Actions Speak Louder than Words: Evaluating Parsers in the Context of
Natural Language Understanding Systems for Human-Robot Interaction

Sandra Kiibler, Rachael Cantrell, Matthias Scheutz
Indiana University
{skuebler,rcantrel,mscheutz}@indiana.edu

Abstract

The standard ParsEval metrics alone are
often not sufficient for evaluating parsers
integrated in natural language understand-
ing systems. We propose to augment in-
trinsic parser evaluations by extrinsic mea-
sures in the context of human-robot inter-
action using a corpus from a human co-
operative search task. We compare a con-
stituent with a dependency parser on both
intrinsic and extrinsic measures and show
that the conversion to semantics is feasible
for different syntactic paradigms.

1 Introduction

Human-robot interactions (HRI) in natural lan-
guage (Scheutz et al., 2007) pose many chal-
lenges for natural language understanding (NLU)
systems, for humans expect robots to (1) gener-
ate quick responses to their request, which re-
quires all processing to be done in real-time, (2) to
rapidly integrate perceptions (e.g., to resolve refer-
ents (Brick and Scheutz, 2007)), and (3) to provide
backchannel feedback indicating whether they un-
derstood an instruction, often before the end of an
utterance. As a result, NLU systems on robots
must operate incrementally to allow for the con-
struction of meaning that can lead to robot action
before an utterance is completed (e.g., a head-turn
of the robot to check for an object referred to by
the speaker). Hence, the question arises how one
can best evaluate NLU components such as parsers
for robotic NLU in the context of HRI.

In this paper, we argue that intrinsic parser eval-
uations, which evaluate parsers in isolation, are
insufficient for determining their performance in
HRI contexts where the ultimate goal of the NLU
system is to generate the correct actions for the
robot in a timely manner. For high performance of
a parser with respect to intrisic measures does not

56

imply that the parser will also work well with the
other NLU components. A correct but overly com-
plex parse passed to the semantic analysis unit, for
example, may not result in the correct meaning
interpretation and will thus fail to generate cor-
rect actions. Similarly, fragmented input from the
speech recognizer may not lead to any parsable se-
quence of words, again likely resulting in incorrect
robot behavior. Hence, we need an extrinsic eval-
uation to determine the utility and performance of
a parser in the context of other NLU components
at the level of semantics and action execution.

To this end, we introduce an evaluation archi-
tecture that can be used for extrinsic evaluations
of NLU components and demonstrate its utility
for parser evaluation using state-of-the-art parsers
for each of the two main parsing paradigms: the
Berkeley constituent parser (Petrov and Klein,
2007) and MaltParser (Nivre et al., 2007b), a de-
pendency parser. The evaluation compares in-
trinsic and extrinsic measures on the CReST cor-
pus (Eberhard et al., 2010), which is representa-
tive of a broad class of collaborative instruction-
based tasks envisioned for future robots (e.g., in
search and rescue missions). To our knowledge,
no previous extrinsic parser evaluation used con-
versions to semantic/action representations, which
can be performed for different parser types and are
thus ideally suited for comparing parsing frame-
works. Moreover, no previous work has presented
a combined intrinsic-extrinsic evaluation where
the extrinsic evaluation uses full-fledged seman-
tic/action representations in an HRI context.

2 Previous Work

Evaluating different types of parsers is challeng-
ing for many reasons. For one, intrinsic evalu-
ation measures are often specific to the type of
parser. The ParsEval measures (precision and re-
call) are the standard for constituent parsers, at-
tachment scores for dependency parsing. Yet,

Proceedings of Recent Advances in Natural Language Processing, pages 56—62,
Hissar, Bulgaria, 12-14 September 2011.

none of these measures is ideal: the ParsEval mea-
sures have been widely criticized because they fa-
vor flat annotation schemes and harshly punish at-
tachment errors (Carroll et al., 1998). Addition-
ally, there is no evaluation scheme that can com-
pare the performance of constituent and depen-
dency parsers, or parsers using different underly-
ing grammars. Converting constituents into de-
pendencies (Boyd and Meurers, 2008), evens out
differences between underlying grammars. How-
ever, it is well known that the conversion into a
different format is not straightforward. Clark and
Curran (2007), who convert the CCGBank to Dep-
Bank, report an F-score of 68.7 for the conversion
on gold data. Conversions into dependencies have
been evaluated on the treebank side (Rehbein and
van Genabith, 2007), but not on the parser side;
yet, the latter is critical since parser errors result in
unpredicted structures and thus conversion errors.

Intrinsic parsing quality has been shown to be
insufficient for comparing parsers, and adding ex-
trinsic measures to the evaluation can lead to in-
conclusive results, in comparing two dependency
parsers (Molld and Hutchinson, 2003), three con-
stituent parsers (Preiss, 2002), and for a deep and
a partial parser (Grover et al., 2005).

We propose to use intrinsic and extrinsic mea-
sures together to assess tradeoffs for parsers em-
bedded in NLU systems (e.g., low-intrinsic/high-
extrinsic quality is indicative of parsers that
work well in challenging systems, while high-
intrinsic/low-extrinsic quality is typical of high-
performance parsers that are difficult to interface).

3 An Evaluation Framework for HRI

For evaluation, we propose the robotic DIARC ar-
chitecture (Scheutz et al., 2007) which has been
used successfully in many robotic applications. In
addition to components for visual perception and
action execution, DIARC consists of five NLU
components. The first two components, a speech
recognizer, and a disfluency filter which filters out
common vocal distractors (“uh”, “um”, etc.) and
common fillers (“well”, “so”, etc.) will not be
used here. The third component optionally per-
forms trigram-based part of speech (POS) tagging.
The fourth component, the parser to be evaluated,
which produces the constituent tree or dependency
graph used by the fifth component, the A converter,
to produce formal semantic representations. If the
semantic representation indicates that a command

57

needs to be executed, the command is passed on to
an action interpreter (which then retrieves an exist-
ing action script indexed by the command or, if no
such script is found, forwards the request to a task
planner, which will plan a sequence of actions to
achieve it (Schermerhorn et al., 2009)).

The semantic conversion process makes use
of combinatorial categorial grammar (CCG) tags
associated with lexical items, which are essen-
tially part-of-speech tags enriched with informa-
tion about the word’s arguments. Given a word
and the appropriate CCG tag, the correspond-
ing semantic representations are retrieved from a
semantic lexicon. These representations are -
expressions expressed in a fragment of first-order
dynamic logic sufficiently rich to capture the lan-
guage of (action) instructions from the corpus (c.f.
e.g., (Goldblatt, 1992)). Expressions are repeat-
edly combined using (-reduction until all words
are converted and (preferably) only one A-free for-
mula is left (Dzifcak et al., 2009).

For example, the sentence “do you see
a blue box?” is translated as check-and-
answer(Jz.see(self,z) A box(z) Ablue(z)).
and-answer is an action that takes a formula as an
argument, checks its truth (if possible), and causes
the robot to reply with “yes” or “no” depending on
the outcome of the check operation' .

The conversion from dependency graphs to se-
mantic representations is straightforward: When
a dependent is attached to a head, the dependent
is added to the CCG tag, resulting in a conve-
nient format for semantic conversion. Then each
node is looked up in the dictionary, and the defi-
nition is used to convert the node. For the exam-
ple above, the parse graph indicates that “a” and
“blue” are syntactic arguments of “box”, “you”
and “a blue box” are arguments of “see”, and
the clause “you see a blue box” is an argument
of “do”. Based on the lexical definitions, the
phrase “a blue box” is combined into the expres-
sion (3z.boz(z) A blue(x)). As argument of the
verb “see”, it is then combined into the expression
(Fz.see(self,x) A box(x) A blue(x)), and ultimately
check&answer(Jz.see(self,z) A box(z) A blue(x)).

The conversion for constituent trees is less
straightforward since it is more difficult to au-
tomatically identify the head of a phrase, and
to connect the arguments in the same way. We
use a slightly different method: each node in the

check-

'self is a deictic referent always denoting the robot.

tree is looked up in the dictionary for a suitable
word/CCG tag combination given the words dom-
inated by the node’s daughters. The A conver-
sions are then performed for each sentence after
the parser finishes producing a parse tree.

4 Experimental Setup

For parser evaluations, we use an HRI scenario
where processing speed is critical (often more
important even than accuracy) as humans expect
timely responses of the robot. Moreover, a parser’s
ability to produce fragments of a sentence (instead
of failing completely) is highly desirable since the
robot can ask clarification questions (if it knows
where the parse failed) as opposed to offline pro-
cessing tasks as humans are typically willing to
help. This is different from a corpus, where no
clarification question can be asked. Correctness
here is determined by correct semantic interpreta-
tions that can be generated in the semantic analysis
based on the (partial) parses. While these aspects
are often of secondary importance in many NLU
systems, they are essential to a robotic NLU archi-
tecture. Since we experiment with a new corpus
that has not been used in parsing research yet, we
also present an intrinsic evaluation to give a ref-
erence point to put the parsers’ performance into
perspective with regard to previous work.

More specifically, we investigate two points: (1)
Given that spoken commands to robots are consid-
erably shorter and less complex than newspaper
sentences, is it possible to use existing resources,
i.e., the Penn Treebank (Marcus et al., 1993), for
training the parsers without a major decrease in
accuracy? And (2), are constituent or dependency
parsers better suited for the NLU architecture de-
scribed above, in terms of accuracy and speed?

To answer these questions, we carried out two
experiments: (1) The intrinsic evaluation. This is
split into two parts: one that compares constituent
and dependency parsers on our test data when both
parsers were trained on the Penn Treebank; and
one that compares the parsers trained on a small
in-domain set. (2) The extrinsic evaluation, which
compares the two parsers in the NLU architecture,
is also based on in-domain training data.

Intrinsic and extrinsic measures: For the first
experiment we use standard intrinsic parsing mea-
sures: for the constituent parser, we report labeled
precision (LP), labeled recall (LR), and labeled F-
score (LF); for the dependency parser the labeled

58

attachment score (LAS). The second experiment
uses the accuracy of the logical forms and the cor-
rect action interpretation and execution as a mea-
sure of quality. For this experiment, we also report
the processing time, i.e., how much time the com-
plete system requires for processing the test set
from the text input to the output of logical forms.

Data sets: For the intrinsic evaluation, we used
the Penn Treebank. For the constituent exper-
iments, we used the treebank with grammatical
functions since the semantic construction requires
this information. The only exception is the ex-
periment using the Berkeley parser with the Penn
Treebank: Because of memory restrictions, we
could not use grammatical functions. For the de-
pendency parser, we used a dependency version of
the Penn Treebank created by pennconverter (Jo-
hansson and Nugues, 2007).

For the in-domain experiments (intrinsic and
extrinsic), we used CReST (Eberhard et al., 2010),
a corpus of natural language dialogues obtained
from recordings of humans performing a coopera-
tive, remote search task. The multi-modal corpus
contains the speech signals and transcriptions of
the dialogues, which are additionally annotated for
dialogue structure, disfluencies, POS, and syntax.
The syntactic annotation covers both constituent
annotation based on the Penn Treebank annota-
tion scheme and dependencies based on the de-
pendency version of the Penn Treebank. The cor-
pus consists of 7 dialogues, with 1,977 sentences
overall. The sentences are fairly short; average
sentence length is 6.7 words. We extracted all
commands (such as “walk into the next room™),
which our robot can handle, and used those 122
sentences as our test set. We performed a 7-fold
cross validation, in which one fold consists of all
test sentences (i.e. commands) from one of the 7
dialogues. All the other folds combined with the
declarative sentences from all dialogues served as
training data. The number of commands per dia-
logue varies so the evaluation was performed on
the set of all test sentences rather than averaged
over the 7 folds.

Parsers: We use both state-of-the-art con-
stituent and dependency parsers: As constituent
parser, we chose the Berkeley parser (Petrov and
Klein, 2007), a parser that learns a refined PCFG
grammar based on latent variables. We used gram-
mars based on 6 split-merge cycles.

Berkeley parser MaltParser
training data | POSacc. LP LR LF | POSacc. LAS
Penn 869 472 448 46.0 88.1 40.6
CReST 67.8 567 489 525 92.8 705

Table 1: The results of the intrinsic evaluation.

For the dependency parser, we used MaltParser
(Nivre et al., 2007b), a pseudo-projective depen-
dency parser, which has reached state-of-the-art
results for all languages in the CONLL 2007
shared task (Nivre et al., 2007a). We decided to
use version 1.1 of MaltParser, which allows the
use of memory-based learning (MBL) in the im-
plementation of TIMBL?. MBL has been shown to
work well with small training sets (cf., (Banko and
Brill, 2001)). MaltParser was used with the Nivre
algorithm and the feature set that proved optimal
for English (Nivre et al., 2007b). TiMBL parame-
ters were optimized for each experiment in a non-
exhaustive search. When trained on the Penn Tree-
bank, the parser performed best using MVDM, 5
nearest neighbors, no feature weighting, and In-
verse Distance class weighting. For the experi-
ments on the dialogue corpus, the default settings
proved optimal. Since MaltParser requires POS-
tagged input, we used the Markov model tagger
TnT (Brants, 1999) to tag the test sentences for
dependency parsing; the Berkeley parser performs
POS tagging in the parsing process.

For the experiment based on the complete NLU
architecture, we used an incremental reimple-
mentation of the Nivre algorithm called Mink
(Cantrell, 2009) as dependency parser. Mink uses
the WEKA implementation of the C4.5 decision
tree classifier (Hall et al., 2009) as guide. The
confidence threshold for pruning is 0.25, and the
minimum number of instances per leaf is 2.

5 Results

The results of the intrinsic parser evaluation are
shown in Table 1. The POS tagging results for
TnT (for MaltParser) are unexpected: the small in-
domain training set resulted in an increase of accu-
racy of 4.7 percent points. The result for the POS
tagging accuracy of the Berkeley parser trained on
CReST is artificially low because the parser did
not parse 9 sentences, which resulted in missing
POS tags for those sentences. All of the POS tag-
ging results are lower than the TnT accuracy of

http://ilk.uvt.nl/timbl/

59

96.7%, reported for the Penn Treebank (Brants,
1999). This is due to either out-of-domain data or
the small training set for the training with CReST.

When the parsers were trained on the Penn
Treebank, the very low results for both parsers
(46.0 F-score, 40.6 LAS) show clearly that pre-
existing resources cannot be used for training. The
low results are due to the fact that the test set con-
sists almost exclusively of commands, a sentence
type that, to our knowledge, does not occur in the
Penn Treebank. A comparison between ParsEval
measures and LAS is difficult. We refrained from
converting the constituent parse to dependencies
for evaluation because it is unclear how reliable
the conversion for parser output is.

The results for the Berkeley parser trained on
the dialogue data from CReST are better than the
results trained on the Penn Treebank. However,
even with training on in-domain data, the F-score
of 52.5 is still considerably lower than state-of-
the-art results for in-domain parsing of the Penn
Treebank. This is partly due to our inclusion of
grammatical functions in the parsing process as
well as in the evaluation. Thus, the parsing task
is more difficult than in other experiments. An-
other possible reason for the low performance is
the size of the training set. We must assume that
the Berkeley parser requires a larger training set to
reach good results. This is corroborated by the fact
that this parser did not find any parse for 9 sen-
tences. The dependency parser performs equally
badly when trained on the Penn Treebank (40.6
LAS). However, when it is trained on in-domain
data, it reaches an LAS of 70.5, which corrob-
orates the assumption that TIMBL performs well
with small data sets.

An error analysis of the parser output based on
the CReST training shows that one frequent type
of error results from differing lexical preferences
between the Penn Treebank and the CReST do-
main. The word “left”, for example, is predomi-
nantly used as a verb in the Penn Treebank, but as
an adverb or noun in the dialogue corpus, which
results in frequent POS tagging errors and subse-

((S (VP (VB hold) (PRT (RP on)) (S (VP (VB let) (S (NP (PRP me)) (VP (VB pick) (PRT (RP
up)) (NP (DT those) (JJ green) (NNS boxes)))))))))

Figure 1: Constituent parse for “hold on let me pick up those green boxes”.

quent parsing errors.

For the extrinsic evaluation in the context of
the NLU system, we report exact match accu-
racy for the logical forms. Since the semantic
conversion fails on unexpected parser output, the
quantitative semantic evaluation is based only on
syntactically-correct sentences, although partially-
correct parses are instructive examples, and thus
are included in the discussion. More parses were
almost correct than perfectly so: 27% were per-
fectly correct for the constituent parser, and 30%
for the dependency parser.

Of these, 90% of dependency graphs were cor-
rectly semantically combined. while just 64% of
constituent trees were correctly combined. Mink
was also faster: Averaged over a range of sentence
lengths and complexities, the NLU system using
Mink was roughly twice as fast as the one with
the Berkeley parser. Averaged over 5 runs of 100
sentences each, Mink required approx. 180 ms per
sentence, the Berkeley parser approx. 270 ms.

The most egregious problem area involves a
typical phenomenon of spontaneous speech that an
utterance does not necessarily correspond to a sen-
tence in the syntactic sense: Many utterances con-
tain multiple, independent phrases or clauses, e.g.,
“hold on let me pick up those green boxes”, as a
single utterance. The ideal translation for this ut-
terance is: wait(listener); get(speaker,{z|green(z)A
is the sequencing operator.

[T3%2)

box(x)}) where “;

The constituent parse for the utterance is shown
in Figure 1. This parse is partially correct, but the
two commands are not treated as a conjunction of
clauses; instead, the second command is treated as
subordinate to the first one, This analysis results
in the argument structure shown in Table 2, where
each phrase takes its phrasal constituents as argu-
ments. The semantic definitions and CCG tags are
shown in Table 3. Some definitions do not have
the same number of arguments as the CCG tags,
in particular the verb “pick” with its raised sub-
ject, which will be applied by the semantics of the
verb “let”. The correspondence between the con-
stituent parse and semantics output is shown in Ta-
ble 4. The dependency parse is shown in Figure 2.
The two commands are correctly analyzed as in-

60

Phr.:Head | Arguments

VP:hold (PRT=o0n,S)

VP:let S

S (NP=me,VP)

VP:pick (PRT=up,NP)

NP (DT=those,JJ=green, NNS=boxes)

Table 2: The argument structure based on the con-
stituent parse.

Token | Arg. Str. | Semantics

hold | S/RP Az.wait(zx)

on RP on

let S/NP/S | Az AX. X (z)

me NP speaker

pick S/RP/NP | A\x. Ay.\z.pick(x,y, z)
up RP up

those | NP/NP | AX {z|X(z)}

green | NP/NP | AX Az.green(z) A X (z)
boxes | NP box

Table 3: Semantics for the example sentence.

Head | Dependents
HOLD | on

LET me, pick
PICK up, boxes
BOXES | those, green

Table 5: Syntactic head/dependent relationships.

dependent clauses.

The parse results in the syntactic head and de-
pendent relationships and the semantic head and
dependent relationships for the words in the utter-
ance, constructed from the definitions in Table 5.
In the semantic analysis, “pick™ is similar to the
syntactic analysis in that it takes a noun phrase
and a particle as its arguments. This results in
the following combination: Az.\y.\z.pick(up, z,y)
(up) (those green boxes)>. The first application
applies “up” to =z, resulting in the analysis:
Ay.Az.pick(up, z,y) (those green boxes) Which in turn
is converted into: Az.pick(up, z, those_green_boxes).

3Here, “those green boxes” is a human-convenient short-
hand for its full semantic definition.

Constituency Semantic

1 | N P;:boxes (DT=those,JJ=green)
2 | V Py:pick (PRT=up,N P)

3 | S1(N Py=speaker,V P)

4 | VPylet (57)

51 52V P)

6 | V Ps:hold (PRT=0n,S55)

7| Sa(VP3)

{z|green(z) A boxes(x)}

Az.pick(up, z, {x|green(z) A box(x)})

pick(up, speaker,{z|green(z) A box(x)})

pick(up, speaker, {x|green(x) A box(x)})

pick(up, speaker,{z|green(z) A box(x)})

wait(pick(up, speaker, {x|green(x) A box(x)})) < error

Table 4: Correspondence between the constituent parse and the semantics output.

obj

oprd nmod

prt obj prt nmod

LT L]

hold on let me pick up those green boxes

Figure 2: The dependency analysis.

Here we find a systematic difference between
the syntactic analysis and the intended semantic
one: While syntactically, the adjective “green” is
dependent on the head “boxes”, it is the opposite
in the semantic analysis. The definition of “boxes”
indicates that it is a predicate that takes as an argu-
ment an abstract entity “x”, representing the real-
world item that has the property of being a box.
This predicate, box(x), is itself then applied to the
predicate “green”, which has the definition X X.\
x.green(x)A X(x). The variable X represents the con-
cept that will be applied. This application pro-
duces X x.green(x)A box(x)). Thus a conversion rule
reverses dependencies within noun phrases.

6 Discussion

The results show that a considerable number of
sentences could be parsed but not converted cor-
rectly to logical form because of the way certain
information is represented in the parses. Addi-
tionally, a small difference in the parsers’ behav-
ior, namely MaltParser’s ability to provide partial
parses, resulted in a large difference in the usabil-
ity of the parsers’ output — partial parses are not
only better than parse failures, but may even be the
expected outcome in an HRI settings, since they
can be successfully translated to logical form.
While the same parser performed better under
both intrinsic and extrinsic evaluation, this may
not necessarily always be the case (see section 2).
It is possible that one parser provides imperfect

61

parses when evaluated intrinsically but the infor-
mation is presented in a form that can be used by
higher applications. This occurred in our experi-
ment in the case of the dependency parser, whose
partial parses could be converted in completely
correct semantic representations. l.e., while the
parse may not be completely correct with regard to
the gold standard, it may still provide enough in-
formation to use for the higher component so that
no information loss ensues.

One advantage of our extrinsic evaluation is
that the conversion to semantics can be performed
for a wide range of different syntactic annota-
tions. While previous evaluations stayed within
one parsing framework (e.g., dependency pars-
ing), our evaluation included a constituent and
a dependency parser (this evaluation can be ex-
tended to “deeper” parsers such as HPSG parsers).
Additionally, the conversion to semantics involves
a wide range of syntactic phenomena, thus provid-
ing a high granularity compared to extrinsic evalu-
ations in information retrieval, where only specific
sentence parts (e.g., noun phrases) are targeted.

7 Conclusions

We introduced a novel, semantics-based method
for comparing the performance of different parsers
in an HRI setting and evaluated our method on a
test corpus collected in a human coordination task.

The experiments emphasize the importance of
performing an extrinsic evaluation of parsers in
typical application domains. While extrinsic eval-
uations may depend on the application domain, it
is important to show that parsers cannot be used
off-the-shelf based on intrinsic evaluations. To
estimate the variance of parsers, it is important
to establish a scenario of different applications in
which parsers can be tested. An NLU component
in an HRI setting is an obvious candidate since the
conversion to semantics is possible for any syntac-

tic paradigm, and the HRI setting requires evalu-
ation metrics, such as the time behavior or the in-
crementality of the parser, which are typically not
considered.

Acknowledgment

This work was in part supported by ONR grants
#N00014-10-1-0140 and #N00014-07-1-1049.

References

Michele Banko and Eric Brill. 2001. Scaling to very
very large corpora for natural language disambigua-
tion. In Proceedings of ACL-EACL’01, pages 26—
33, Toulouse, France.

Adriane Boyd and Detmar Meurers. 2008. Revisiting
the impact of different annotation schemes on PCFG
parsing: A grammatical dependency evaluation. In
Proceedings of the ACL Workshop on Parsing Ger-
man, Columbus, OH.

Thorsten Brants. 1999. Tagging and Parsing with Cas-
caded Markov Models. DFKI, Universitit des Saar-
landes.

Timothy Brick and Matthias Scheutz. 2007. Incremen-
tal natural language processing for HRI. In Proceed-
ings of the Second ACM IEEE International Confer-
ence on Human-Robot Interaction, pages 263-270,
Washington D.C.

Rachael Cantrell. 2009. Mink: An incremental data-
driven dependency parser with integrated conver-
sion to semantics. In Student Workshop at RANLP,
Borovets, Bulgaria.

John Carroll, Ted Briscoe, and Antonio Sanfilippo.
1998. Parser evaluation: a survey and a new pro-
posal. In Proceedings of LREC 1998, pages 447—
454, Granada, Spain.

Stephen Clark and James Curran. 2007. Formalism-
independent parser evaluation with CCG and Dep-
Bank. In Proceedings of ACL 2007, Prague, Czech
Republic.

Juraj Dzifcak, Matthias Scheutz, and Chitta Baral.
2009. What to do and how to do it: Translating nat-
ural language directives into temporal and dynamic
logic representation for goal management and action
execution. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’09),
Kobe, Japan.

Kathleen Eberhard, Hannele Nicholson, Sandra
Kiibler, Susan Gunderson, and Matthias Scheutz.
2010. The Indiana “Cooperative Remote Search
Task” (CReST) Corpus. In Proceedings of LREC-
2010, Valetta, Malta.

62

Robert Goldblatt. 1992. Parallel action: Concurrent
dynamic logic with independent modalities. Studia
Logica, 51(3/4):551-578.

Claire Grover, Mirella Lapata, and Alex Lascarides.
2005. A comparison of parsing technologies for the
biomedical domain. Natural Language Engineer-
ing, 11:27-65.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian Witten. 2009.

The WEKA data mining software: An update.
SIGKDD Explorations, 11(1).
Richard Johansson and Pierre Nugues. 2007. Ex-

tended constituent-to-dependency conversion for
English. In Proceedings of NODALIDA 2007, Tartu,
Estonia.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Diego Molld and Ben Hutchinson. 2003. Intrinsic ver-
sus extrinsic evaluations of parsing systems. In Pro-
ceedings of the EACL 2003 Workshop on Evaluation
Initiatives in Natural Language Processing, pages
43-50, Budapest, Hungary.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 shared task on
dependency parsing. In Proceedings of EMNLP-
CoNLL 2007, Prague, Czech Republic.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007b. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95-135.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of HLT-
NAACL’07, Rochester, NY.

Judita Preiss. 2002. Choosing a parser for anaphora
resolution. In Proceedings of DAARC, Lisbon, Por-
tugal.

Ines Rehbein and Josef van Genabith. 2007. Tree-
bank annotation schemes and parser evaluation for
German. In Proceedings of EMNLP-CoNLL 2007,
pages 630-639, Prague, Czech Republic.

Paul Schermerhorn, J Benton, Matthias Scheutz, Kar-
tik Talamadupula, and Rao Kambhampati. 2009.
Finding and exploiting goal opportunities in real-
time during plan execution. In Proceedings of the
2009 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, St. Louis.

Matthias Scheutz, Paul Schermerhorn, James Kramer,
and David Anderson. 2007. First steps to-
ward natural human-like HRI. Autonomous Robots,
22(4):411-423.

