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Abstract

This paper discusses two Hidden Markov
Models (HMM) for linking linguistically
motivated XTAG grammar and the auto-
matically extracted LTAG used by MICA
parser. The former grammar is a detailed
LTAG enriched with feature structures.
And the latter one is a huge size LTAG that
due to its statistical nature is well suited
to be used in statistical approaches. Lack
of an efficient parser and sparseness in the
supertags set are the main obstacles in us-
ing XTAG and MICA grammars respec-
tively. The models were trained by the
standard HMM training algorithm, Baum-
Welch. To converge the training algo-
rithm to a better local optimum, the ini-
tial state of the models also were estimated
using two semi-supervised EM-based al-
gorithms. The resulting accuracy of the
model (about 91%) shows that the models
can provide a satisfactory way for linking
these grammars to share their capabilities
together.

1 Introduction

Tree Adjoining-Grammar (TAG) is a tree generat-
ing system that forms the object language by the
set of derived trees (Joshi and Schabez, 1991).
This formalism as a Mildly Context Sensitive
Grammar is supposed to be powerful enough to
model the natural languages (Joshi, 1985).

In the lexicalized case (LTAG), each lexical
item of the object language is associated with
at least one elementary structure of the grammar
called elementary tree. Each elementary tree in
LTAGs can be considered as a complex descrip-
tion of its anchor that provides a domain of lo-
cality over which the anchor can specify syntac-
tic and semantic constraints(Bangalore and Joshi,
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1999). Extended domain of locality and factoring
of recursion from the domain of dependency are
the main key properties of using these grammars
(Bangalore and Joshi, 1999).

There are two ways for creating the set of ele-
mentary trees (Faili and Basirat, 2010). The first
method is the manual crafting of the elementary
trees as it was done in the XTAG project (XTAG-
Group, 2001). And the alternate one is the au-
tomatically extraction of them from some anno-
tated treebanks as it was done in (Xia, 2001; Chen,
2001). The result of the former method is a de-
tailed LTAG that is enriched with semantic rep-
resentation but suffers from the lack of statisti-
cal information. The output of the latter one on
the other hand, is a huge size LTAG that suffers
from the sparseness problem in the elementary
trees set but contains enough statistical informa-
tion that make it suitable to be used in statistical
approaches. The relatively huge size of the auto-
matically extracted elementary trees set is an ob-
stacle in annotating these structures with semantic
representation (Chen, 2001).

One of the negative aspects of using LTAGs
is their high computational complexity of pars-
ing algorithm, (0(n%)) (Kallmeyer, 2010). Re-
garding the work presented in (Sarkar, 2007), the
factors that affect the parsing complexity of such
lexicalized grammars are the number of trees se-
lected by the words in the input sentence and the
clausal complexity of the sentence to be parsed.
The first factor, named Syntactic Lexical Ambigu-
ity, directly addresses Supertagging, proposed by
Bangalore and Joshi (1999).

Supertagging is a robust partial parsing ap-
proach that can be applied for increasing up the
speed of LTAG parsing algorithm (Bangalore and
Joshi, 1999). In supertagging the flexibility of
linguistically motivated lexical descriptions are
integrated with the robustness of statistical ap-
proaches. The idea is based on extending the no-
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tion of ‘tag’ from the standard Part Of Speech to
a tag that represents a rich and complex syntac-
tic structure, called Supertag. In the lexicalized
grammars like LTAGs each elementary structure
of the grammar can be considered as a supertag.
Supertagging itself is the task of assigning the su-
pertags to each word of the processing sentence.
After supertagging the only thing that the LTAG
parser should do is to attach these selected su-
pertags for creating a forest of derived/derivation
trees.

Supertagging as a search problem can be mod-
eled by two major methods, generative model and
classification approach (Bangalore et al., 2005).
In the former method the problem is modeled by
a Hidden Markov Model and in the latter one it
is modeled by the discriminant approaches like
SVM and Maximum Entropy Estimation. Apply-
ing each of these methods in supertagging is sub-
ject to the availability of enough statistical infor-
mation about the problem. Hence, due to their
statistical nature, the automatically extracted LT-
AGs are more suitable to be used by supertag-
ging algorithm than the manually crafted LTAGs.
This characteristic of automatically extracted LT-
AGs caused the emergence of some powerful sta-
tistical parsers like MICA (Bangalore et al., 2009)
that works based on the supertagging approach.

The lack of an efficient LTAG parser for man-
ually crafted LTAGs beside the weakness of the
automatically extracted LTAGs in representing se-
mantic representation, encouraged us to rectify
these deficiencies by making an interface between
these grammars. The interface was established be-
tween individual elementary trees of each gram-
mars such that any elementary tree of the source
LTAG could be mapped onto an elementary tree of
the target LTAG. The idea is similar to the Hidden
TAG Model (Chiang and Rambow, 2006) that links
many spoken dialects of a language to benefit from
sharing rich resources. Here by relating two differ-
ent perspectives of a natural language presented in
the form of two LTAGs, we are going to share their
capabilities together.

The interface was modeled as a sequence tag-
ger that deals with the problem of how to map
each supertag sequence of the source LTAG onto
a supertag sequence of the target LTAG given the
local and non-local information of the source se-
quence. An unsupervised sequence tagger based
on Hidden Markov Model (HMM) was proposed
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that produces a target supertag sequence given a
source supertag sequence. The sequence tagger
was trained using the standard HMM training al-
gorithm called Baum-Welch. Due to this fact that
the algorithm convergence is tightly depending on
the HMM initial state, the initial state of the HMM
also was trained intellectually using an EM-Based
semi-supervised bootstrapping algorithm. The so-
lution was applied on the manually crafted English
XTAG grammar (XTAG-Group, 2001) as target
LTAG and the automatically extracted LTAG used
by MICA parser (Bangalore et al., 2009) as source
LTAG.

The significance of this work is as follow. First,
as a solution for enhancing the parsing efficiency
of the XTAG grammar, as it was done by Faili
(2009). Second, as a fully automated method for
bridging between grammars in order to share their
capabilities together.

2 Related Work

Bridging between grammars in order to share their
capabilities is considered by some researchers.
Improving the parsing quality in the resource-poor
languages (Chiang and Rambow, 2006), enriching
automatically extracted LTAGs with semantic rep-
resentation (Chen, 2001; Faili and Basirat, 2010;
Faili and Basirat, 2011), increasing the syntac-
tic coverage of lexicalized resources (Dang et al.,
2000; Kipper et al., 2000), and finding the overlap
between two grammars (Xia and Palmer, 2000) are
considered as the most important reasons for per-
forming this task.

In general, the proposed methods for perform-
ing such a task could be classified into two ma-
jor categories. The first category consists of the
methods that try to link the grammars using the
structural similarities of the grammar’s elements
regardless of the syntactic environments that the
elements may be placed. The approaches pro-
posed in (Chen, 2001), (Xia and Palmer, 2000),
and (Ryant and Kipper, 2004) are classified in this
category.

The second one consists of the methods that
try to make the connection regarding the statis-
tical information of the syntactic environments
where the grammar’s elements appear on. Chi-
ang and Rambow (2006) by introducing a novel
concept, namely hidden TAG model, proposed a
model analogous to a HMM for linking a resource-
rich language to a resource-poor language. In



(Faili and Basirat, 2010; Faili and Basirat, 2011)
also a statistical approach based on HMM for link-
ing the automatically extracted LTAG from Penn
Treebank (Chen, 2001) and English XTAG gram-
mar (XTAG-Group, 2001) was proposed. Here
by introducing two statistical models, we have
closely followed the approach presented in (Faili
and Basirat, 2011).

3 HMM-based LTAG mapping

The task of mapping a MICA elementary tree se-
quence onto an appropriate XTAG elementary tree
sequence could be formulated as below:

Given a sequence of MICA elementary
trees T = (t1,...,t,) assigned to sen-
tence S = (Wi,...,w,) by MICA, tag
each element of T with an elementary
tree t; € XTAG Grammar such that the
likelihood of T’ = (t’l,...,t;l) given T
and S be maximized.

This problem directly addresses a Hidden Markov
Model (HMM) that relates a MICA elementary
tree sequence as an observation sequence to the
most probable XTAG elementary tree sequence
as a hidden state path. Given such a model, the
Viterbi algorithm can be used for finding the most
probable hidden state path that generates the ob-
servation sequence. The rest of this part deals with
the problem modeling using HMM.

3.1 Problem Modeling Using HMM

Regarding the existence gap between XTAG and
MICA grammars (Chen, 2001), two possible map-
ping models were proposed. The M-1 model sim-
ply ignores this gap. It assumes every syntac-
tic structure in the MICA grammar has at least
one corresponding element in the XTAG grammar.
In this case, each hidden state is exactly corre-
sponded to a XTAG elementary tree. The MICA
supertags also are considered as the observation
symbols. Given any XTAG elementary tree #; and
t;., the state transition matrix (A = [a; ;]) contains
the probability of seeing t;. after 7/ in a sequence of
XTAG elementary trees. For each MICA elemen-
tary tree ¢; and XTAG elementary tree 7] the obser-
vation probability matrix (B = [b; ;]) also contains
the probability P(z;]z}).

On the other hand, the alternate model, M-2,
tries to model the relation between the grammars
with respect to the existence gap between them. In
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this model it is assumed that there are some syn-
tactic structures in the MICA grammar that are not
supported by the XTAG grammar. The main dif-
ference between M-1 and M-2 is in their hidden
states. In addition to the hidden states used in M-
1, a new symbolic state, namely UNKNOWN, is
added to the M-2 hidden states set. This new state
is the representative of all syntactic structures that
are modeled by MICA grammar but not by XTAG
grammar.

3.2 Training

Both of the M-1 and M-2 models were trained
by the Baum-Welch algorithm. As the other
HMM training algorithm, Baum-Welch algorithm
also cannot find the global optimum of the search
space. This weakness is inherited from the HMM
in which does not provide any clear solution to
use any extra information of the problem. In this
case, the initial state of the training algorithm pro-
vides a way to use a part of environment’s knowl-
edge that can largely cover the mentioned weak-
ness (Rabiner, 1989).

To lead the training algorithm to a better solu-
tion two methods was peoposed for estimating the
initial state of the models. Next part, introduces
these algorithms.

3.3 Initialization

The initial state of the models has been trained
using two novel semi-supervised EM-based train-
ing algorithms. The algorithms work based on the
available set of MICA and XTAG elementary tree
sequences achieved from parsing a set of English
sentences namely Initialization Data Base (IDB).

In the M-1 model, IDB must be selected so
that all of its sentences can be modeled in both
of XTAG and MICA grammars. This constraint is
due to the M-1 assumption about the problem.

In M-2 the only constraint over the IDB sen-
tences is that the sentences must be modeled in the
MICA’s grammar. In this case, IDB can be parti-
tioned into two parts. The sentences that can be
modeled by XTAG grammar, Parsable Initializa-
tion dataset (PI), and the sentences that cannot be
modeled by the XTAG grammar, NotParsable Ini-
tialization dataset (NPI). The partitioning enables
the model to consider the existence gap between
the grammars.



3.3.1 Initializing M-1

Let C and C’ be two sets of elementary tree se-
quences achieved from parsing IDB using MICA
and XTAG parsers, respectively. Due to the sta-
tistical nature of MICA parser, for any sentence
S; € IDB, C contains a set of scored elementary
tree sequences. Nevertheless, C’ contains an am-
biguity set of elementary tree sequences without
any clear way to disambiguate it.

Given C and C’, the simplest and most intuitive
way for estimating the initial values of the HMM is
MLE. Nevertheless, performing this application is
subject to disambiguating the output of the XTAG
parser stored in C’. This problem addresses a func-
tion that assigns a real value to each member of C’
as shown in eq. 1.

w:C" >R (1

Given such a weighting function w, the proba-
bility of transition (S; — S ;) in hidden states can
be estimated by taking weighted count from all bi-
grams (S;,§ ;) in C’ and normalizing by the sum
of all bigrams (S;, S¢) that share the same first el-
ements. A similar method also can be used for
computing the probabilities presented in the ob-
servation matrix (B) and IT.

Given C” = w(C”) and C, we define function
A for generating the HMM A using the aforemen-
tioned MLE (eq. 2).

AC’xC—> A 2)

The main problem here is to find an appropri-
ate function ®w. Function w was estimated using
a semi-supervised EM-based method. The algo-
rithm takes the C and C’ as input and attempts to
estimate some values for function w such that the
objective function J presented in eq. 3 is being
maximized. Function 3 shows the likelihood of
observing C given the HMM A achieved by A.

I =P(Cla=A(C”,0)) 3)

In the EM formulation, the E-step was defined
as the computing the value of A using A. In M-
step the algorithm attempts to update the w regard-
ing the earlier model resulted from E-step. Eq. 4
shows how to estimate the value of w for a XTAG
elementary tree sequences 7’ € C’. In this equa-
tion, ¢ shows the set of XTAG elementary tree se-
quences in C’ that are generated from the sentence
S, the generator of 7’. T; € C also represents the
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ith MICA elementary tree sequence in &. The in-

dex n shows the total number of sequences in C

generated from S (| £ |).

i1 PTHP(T, T'1A)
1 €1

o(T’) = “4)
3.3.2 Initializing M-2

In this part also for the sake of simplicity,
Cup, Cxp and Cyyp are used as the supertagging
result of PI in MICA grammar, Pl in XTAG
grammar, and NPI in MICA grammar, respec-
tively. Unlike the M-1 that uses all of the MICA
elementary tree sequences resulted from parsing
a sentence in IDB, here only the most proba-
ble MICA elementary tree sequence was used.
So, related to each sentence in PI and NPI, we
have a single MICA elementary tree sequence in
Cup and Cyyp respectively.

In this model, in addition to computing , ap-
plying MLE is subject to generating the set of
elementary tree sequences for the sentences in
dataset NPI. We name this set of elementary tree
sequences Cxyp. Each sequence in Cxyp consists
of XTAG elementary trees and have to contain at
least one UNKNOWN symbol regarding this fact
that NPI contains the sentences that couldn’t be
modeled in XTAG grammars. Given the paired
sets (Cynp, Cxnp) and (Cyp, Cxp) and an appro-
priate weighting function w as shown in eq. 5, the
initial values of HMM can be estimated using the
mentioned MLE method.

o:CxynpUCxp > R

&)

The w was estimated using a semi-supervised
boot strapping EM-based algorithm. Like the ini-
tialization algorithm proposed in sec. 3.3.1, this
algorithm also has an iterative nature that tries
to estimate some values for w (hence for HMM
parameters) in a greedy manner. The objective
function in this phase is to maximize the likeli-
hood of observing MICA supertag sequences in
Cune U Cyp (eq. 6). In the heart of the algo-
rithm, the Cyyp is bootstrapped by applying a cus-
tomized version of Viterbi algorithm on the Cyyp
using the earlier value of HMM.

I =PCypUCynp| ) (6)

The algorithm consists of four main stages as
below:

1. Pre Initializing: Initializing the HMM parameters with
out considering UNKNOWN hidden state.



2. Bootstrapping: Bootstrapping Cyyp by annotating
Cynp with hidden states labels.

3. Updating: Estimating the new value of HMM using
Maximum Likelihood Estimation (MLE) on the paired
sequences (Cywp, Cxyp) and (Cyp, Cxp)

Termination: Until the termination criterion is not sat-
isfied go to step 2.

In the rest of this part we will express each phase
in detail.

Pre Initializing: In this step, it tries to esti-
mate the HMM parameters from the related se-
quences in (Cyp,Cxp) using the MLE. Apply-
ing the MLE over these sets gives some approx-
imations about the probabilities presented in the
HMM parameters except the probabilities related
to UNKNOWN hidden state. The weighting func-
tion used in this phase gives a uniform distribution
of probability to each member of C;p that are gen-
erated from same sentence.

The probabilities related to UNKNOWN hidden
states also could be estimated using some heuris-
tics over the existence gap between the grammars.
For instance, the amount of uncertainty involved
in the HMM parameters resulted by the MLE is a
criterion for estimating the probabilities related to
the UNKNOWN.

Bootstrapping: In this phase it tries to anno-
tate each MICA supertag sequence in Cyyp with
a set of hidden state paths given the earlier value
of HMM. To do this, a modified version of Viterbi
algorithm, namely Forced Viterbi, was used. The
algorithm looks for the hidden state paths that have
the highest consistency with the earlier HMM and
pass through UNKNOWN hidden state.

Before applying Forced Viterbi over Cyyp, we
need some assumptions about the source elemen-
tary trees that are more likely to be corresponded
to UNKNOWN. A simple solution for making
such assumption is feasible via taking a differen-
tial between Cyyp and Cyp, and looking for the
n-grams in the former that are not presented in
the latter. The result of this process is a set of n-
grams of MICA elementary trees, namely Gap-set,
that their related n-gram in the original sentence
couldn’t be modeled in the XTAG grammar. For
any n-gram in Gap-Set that is observed in a MICA
elementary tree sequence member of Cyyp, by
considering all conditions that the UNKNOWN
can be assigned to the elementary trees of the ob-
served n-gram, the Forced Viterbi algorithm will
generate 2" XTAG elementary tree sequences.
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Figure 1: The HMM Initialization algorithm used
in M-2

Updating: In this step, the HMM parame-
ters will be updated regarding the paired sets
(Cynp,Cxnp) and (Cyp,Cxp). Having these
paired sets and a scoring function w, the HMM pa-
rameters can be updated using the mentioned MLE
method.

For each XTAG elementary tree sequence 7’ €
Cxp U Cxnp and its related MICA elementary tree
sequence T; € CypUC ynp, the scoring function o
can be defined as shown in eq. 7. £ in this equation
refers to the set of XTAG elementary trees that are
generated from the same sentence and 7’ € &.

_P(T',T | Q)

T/
o)==

(7N
Fig. 1 gives an outline over the HMM initial-
ization algorithm. Observing same values for the
probability presented in eq. 6 or exceeding the
predefined maximum number of iterations are two
candidates to be used as termination criteria.

4 Numerical Results

4.1 Experiments Description

To evaluate the accuracy of the proposed mod-
els, the models have been initialized and trained
with three real world data sets including ATIS ,
IBM Manual and Wall Street Journal (WSJ) cor-
pora. Some parts of these datasets were randomly
selected and divided into three distinct sections
as initialization dataset (IDB), training dataset
(TRDB) and testing dataset (TSDB). Table 4.1



No. Sentences
IDBy_ | IDBy_, | TRDB | TSDB
ATIS 904 991 1280 18
IBM 3463 4473 9742 102
WSJ 11913 16871 21709 197
No. words
ATIS 7726 9734 16917 209
IBM 32840 46833 | 154668 | 1547
WSJ | 102355 | 155879 | 221337 | 2029

Table 1: Statistical information about initializa-
tion, training and testing datasets used in M-1 and
M-2

Normalzed value of LOG P(C|L)

Figure 2: The values of the objective function pre-
sented in eq. 8 while initializing the M-1

shows some statistics about the datasets used in
initialization, training and testing the models.

4.2 Initializing

The results of applying each of the initializing
methods M-1 and M-2 over the IDBs are presented
in figure 2 and 3 respectively. These figures show
the value of ® presented in eq. 8. ‘O’ in this equa-
tion refers to all MICA elementary tree sequences
used in the algorithms. The observed progress in
the likelihood of observing the MICA elementary
tree sequences is an evidence on the successful of
the algorithms.

_ Sieolog P(T; | D)
0]

®)

As these show, while the values resulted from
M-2 are strictly ascending in a logarithmic man-
ner, increasing in the values resulted from M-1 has
no specific, predictable manner. It is due to the ob-
jective function shown in eq. 3 in which doesn’t
consider the score values of each MICA elemen-
tary tree sequences in C. In fact, related to any sen-
tence in each IDB, C contains many scored MICA
elementary tree sequences used in initializing al-
gorithm but in the value of the objective function.
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Normalized value of LOG P(O[).)

Iter

Figure 3: The values of the objective function pre-
sented in eq. 8 while initializing the M-2

M-1 M-2 Base Line
ATIS | 59.83% | 80.00% | 78.30%
IBM | 79.55% | 88.30% | 88.70%
WSJ | 87.75% | 91.50% | 88.96%

Table 2: The result of the tagging accuracy on the
test sets

4.3 Models Evaluation

The models were evaluated in two ways, tagging
accuracy and parsed sequences. The first criterion
originally introduced in (Faili and Basirat, 2011),
enables us to evaluate the models as XTAG su-
pertaggers. The latter one also, provide a way
to evaluate them when combining with a LTAG
parser. In parsed sequences the main focus is on
the number of resulted XTAG sequences that their
constituents elementary trees can be attached to
each other regarding the standard operations de-
fined in TAG formalism, Substitution and Adjunc-
tion.

Due to the lack of a gold annotated corpus, the
tagging accuracy has been done manually. Table
4.3 shows the result of the tagging accuracy over
the mentioned test sets (TSDBs). The base line
here is the result of tagging accuracy reported in
(Faili and Basirat, 2011). As it can be seen, M-2
gives the best accuracy in comparison to the M-1
and the base line.

The result of the alternate criterion, parsed sen-
tences, is given in table 4.3. As it shows, here also
the M-2 gives a better response in compare to the
M-1. An important point that should be noted is
that, not all of the sentences in the test sets are
covered by the XTAG grammar. In fact, our ex-
periments showed that of all sentences in each of
the ATIS-TSDB, IBM-TSDB, and WSJ-TSDB, all
but 6%, 13% and 24% of them could be parsed by
XTAG parser respectively.



M-1 M-2
ATIS 5% 33%
IBM | 12.74% | 43.10%
WSJ | 50.25% | 57%

Table 3: Number of the parsed sentences

5 Conclusion

Two Hidden Markov Models (HMM) were pro-
posed to make a bridge between the linguistic view
of the English XTAG grammar and the statistical
nature of the LTAG used by MICA parser (Banga-
lore et al., 2009). The models were trained by the
standard HMM training algorithm, Baum-Welch.
The initial state of the models also were estimated
using two semi-supervised EM-based algorithms.
The models can be used to combine the statistical
approaches with the grammar engineering.
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