

The results of our evaluation over the CoNLL
2011 shared task development set are given in Fig.
7. CEAF and BCUB scores are considerably lower
compared to the SemEval results. We believe
these differences originate from the updated scor-
ing algorithms for CEAF and BCUB. They were
modified for the CoNLL scorer according to sug-
gestions by (Cai and Strube, 2010). The CoNLL

Team R P F1
A 22.18 73.26 34.05
incr 21.48 55.45 30.96
B 19.37 63.22 29.65
C 14.44 67.21 23.77
D 3.17 3.47 3.31
E 0.70 0.25 0.37

Figure 6: BioNLP 2011 Protein/Gene Coreference
Task Results

scorer has stricter mention boundary handling than
the SemEval scorer. Moreover, singletons were
not marked in the CoNLL data.

Metric R P F1
CEAFM 51.08 51.08 51.08
CEAFE 44.35 39.93 42.03
BCUB 60.91 70.69 65.44
BLANC 63.63 72.58 66.81
MUC 45.18 49.83 47.39

Figure 7: CoNLL 2011 Development Set Results

4 Related Work

The work of (Soon et al., 2001) is a prototyp-
ical and often re-implemented (baseline) model
that is based on pairwise classification and ma-
chine learning. Our non-incremental mention-pair
model can be seen as an adaption of this sys-
tem and its features. Coreference clustering is
discussed e.g. in (Denis and Baldridge, 2009;
Finkel and Manning, 2008). Our mention-pair
model uses the Balas algorithm for clustering as
discussed in (Klenner, 2007).

Direct empirical comparison of supervised
mention-pair and entity-mention models can be
found in e.g. (Luo et al., 2004; Yang et al.,
2004; Rahman and Ng, 2009). Only in (Rah-
man and Ng, 2009) a clear improvement by the
entity-mention model is observed. Other super-
vised entity-mention models such as (Daume III
and Marcu, 2005; Culotta et al., 2007; Raghu-
nathan et al., 2010) are not directly compared to
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CEAF MUC BCUB BLANC
System R P F1 R P F1 R P F1 R P F1
German, open regular
bart 61.4 61.2 61.3 61.4 36.1 45.5 75.3 58.3 65.7 55.9 60.3 57.3
incr 76.8 70.4 73.4 50.4 47.1 48.7 81.7 75.6 78.5 55 72.6 57.8
English, open regular
bart 70.1 64.3 67.1 62.8 52.4 57.1 74.9 67.7 71.1 55.3 73.2 57.7
corry-b 70.4 67.4 68.9 55.0 54.2 54.6 73.7 74.1 73.9 57.1 75.7 60.6
corry-c 70.9 67.9 69.4 54.7 55.5 55.1 73.8 73.1 73.5 57.4 63.8 59.4
corry-m 66.3 63.5 64.8 61.5 53.4 57.2 76.8 66.5 71.3 58.5 56.2 57.1
incr 67.6 73 70.2 34 62.5 44.1 66.7 86 75.1 57.1 78.4 61.1

Figure 5: Our SemEval 2010 post-task evaluation results

mention-pair models. Also, in the recent SemEval
2010 and BioNLP 2011 shared tasks no entity-
mention models participated.

Our work differs from the research mentioned
above as it focuses on using an incremental entity-
mention architecture to impose constraints on can-
didate pair generation as opposed to generating
cluster-level features for (machine learning-based)
classification. Our hypothesis, also for future
work, is that progress is possible by not only im-
proving classifier performance but by improving
other steps of the coreference resolution pipeline
that lead up to the classifier, namely pair genera-
tion and antecedent candidate accessibility.

5 Conclusions

We have introduced an incremental entity-mention
algorithm for coreference resolution and evaluated
its impact on pair generation and the performance
of architectural variants. A performance compari-
son of our model to systems from different shared
tasks produced good results. We also discussed a
simple and very fast salience-based approach that
performed quite well, i.e. it outperformed all sys-
tems of the 2010’s SemEval shared task.

The benefits of an incremental model are:

• due to the restricted access to potential an-
tecedent candidates, the number of generated
candidate pairs can be reduced drastically

• no additional coreference clustering is neces-
sary

• global constraints (e.g. transitivity) are easily
integrated

• underspecification of antecedent candidates
can often be compensated by other members
of the emerging coreference sets

Our theory on how to restrict the accessibility
of antecedent candidates has proven to be (em-
pirically) successful, as it outperformed other sys-
tems. However, we are aware of the fact that we
need to explore in a more principled and empiri-
cally grounded way, what the parameters of such
an evolving discourse model are. We strive for a
theory whose decisions, in the best case, relate to
the restrictions of human cognitive capacity.

Finally, our implementation of a binding theory
is incomplete. Since binding theory provides hard
restrictions, it is a crucial component of any theory
on antecedent accessibility.

Web demos of the salience based system for En-
glish and German are available9.
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