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Abstract
While there are several data-driven dependency
parsers, there is still a gap with regards to in-
crementality. However, as shown in Brick and
Scheutz [3], incremental processing is necessary
in human-robot interaction. As is shown in Nivre
et al. [12], dependency parsing is well-suited for
mostly incremental processing. However, there
is as of yet no dependency parser that combines
syntax and semantics by including traditional de-
pendency parsing, CCG tagging, and lambda-
logical structures in one fast, accurate applica-
tion suitable for embodied natural language pro-
cessing.

This paper addresses that gap by introducing
Mink, an incremental data-driven dependency
parser with integrated conversion to semantics.
We show that Mink is comparable to similar but
non-incremental parsers, and that it succeeds at
performing some semantic analysis.
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1 Introduction

Dependency parsing has gained in popularity in the
last few years. However, there is still a gap with re-
gards to incrementality. As is shown in Nivre et al.
[12], dependency parsing is well-suited for mostly in-
cremental processing. However, there is as of yet no
dependency parser that combines syntax and seman-
tics by including traditional dependency parsing, CCG
tagging, and lambda-logical structures in one fast, ac-
curate application suitable for embodied natural lan-
guage processing.

Our motivation for creating Mink was to meet the
need for incremental processing in robots that must
interact with humans using natural language. Most
natural language processing (NLP) is performed on
written texts. However, in embodied NLP systems
such as robots, the system needs to understand incom-
ing speech from humans. As discussed by Brick and
Scheutz [3], humans do not wait for a full sentence in
order to begin processing the sentence, parsing it, and
resolving references. We immediately begin to process
whatever we can as soon as we can, which allows us to
look at referents, or reach for things before we know
where we’ll be told to put them, etc. Because humans

have this capability, we become impatient when deal-
ing with conversation partners that are slower. Mink
takes us one step closer toward achieving a level of in-
cremental processing in robots that will allow humans
and robots to communicate easily and naturally.

Because we are working to help our robots “under-
stand” verbal input, we are not interested in the parses
themselves, but rather in what they can tell us se-
mantically. Thus we have integrated semantic output
into the system itself. Mink outputs three different
types of information: dependency arcs, combinatorial
categorial grammar (CCG) tags, and, when possible,
lambda-logical semantic conversions.

In this paper, we evaluate Mink based on accuracy
and speed. We evaluate the CCG tagging and seman-
tic conversion capabilities together, by using them to
attempt to correctly classify utterances into either sen-
tence, question, or command. We chose these simple
types because they are discourse types that are, in gen-
eral, distinguishable from the syntax of the sentence.

In section 2, we discuss currently available depen-
dency parsers, CCG taggers and parsers, and relevant
work on semantics, particularly the interface between
syntax and semantics. In section 3, we discuss the de-
tails of our parser. In section 4, we evaluate our parser.
Finally, in section 5, we discuss how we are currently
able to use the parser and where we plan to go with
it.

2 Related Work

There are three main bodies of knowledge from which
this project draws: dependency parsing, CCG tagging
and parsing, and semantic representation of parser
output.

2.1 Dependency Parsing

One often-used data-driven dependency parser is
MaltParser [13], a shift-reduce dependency parser that
uses support vector machines to deduce, from train-
ing examples, what next action to take in parsing a
sentence. Nivre [12] discusses the potential for incre-
mentality in MaltParser. It is determined that the
algorithm is the best suited for incremental parsing
that has been developed to date; however an incre-
mental version of MaltParser has not been developed
by those researchers.

MSTParser (c.f. McDonald et al. [10]) approaches
the problem of finding dependency trees as one of find-
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ing maximum spanning trees. While this method is
shown to be successful, the fact that it searches the
entire space of possible dependency trees renders it
inefficient for our purposes.

Johannsen and Nugues [8] combine aspects of Malt-
Parser and MSTParser to form a dependency parser
that, rather than maximizing the probability of each
individual action (like MaltParser), maximizes the
probability over a complete sentence. While this gives
good results, it is a step away from incrementality.

2.2 CCG Tagging and Parsing

An utterance that is tagged with CCG tags con-
tains more information about the parse tree of the
utterance than one tagged with simple POS tags.
This is because each tag contains information about
both the POS (the return type), and about the to-
ken’s children (the argument types). In an utterance
with just one possible parse, this is enough informa-
tion to describe the correct parse tree. For example:
theNP/NP childNP ateS\NP/NP aNP/NP snackNP .

There is just one way to create a tree from this infor-
mation, so, even if this utterance came from a tagger
rather than a parser, it is essentially parsed already.
However, many utterances have ambiguity, which a
tagger is not intended to resolve. For our purposes,
in most cases, a tagger gives us the information we
need; therefore we consider both taggers and parsers
as being of equal utility to us.

There are two basic types of CCG taggers/parsers,
statistical and rule-based. An example of a small rule-
based system is found in [1]. It looks up the CCG
tag(s) of each word and builds a parse based on combi-
natory rules. Another rule-based system is OpenCCG,
a freely-available CCG parser written in Java. While
it has been widely used in many projects1, the nature
of a rule-based system limits its robustness, particu-
larly for processing spoken data, which often contains
unknown words and disfluencies.

There are several statistic systems, which we would
prefer for greater robustness. For example, Clark [5]
uses a maximum-entropy based statistical tagger to
select CCG tags based on context.

The problem with statistical systems, for our pur-
poses, is that they are based on probabilities of full
tags, rather than on the parts.

Because we wanted to be able to build the tags by
combining individual parts rather than selecting from
a set of full CCG tags, we decided to use a dependency
parser to build the tags based on dependency arcs.

2.3 Semantic Representation

Che et al. [4] integrates syntax and semantics. They
parse the sentence using MSTParser, then use a se-
ries of classifiers to identify predicates, classify them
according to senses, and assign semantic roles to dif-
ferent elements in the sentence. However, they do not
integrate the results into any sort of logical framework.

Bos et al. [2] discusses a method of converting out-
put from a wide-coverage CCG parser into semantic

1 http://comp.ling.utexas.edu/wiki/doku.php/openccg/
projects_using_openccg

representation using lambda calculus, from which our
semantic conversion method draws heavily.

Lambda conversion has been shown to be seman-
tically useful in robotic NLP systems, c.f. Gold and
Scassellati [6].

3 An incremental architecture
for dependency parsing and
integrated semantics conver-
sion

3.1 Parsing Algorithm

We used the Nivre algorithm, which was previously im-
plemented in MaltParser [11], which itself is an adap-
tation of the shift-reduce parsing algorithm for con-
stituency parsers.

The parser keeps track of what has already been
input in a stack. Each time a token is input, the parser
must decide whether to shift, reduce, create a left arc,
or create a right arc. These actions are described in
Table 1.

The parser continues processing until there is no
more input and the stack is empty again, resulting in
a connected, non-projective dependency graph. Cur-
rently, the parser needs to know when there is a pause
or other possible indicator of a sentence boundary;
however, an action is being developed that allows the
parser to guess that it should terminate the current
graph and begin work on a new one. This, rather
than separating actual sentences, is intended to sepa-
rate semantically meaningful fragments, since spoken
data often consists of such fragments, rather than of
complete sentences.

The main difference between our implementation
and others is its incrementality. While the other imple-
mentations accept only completed text files and output
the same, Mink accepts input from a stream, which in
our case is the output of a speech recognizer, and out-
puts partial analyses as soon as they are available. As
soon as it pops a token off the stack–i.e. as soon as
it is clear the token will have no more dependents–it
outputs the CCG tag and begins semantic conversion.
It outputs each conversion as it makes it so that the
module that mediates between semantic representa-
tion and action can immediately begin to process the
semantics of the input to see what it can do with what
it knows so far.

3.2 Machine Learning Algorithm and
Features

To decide which actions to perform, we used a
maximum-entropy based classifier, namely, the Lo-
gistic algorithm from the Weka Java-based machine
learning library [15]. This classifier decides, for a pair
of an input token and a token on the top of the stack,
which action to perform.

We trained the classifier on the dependency graph
version of the Penn Treebank, created with penncon-
verter [7].
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Table 1: Parser Actions
Action Description
Shift Move the input token to the

stack
Reduce Pop the top token off the stack
Left-arc Create a dependency arc point-

ing from the input to the token
on the top of the stack; this is
followed by a reduce action

Right-arc Create a dependency arc point-
ing from the token on top of the
stack to the input token; this is
followed by a shift action

For features, we tested several different sets. First,
we used the standard set of features used by Malt-
Parser, since they have proven to be ideal for parsing
English. These features are: the token on top of the
stack (TOP), its part-of-speech tag and dependency
type, the dependency types of its leftmost and right-
most dependents, the input token (NEXT), and its
part-of-speech tag and dependency type, and the part-
of-speech of the next + 1 input. Next, we eliminated
the lookahead feature. Last, we eliminated labels and
used only unlabeled arcs. See Table 2 for a complete
listing of feature sets.

We evaluate each of these feature sets in section 4.

3.3 Building CCG tags

CCG tags give a bit more information than part-of-
speech tags. Namely, they give both the return type,
and the arguments. The return type is basically the
part-of-speech tag, while the arguments are similar
to phrasal constituents. Our method of constructing
CCG tags from dependency arcs therefore involves two
steps: determining the return type, and finding the ar-
guments.

When a new token is input, an “empty” CCG tag
is created. This includes the return type and list of
arguments. Ultimately, it can accept 0 or more argu-
ments. Currently, the return type is determined im-
mediately upon creating the new tag in order to reduce
the complexity of the computation. This is posed as a
classification problem. The features used to make the
classification are currently the token and WSJ POS
tag that was already found by the tagger.

Whenever a dependency arc is discovered with a
given token as the head, the dependent’s return type
is added as an argument to the head’s CCG tag.

As an example, the phrase the blue box might be
tagged and parsed as follows by a constituent parser
using the WSJ tagset:

(NP (theDT blueJJ boxNN )).
However, with a CCG parser, it would be tagged

and parsed
(NP (theNP/NP (NP blueNP/NP (NP boxNP ))).
In the future, we would like to evaluate the utility of

determining the return type after finding the token’s
arguments in order to use the arguments as features;
however, that has not yet been implemented.

The CCG representation of a parse tree is then used
in the semantic conversion.

3.4 Semantic Conversions

The conversion to semantics relies on a semantic dic-
tionary to translate from the parse trees to semantic
representations. Each entry in the dictionary consists
of a word, its possible CCG tags, and the lambda-
logical expressions for each word/CCG tag combina-
tion.

The goal of the conversion is, in our case, to trans-
late input sentences into appropriate responses to that
input. For example, the question “Did you get it?”
generates a report(get+PST(I,box)) action, in which
the robot reports the truth or falsity of the predicate
get+PST(I,box).

The conversion will fail if definitions retrieved from
the dictionary do not form a connected parse. This
is appropriate, since in this particular task, precision
is more important than recall: if the robot does not
understand an utterance, it can ask for clarification or
request to have the utterance rephrased.

One problem of the conversion is that words can
be ambiguous, according to human-level comprehen-
sion abilities. For example, take the sentence “there
is another one in the corner to my right”. This could
potentially be given two different readings: 1) the ex-
istential (“there exists another one in the corner to
my right”), and 2) the locative (“another one is in the
corner to my right”). This is a problem because the
conversion must be deterministic: given an input, it
must arrive at the same output every time. Because
we currently choose definitions according to rule, this
means that each word can have at most one defini-
tion for each word/valency combination. However, in
the future, a statistical method of choosing the correct
definition will be implemented.

4 Evaluation

There are three segments of the application to evalu-
ate: the dependency parsing, the CCG tagging, and
the semantic representation. The last two we evaluate
simultaneously based on their success at identifying
different types of utterances.

4.1 Data Set

In order to evaluate Mink on a domain relevant to our
work, we use a spoken-data corpus of human-human
dialogs [14], in which one person has to navigate a
labyrinth and perform a task, guided by a second per-
son outside the labyrinth. The two persons can only
communicate via handheld devices. At present, the
corpus comprises transcriptions of 12 dialogues.

4.2 Dependencies

We evaluate the accuracy of the dependency arcs by
training both our parser and MaltParser on the same
training material, then testing against identical test
sets. We test MaltParser vs. each of the three feature
sets from Table 2 and show that our parser is, in each
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Table 2: Feature Sets
Features Description 1 2 3
TOP.TOK The token on top of the stack y y y
TOP.POS The part of speech of TOP y y y
TOP.DEP the dependency type of TOP y y
TOP.LEFT The dependency type of TOP’s leftmost dependent y y
TOP.RIGHT The dependency type of TOP’s rightmost dependent y y
NEXT.TOK The next input token y y y
NEXT.POS The part of speech of NEXT y y y
NEXT.LEFT The dependency type of NEXT’s leftmost dependent y y
LOOK.POS The part-of-speech of the next plus one input y

case, comparable to MaltParser, as one would expect
from a reimplementation of the algorithm.

In order to evaluate, we trained both parsers on the
Penn treebank (PTB) [9], and tested them on 60 sen-
tences from our corpus. The sentences are very much
out of the PTB’s domain, so this is purely for parser
comparison. The sentences were randomly selected
and tagged with Wall Street Journal (WSJ) POS tags
using acopost2, then hand-corrected in order to ensure
correct POS tagging. The results can be seen in Table
3.

Table 3: Parser Evaluation

Metric Malt Set 1 Set 2 Set 3
Lbld attachmt 0.86 0.85 0.85 N/A
Unlbld attachmt 0.88 0.88 0.87 0.85
Parsing Time (s) 22.7 32.6 31.1 29.1

As can be seen, our results did not vary significantly
from MaltParser’s. Our results were just slightly
lower, which we attribute to different machine-learning
methods. Eliminating the lookahead feature had ba-
sically no effect on results, and eliminating all label-
ing lowered the unlabeled attachment score somewhat,
though not significantly.

We also evaluate the speed of the system when run-
ning with either Mink or Malt. Since the system is
used to respond to individual utterances rather than
to process large texts, we evaluated this by parsing
5 sentences 10 times each and averaging the results.
We show that adding incrementality so that processes
can run in parallel, rather than in sequence, speeds up
the entire process. The results of this evaluation are
shown in Table 4.

4.3 CCG Tags and Semantics

For this particular task, since we are interested only in
practical application, the best way of evaluating our
tags is, rather than comparing them to those gener-
ated by other applications or to gold standards, seeing
how successful they are at a practical task. We chose
to use the parser to distinguish between different types
of utterances, namely questions, commands, and state-
ments. We chose not to use a more complex discourse

2 http://acopost.sourceforge.net/

Table 4: Speed

Utterance Mink Malt Ratio
what is your goal 185 478.4 0.38
keep the lights on 144 534.5 0.26
cancel keep lights off 145.5 489.1 0.29
what are your orders 173.9 516 0.33
and try to report the loca-
tions of wounded people

304.8 525 0.58

scheme because we are investigating the interface be-
tween syntax, semantics, and discourse. More complex
discourse schemes often make distinctions between dis-
course types that cannot be distinguished by syntax.
That is outside the scope of the current project. Our
last reason for choosing this particular task is because
it is practically useful: we would like our robot to be
able to respond to these types of utterances in dif-
ferent ways, by following commands, answering ques-
tions, and storing statements (facts that may be useful
to it).

To this end, we use three different semantic
dictionaries–a statement dictionary, a command dic-
tionary, and a question dictionary–to semantically
convert each statement in parallel. See Figures 5 and
6 for an example of a small dictionary, describing one
question, one statement, and one command. The con-
version itself fails if a given dictionary is not able to
find a complete conversion for the statement. The clas-
sification fails if the utterance is correctly converted
by multiple dictionaries, and thus it is not clear which
type of utterance it is.

Table 5: Sample utterances

Type Example
Question didS/S youNP getS\NP/NP itNP

Statement INP gotS\NP/NP thatNP/NP oneNP

Command getS/NP thatNP/NP oneNP

The obvious base for distinguishing between these
types of utterances is in the verb subcategorization:
Statements will, in general, have a subject to the left
of the finite verb, while questions will, in general, have
a subject to the right, and commands will not have an
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Table 6: Sample dictionary
Word CCG Lambda expression
did S/S λ x. report(x)
get S/NP, λ x. get(you,x),

S\NP/NP λ x. λ y. get(x, y)
got S\NP/NP λ x. λ y. get+PST(x, y)
I NP I
it NP it
one NP one
that NP/NP λ x. find-reference(x)
you NP you

overt subject at all. There are, of course, exceptions to
these generalities which will ultimately require a more
complex method of distinguishing between them. In
each case, only one semantic conversion should suc-
ceed, thus letting us know which type of utterance it
is.

We evaluate 60 sentences–20 randomly chosen from
each of three human-selected subsets: questions, state-
ments, and commands– from our experimental corpus.
There are four possibilities for each test example: it
does not parse with any of the dictionaries; it parses
with just one dictionary, and it is correctly classified;
it parses with just one dictionary and it is incorrectly
classified; it parses with multiple dictionaries and thus
is left unclassified.

For determining which category a statement be-
longed to, we categorized only the explicit structure
rather than the utterance’s discoursal meaning. For
example, “if you enter the closet you should see a box”
can be seen an an implicit command to enter the closet
and check for a box. However, it is explicitly a simple
descriptive statement. Particularly in our case, where
all utterance types are translated into some kind of re-
sponse, the system needs to be able to translate only
the explicit form of the statement into an action.

As can be seen from the results in Table 7, this
method of classifying sentence types was quite suc-
cessful. All utterances classified as either commands
or questions were correctly classified; however, some
questions and commands were classified as statements;
and some statements were not classified at all.

Looking at the data, it is not surprising that ques-
tions were misclassified as statements; some ques-
tion phrasing is very statement-like, and some other
method will have to be deployed to identify these
utterances. A few examples that were misclassi-
fied are: we are not supposed to take the blue
box though right just the blocks ? and so you
went through the second room right ? When
humans hear such sentences, prosodic contours tell us
how to interpret the sentences; but in the current sys-
tem, we are not able to make use of such information.

The commands that were classified as statements
were all similar to the following: you leave it and
and then you head back. Again, though they ap-
peared command-like to the human classifiers, it is
obvious why they were misclassified as statements.

Table 7: Semantics Evaluation
Utterance type precision recall f-score
Commands 1.00 0.90 0.94
Questions 1.00 0.70 0.82
Statements 0.69 0.90 0.78

5 Conclusion and Future Work

In this paper, we have described an incremental data-
driven dependency parser that outputs graphs, CCG
tags, and semantic representations of the input. We
have shown that its accuracy is comparable to that
of other data-driven dependency parsers, and that it
is successful at creating useful CCG tags for practical
semantic tasks.

As we move forward with this project, we will in-
vestigate more feature sets for the parser, in the hopes
of finding the smallest possible set that continues to
achieve high accuracy. Additionally, there are several
aspects of our system that are rule-based, and we will
investigate the feasibility of making every aspect sta-
tistical.

Finally, our system has largely been working with
features that are extractable from the text of a dia-
logue. Clearly, in human-robot interaction, there is
much that can be learned from other aspects of the
interaction, in particular intonation. In the future, we
will experiment with integrating prosodic features into
the classification system.
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