Too Many Mammals:
Improving the Diversity of Automatically Recognized Terms

Ziqi Zhang, Lei Xia, Mark A. Greenwood and José Iria
The Department of Computer Science
The University of Sheffield, United Kingdom

{initial. surname}Qdcs.shef.ac.uk

Abstract

Automatic Term Recognition systems extract
domain-specific terms from text corpora. Un-
fortunately current systems fail to capture the
whole of the domain covered by a corpus. To
address this problem, we present a novel term
re-ranking method that generates term lists con-
taining terms that are not only individually
salient, but also contribute to a globally diverse
list that is truly representative of the corpus.
We show that, even without any prior knowl-
edge about the domain, our proposed method
improves the diversity of the results produced
by two popular automatic term recognition algo-
rithms.

Keywords

Automatic Term Recognition, Diversity in Ranking, Random
Walk, Semantic Similarity

1 Introduction

Automatic Term Recognition (ATR) is an important
research area that deals with the recognition and ex-
traction of technical terms from domain-specific cor-
pora. ATR is often a processing step preceding more
complex tasks, such as semantic search or ontology en-
gineering [14, 3]. It can also be used as an end-user
tool to, for instance, generate a list of terms that sum-
marizes a text corpus provided by the user.

Whilst state-of-the-art ATR algorithms are rea-
sonably successful in identifying the most relevant
domain-specific terms from a corpus, the analysis we
carried out of the output of these algorithms over sev-
eral corpora led us to conclude that the ranking of
terms rarely reflects the whole domain.

Having carefully studied the experimental outputs
from [25], we have observed that terms from a subset of
the sub-domains (of the domain covered by the corpus)
tend to dominate the results, pushing other character-
istic terms, which are perhaps not so globally relevant
but nevertheless fundamental to get a comprehensive
coverage of the domain, far down the ranking. For
example, on the Wikipedia animal corpus described
in Section 5, which contains 1051 random Wikipedia
articles describing animals across roughly 30 scientific
classes, in the top ranked 50 terms by the C-Value
[10] algorithm there are the names of 13 mammals, 3
fish, 2 birds and 2 insects. Among these, 3 of the 13

490

mammals are species of whale, and 2 of the 3 fish are
species of shark. Likewise, for the TF-IDF algorithm
applied on the same corpus, in the top ranked 50 terms
we obtain the names of 18 mammals, 6 birds and 4 in-
sects. Hence terms belonging to these 3 or 4 classes
dominate the results, preventing the remaining classes
from being properly represented. Therefore, with cur-
rent methods, taking the top-ranked terms is unlikely
to produce a diverse list of terms that is fully represen-
tative of the entire domain. Unfortunately, for certain
applications of ATR this is not a desirable behaviour,
e.g., generating a list of terms that best summarizes a
text corpus.

In this paper, we address the so-called “diversity in
ranking” problem [26] in the context of ATR. Our goal
is to generate term lists which contain terms that are
not only individually salient, as produced by current
methods, but at the same time contribute to a glob-
ally diverse list. By promoting diversity, we expect
to balance the number of terms from different sub-
domains appearing in the top results and provide the
user with a better notion of the whole of the domain
covered by the corpus. Our main contributions con-
sist of: 1) designing and implementing a novel term
re-ranking method, called TermHopper, that can be
coupled with any existing ATR algorithm, 2) creating
anew corpus for ATR based on Wikipedia®, and 3) em-
pirically showing that the proposed method provides
an improved ranking of extracted terms. Furthermore,
an attractive feature of the proposed approach is its
domain independence, that is, it does not require any
additional domain specific resources.

The remainder of this paper is structured as fol-
lows. In the following section we describe related work.
Section 3 introduces our proposed ranking algorithm.
Section 4 describes the application of the ranking al-
gorithm to the ATR problem. In Section 5 we de-
scribe our experimental setup, namely the data collec-
tion and pre-processing steps, the design of the gold
standard and the evaluation methodology. Sections 6
presents and discuss the results of our evaluation. We
conclude with an outline of our plans for future work.

2 Related Work

[25] presented a comparison of several state-of-the-art
ATR methodologies namely TF-IDF, Weirdness [1],
C-Value [10], Glossex [14], and Termex [17]. TF-IDF

1 http://www.dcs.shef.ac.uk/~zigizhang/resources/wiki.zip

International Conference RANLP 2009 - Borovets, Bulgaria, pages 490-495

makes use of term frequencies and document frequen-
cies in the target corpus; C-value makes use of term
frequencies and the frequencies at which terms appear
within longer terms. Terms which exhibit high fre-
quency and are less often used within longer terms
are given higher ranks; Weirdness compares term fre-
quencies in both the target and a reference corpus;
Glossex and Termex are similar to Weirdness in the
way that they all utilise term frequencies in the tar-
get corpus versus those in a reference corpus. Glossex
normalises the overall term frequencies with respect
to the frequencies of the component words whilst Ter-
mex also captures domain concepts that exhibit high
frequencies within a small subset of the corpus but are
completely absent in the remainder of the corpus.

To the best of our knowledge, the diversity issue
has been overlooked in traditional ATR methods —
the closest related problem is term clustering. [2] ap-
ply the LEXTER algorithm to extract candidate terms,
then applied the FASTR algorithm to cluster them.
This essentially clusters terms by their canonical forms
after morphological normalization and syntactic nor-
malization. [13] run C/NC-value on 2,082 MEDLINE
abstracts to extract candidate terms, then applied
Nearest-Neighbour clustering to the top ranked terms.
They defined contextual, functional and lexical simi-
larity to collectively measure similarity between two
terms. [20] perform similar experiments, in which
they ran C/NC-value on the same corpus and then
classified the extracted terms into UMLS classes. In
order to do this, they extended Nenadic’s method of
measuring term similarity by adding another dimen-
sion called term-class similarity, which is computed by
co-occurrence strength of a term to a domain-specific
verb that is usually a strong indicator of a class. [6]
takes document clustering and word clustering as a co-
clustering task, in which the output of one task (e.g.,
clusters of documents) induces another (e.g., clusters
of words). They viewed documents in a corpus and
their words as a graph connected by edges, and treated
clustering as a graph partitioning problem in which op-
timum clusters are produced when the crossing edges
between partitions have minimum weight.

Term clustering constitutes only part of the solution
to the diversity problem as we need to understand how
to produce a diverse ranked list of terms given the gen-
erated clusters. Methods to improve diversity in rank-
ing include maximum marginal relevance (MMR) [5]
in the context of text summarization, mixture models
[24] in the context of adaptive information filtering sys-
tems, and subtopic diversity [22] and diversity penalty
[23] in the context of document retrieval. The basic
underlying idea of these methods is to penalize redun-
dancy by lowering the rank of an item if it is similar
to items already ranked.

Our proposed method uses a re-ranking approach
based on absorbing random walks to improve the rank-
ing of terms that describe the domain. Contrary to
methods like MMR, which partly rely on heuristics,
methods based on absorbing random walks have a
principled mathematical model and strong empirical
performance on artificial data.

The idea of using random walks in an absorbing
Markov chain to improve diversity in ranking was first
introduced in [26] where it was shown to effectively

491

improve ranking results on a text summarization task,
and on a social network analysis task that identifies
movie stars. Moreover, absorbing random walks have
also found several other applications in the research lit-
erature. For example, [19] employ absorbing random
walks in order to personalize the recommendation of
items to users in a collaborative filtering task, while
[18] apply them to modelling an expert finding prob-
lem. The method presented here is inspired by that of
[26]. We use the same core absorbing random walks al-
gorithm, but define a similarity metric and evaluation
methodology appropriate for automatic term recogni-
tion tasks.

3 Ranking for Diversity

The ranking algorithm required to solve our problem
must support the notions of centrality, diversity and
prior:

1. centrality - a highly ranked term should be
representative of a local group of terms;

2. diversity - the top terms should cover as many
distinct groups as possible;

3. prior - it should be possible to incorporate an
existing ranking, in our case the output from an
existing ATR system, as prior knowledge.

Most ATR methods treat centrality and diversity
separately and try to combine results a posteriori,
sometimes using heuristic procedures. We, however,
have chosen to adopt the GRASSHOPPER algorithm in-
troduced in [26], which is based upon a principled
mathematical model that combines centrality and di-
versity.

Graph-based ranking algorithms like GRASSHOPPER
decide the centrality of a vertex from global informa-
tion recursively drawn from the entire graph. The
principle behind these models is that of voting or rec-
ommendation. When one vertex links to another one,
it can be seen as casting a vote for that other vertex.
The higher the number of votes that are cast for a ver-
tex, the higher its importance. Plus, the importance of
the vertex casting the vote determines how important
the vote itself is. Hence, the score associated with a
vertex is determined based on the votes that are cast
for it, and the score of the vertices casting these votes.

In GRASSHOPPER diversity is addressed together
with centrality by setting top-ranked vertices as ab-
sorbing states of a random walk over the vertices of the
graph. Once the random walk reaches an absorbing
state, it is absorbed and stays there. If we think about
the expected number of visits to a node before absorp-
tion as its rank, we expect nodes “closer” (more sim-
ilar) to the absorbing node to be less visited because
the likelihood of “falling into” the nearby absorbing
node is higher. This effectively places unranked ver-
tices that are similar to absorbing nodes lower in the
rank, thus encouraging diversity. In what follows we
briefly describe the algorithm.

Given a graph W, represented by a n X n similar-
ity matrix, where w;; is the (non-negative) weight on
the edge relating term ¢ to term j; a probability dis-
tribution r encoding the prior ranking, obtained from

a previously run ATR algorithm; and a tradeoff pa-
rameter € [0,1] (that balances domain knowledge
vs. prior), the algorithm produces a (re-)ranked list of
the input terms such that the top terms are not only
central but also diverse.

We start by finding the top ranked term using
teleporting random walks. Let P be obtained by
normalising the rows of W: Py; = w;;/ > 1, Wik, S0
that 151-]- is the probability that the walker moves to j
from 4. The walk is made teleporting by interpolating
each row with the available prior information?:

P=aP+(1-a)l®r,

where 1 is an all-1 vector, and 1 ® r is the outer prod-
uct. Due to the way it was designed (normalisation,
teleportation), P is irreducible, aperiodic and ergodic,
and therefore has a unique stationary distribution

7=P'nx,

which gives the global visiting probabilities for each
vertex. The states with large probabilities can be re-
garded as central vertices, an idea used in PageRank
[4] and in many works in natural language processing
such as text summarization [8] or keyword extraction
[12]. The top ranked vertex is thus selected as being
a1 = arg max;., m;.

The rest of the algorithm consists of an iterative
procedure that takes the top ranked vertex from the
previous step and sets it as being the absorbing state
of the random walk at the current step. A vertex
a can be turned into an absorbing state by setting
P, =1 and P,; = 0,Vi # a. Once the random walk
reaches an absorbing state, it remains there, so we are
no longer interested in the stationary distribution but
rather in computing the expected number of visits to
each node before absorption. The fundamental matrix

N=(1-@"
gives the expected number of visits in the absorbing
random walk [7], where @ is the submatrix of P

obtained by re-arranging the terms so that those
already ranked appear before unranked terms in the

matrix: 1 0
_ A
r=[% o]

The expected number of visits to vertex j is then
given by the average over all possible starting states.
In matrix notation: T

_N'1

T n—|A]

where |A| is the number of absorbed vertices. The
vertex with the largest number of visits becomes the
next term in the rank and an absorbing state for the
remaining iterations: aj4j41 = arg Irlau><fb."=|A|_~_1 v;. The
process is repeated until every vertex has been turned
into an absorbing state.

4 TermHopper

Given the generic ranking algorithm introduced in the
previous section, to define our TermHopper method we

2 We add a small teleporting constant e to the prior to ensure
P; > 0,Yi,j

492

now need to choose a similarity matrix W. Our ap-
proach to re-ranking the output of ATR takes terms
as nodes in the graph, and uses a pair wise semantic
similarity function between terms to assign weights to
the edges in the graph. The reasoning behind using
a semantic similarity function is the belief that simi-
lar nodes in the graph, i.e., terms, will cluster together
and hence the algorithm presented in the previous sec-
tion will choose nodes from many different clusters
rather than many nodes from the same cluster.

There have been a number of different semantic sim-
ilarity functions developed in the past years. For ex-
ample, distributional similarity [11] would seem like
a good match for the task of re-ranking ATR out-
put. Unfortunately, distributional similarity requires
a large amount of time and data to compute and was
thus deemed inappropriate for this particular applica-
tion. Instead we used a WordNet [9] based similarity
function for assigning edge weights.

In WordNet synonymous words are grouped into
synsets. Synsets are then linked by relations such as
hyponymy and hypernymy. Different WordNet based
similarity functions use different parts of this structure
to determine the similarity between two words. In this
study we used the Lin similarity measure® [11].

The Lin similarity measures use corpus frequency
counts to represent the informativeness of each node
in WordNet, a technique developed by Resnik [16].
Nodes near the root of the hierarchy are not consid-
ered to be informative and have low values while those
nearer the leaves have higher values, for example the
concept fish would be more informative than animal.
Numerical values representing the informativeness of
each node are calculated from frequency counts of the
words in that synset.

The information content (IC) for a synset, s, is
calculated as IC(s) = —log(Pr(s)) where Pr(s) is the
probability of synset s occurring in the corpus (esti-
mated using word frequency counts). Resnik’s similar-
ity measure is provided by simp.s = IC(les(s1, $2)),
i.e. the similarity of a pair of nodes is defined to be
the informativeness of their lowest common subsumer.
Lin combined the same terms in a different formula:

2 x IC(les(s1, $2))
IC(s1) + 1C(s2)

SIMLin =

In our experiments we used information content values
calculated over the BNC*.

TermHopper can work on the output of an exist-
ing ATR system simply by taking the scores output
for each term as the prior vector r introduced in the
previous section.

Finally, we restrict the similarity matrix W to con-
tain, for each term, only its k neighbour (most similar)
terms. Intuitively, this has the effect of reducing the
potential noise introduced by the computation of all
possible pair wise similarities.

3 We used a Java implementation of the Lin measure available
at http://nlp.shef.ac.uk/result/software.html.

4 We used the information content file distributed with the Perl
WordNet::Similarity library [15]

5 Experimental Setup

In this section we describe in detail our experimental
setup which is designed to validate our approach. The
experiments evaluate TermHopper against the origi-
nal ATR algorithms and also a random baseline. First
we describe the corpus and the gold standard used,
and then we present the ATR algorithms selected for
comparison and the proposed random baseline. Ex-
perimental results are presented in Section 6.

5.1 Dataset Collection and Processing

The experiments presented here were conducted on
the AnimalWiki corpus, a manually built corpus of
Wikipedia articles about 1,051 randomly selected an-
imals. In total, the corpus contains 1.3 million words.

The corpus was created by extracting only the main
textual content from the HTML pages and ignoring
any formatting or navigational elements. The cor-
pus was then POS tagged and the linguistic filters
described by [10] were applied to extract nouns and
noun phrases as candidate terms. The candidate list
was then filtered by removing stop words.

5.2 Algorithms

Due to space limitations, we select two popular algo-
rithms out of the collection of ATR algorithms avail-
able in the Java Automatic Term Recognition Toolkit
(JATR ®) [25]; namely the C-Value and TF-IDF algo-
rithms. Please refer to the related work section for an
overview of these algorithms. From the output of each
algorithm we select the top 500 ranked terms for re-
ranking by TermHopper, and present the comparison
between our results and the results produced by the
original algorithms, over the AnimalWiki corpus.

The random baseline, which we will call Ran-
domHopper, can be modelled using a multivariate hy-
pergeometric distribution or, equivalently, modelling
the problem as a urn sampling problem without re-
placement. Under this model, to determine the next
term in the rank we draw one term from the urn and
observe its category. We plot a curve that shows the
expected number of categories observed as the num-
ber of terms drawn from the urn grows. Because there
is no closed form solution to this problem, we simply
simulated the urn drawing process for an appropri-
ately large number of runs and took the average of the
observations.

We also check how TermHopper behaves when
using a perfect similarity function (PerfectHopper):

) 1, if cat(z) = cat(y
simpye (2,y) = { 0, oéhngiSe)

where cat is a function that returns the category of a
term; that is, the perfect similarity is given by con-
sulting the categories in the gold standard.

5.3 Gold Standard Evaluation Method

We designed the gold standard for evaluation by cat-
egorising terms into different semantic categories. In

5 http://www.dcs.shef.ac.uk/~ziqizhang

493

Scientific
it is actually classification

heir common kingdom: Animalia
Chordata

Mammalia

Phylum:

‘Class:
Order:

Primates

Suborder: Haplorrhini

Fig. 1: A excerpt of a Wikipedia page showing the
scientific classification of an animal.

Actinopterygii Echinoidea
Amphibia Gastropoda
Anthozoa Insecta
Arachnida Malacostraca
Aves Mammalia
Bivalvia Merostomata
Cephalaspidomorphi | Osteichthyes
Cephalopoda Reptilia
Chondrichthyes Sauropsida
Clitellata Scyphozoa
Crustacea Trilobita

Table 1: Category labels derived from Wikipedia Sci-
entific Classification “Class”.

order to do this, we attempted to automatically ob-
tain the category of a term by applying a few simple
heuristics over the English section of Wikipedia, us-
ing the Java Wikipedia Library [21] and the February
2007 English Wikipedia dump. If the term denotes an
animal, we retrieve its corresponding Wikipedia page,
and extract the scientific classification for that animal
as the category for the term (Figure 1).

Scientific classifications for animals in Wikipedia are
subdivided into Kingdom, Phylum, Class, Order, Fam-
ily, Genus, Species, etc. For the purposes of our study
we have categorised terms according to Class, and we
only apply the automatic labelling processes to the
selected top section (500) of terms from each ATR al-
gorithm considered. This produced 22 Wikipedia cat-
egories as listed in Table 1.

The automated process left many terms uncate-
gorised, in particular those terms which do not denote
an animal. These were manually labelled according
to a further six categories, as illustrated in Table 2.
Adjective is used to categorises terms that are used
as adjectives; Group contains terms used for describ-
ing groups of animals; Part are terms used for de-
scribing body parts; Place and Time refer to terms
which are generally places or time expressions; while
for any other term missing a category we assign the
label Other.

We are interested in measuring diversity in the rank-
ing generated by the several algorithms. For that, we
study how the number of observed categories grows
with the number of ranked terms considered.

20 -

= =
o [}

Numberof Catego ries

wn

= + = TermHopper
— CValue

==== PerfectHopper
RandomHopper

50 &0 70 BO S0

100 110 120 130 140 150 160 170 180 150 200

Rank

Fig. 2: Experimental results comparing the C-Value and TermHopper algorithms, a=0.8 and k=3.

25 1 e o o o o o o o o o o e o e e e e e e e e e e e e m—
!
_— e T
.1 ,_r...
i
$ 15
-]
3
T
& 10
E =+ = TermHopper
z —_— Tf-ldf
3 ==== PerfectHopper
-------- RandomHopper
u i i i i i i i i i i i i i i i i i
0 0 20 30 40 50 60 FO B0 90 100 110 120 130 140 150 180 170 180 150 200
Rank

Fig. 3: Ezxperimental results comparing the TF-IDF and TermHopper algorithms, a=0.6 and k=10.

Category Label Examples
Place river, sea, America
Time year, month, Ice Age
Adjective black, hybrid, male
Group pack, colony, species
Other range, sense, devil
Part head, nose, mouth

Table 2: Non-animal category labels.

6 Results and Discussion

The performance of TermHopper in comparison to
the base ATR algorithms of C-Value and TF-IDF
can be seen in Figures 2 and 3 respectively. These
graphs show the number of observed categories against
the number of ranked terms being considered. Both
graphs also show the performance of RandomHopper
and PerfectHopper for comparison. In both experi-
ments the following parameters of TermHopper were
tuned using a grid method:

e the tradeoff parameter « € [0, 1]

e the number of (most similar) neighbours,
k € {3,10,499}, in the similarity matrix W

Overall, our approach consistently outperforms both
the random baseline and the rankings generated by the

494

original ATR systems. It is not surprising that the lat-
ter perform worse than the baseline, since they favour
centrality only and have no notion of diversity, and
thus place many (globally relevant) terms from the
same category in the top ranked positions. TermHop-
per, on the other hand, shows more term categories
sooner, both within the all-important first 10 or 20 re-
sults as well as beyond that, while at the same time
ensuring, by design, that the top terms are the most
central within their respective categories.

By tuning the parameters, we have observed that
results improve when considering only a few (at most
10) neighbours in the similarity matrix instead of using
a dense matrix with all the possible pair wise similarity
values computed. This also matches our intuition that
only the network of the few most similar terms should
be used to semantically define a given term.

The gap between TermHopper’s and PerfectHop-
per’s curves indicates how strong the misalignment
is between the adopted term similarity function and
the desired gold standard classification. The proposed
generic WordNet-based similarity function can be re-
placed with a more specific similarity function based
on domain knowledge to bridge that gap. Unfortu-
nately, doing so reduces the portability of the method.
However, we believe that the results obtained are still
very valuable, because they show that a consider-
able improvement over the baseline can be obtained

even with a domain-independent, off-the-shelf similar-
ity function.

7 Conclusions and Future Work

ATR algorithms often fail to capture the whole of the
domain covered by the corpus, which for some applica-
tions may be unacceptable or undesirable. For exam-
ple, a corpus summarization system aiming to provide
a short summary to the user in the form of keywords
needs to be able to cover all of the sub-domains in as
few keywords as possible — ideally using exactly one
keyword per sub-domain.

To improve diversity in ranking the automatically
recognized terms, we have presented a novel term re-
ranking method, called TermHopper. We showed that,
even without encoding any knowledge about the do-
main, i.e., using a generic WordNet-based term simi-
larity function, the proposed method is successful in
improving the diversity of the results produced by two
popular ATR algorithms on the AnimalWiki corpus.
One of the advantages of the proposed method is that
it can be coupled to any existing ATR system, since it
runs as a post-processing step.

As future work, we plan to experiment with several
similarity metrics from the literature to replace the
WordNet-based similarity used here, as long as their
computation cost remains low, due to the exponen-
tial cost of computing the pair wise similarity. We
also plan to study the impact of deploying the new
diversity-improved ATR system in our existing ontol-
ogy learning tools.

Acknowledgements

This work was funded by the X-Media project (www.x-
media-project.org) sponsored by the European Com-
mission as part of the Information Society Technolo-
gies (IST) programme under EC grant number IST-
FP6-026978.

References

[1] K. Ahmad, L. Gillam, and L. Tostevin. University of Surrey
Participation in TRECS8: Weirdness Indexing for Logical Docu-
ment Extrapolation and Retrieval (WILDER). In Proceedings
of the Eighth Text REtrieval Conference (TREC-8), 1999.

[2] D. Bourigault. Surface Grammatical Analysis for the Extrac-
tion of Terminological Noun Phrases. In Proceedings of the
14th International Conference on Computational Linguistics

(COLING), 1992.

[3] C. Brewster, J. Iria, Z. Zhang, F. Ciravegna, L. Guthrie, and
Y. Wilks. Dynamic Iterative Ontology Learning. In Proceed-
ings of the Internation Conference on Recent Advances in
Natural Language Processing (RANLP 07), 2007.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. In Computer Networks and ISDN
Systems, volume 30, pages 107-117, 1998.

[5] J. Carbonell and J. Goldstein. The use of MMR, diversity-
based reranking for reordering documents and producing sum-
maries. In Proceedings of SIGIR’98, Australia, 1998.

[6] I.S. Dhillon. Co-clustering documents and words using bipar-
tite spectral graph partitioning. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 269-274, San Francisco, 2001.

[7] P. Doyle and J. Snell, editors. Random Walks and Electric
Networks. Mathematical Assoc. of America, 1984.

495

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Erkan and D. Radev. Lexrank: Graph-based centrality as
salience in text summarization. In Journal of Artificial Intel-
ligence Research (JAIR), volume 22, pages 457-479, 2004.

C. Fellbaum, editor. WordNet: An Electronic Lexical
Database and some of its Applications. MIT Press, 1998.

K. T. Frantzi and S. Ananiadou. The C-value/NC-value Do-
main Independent Method for Multi-Word Term Extraction.
Journal of Natural Language Processing, 1999.

D. Lin. An information-theoretic definition of similarity. In
Proceedings of the Fifteenth International Conference on Ma-
chine learning (ICML-98), Madison, Wisconsin, 1998.

R. Mihalcea and P. Tarau. TextRank: Bringing Order
into Texts. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2004),
Barcelona, Spain, 2004.

G. Nenadic, I. Spasic, and S. Ananiadou. Term Clustering Us-
ing a Corpus-Based Similarity Measure. In Proceedings of the
5th International Conference on Text, Speech and Dialogue,
pages 151-154, 2002.

Y. Park, R. J. Byrd, and B. K. Boguraev. Towards Ontolo-
gies on Demand. In Proceedings of the Workshop on Seman-
tic Web Technologies for Searching and Retrieving Scientific
Data, 2003.

T. Pedersen, S. Patwardhan, and J. Michelizzi. Word-
Net::Similarity - Measuring the Relatedness of Concepts. In
Proceedings of the Nineteenth National Conference on Arti-
ficial Intelligence (AAAI-04), San Jose, CA, 2004.

P. Resnik. Using Information Content to evaluate Semantic
Similarity in a Taxonomy. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
95), pages 448-453, Montreal, Canada, 1995.

F. Sclano and P. Velardi. TermExtractor: A Web Application
to Learn the Shared Terminology of Emergent Web Commu-
nities. In Proceedings of the 3rd International Conference
on Interoperability for Enterprise Software and Applications

(I-ESA), 2007.

P. Serdyukov, H. Rode, and D. Hiemstra. Modeling Expert
Finding as an Absorbing Random Walk. In Proceedings of the
81st Annual International ACM SIGIR conference on Re-
search and Development in Information Retrieval, 2008.

A. P. Singh, A. Gunawardana, C. Meek, and A. C. Surendran.
Recommendations using Absorbing Random Walks. In Pro-
ceedings of NESCAI 2007, 2007.

I. Spasic, G. Nenadic, K. Manios, and S. Ananiadou. Super-
vised Learning of Term Similarities. In Proceedings of the
Third International Conference on Intelligent Data Engi-
neering and Automated Learning, 2002.

T. Zesch, C. Muller, and I. Gurevych. Extracting lexical seman-
tic knowledge from wikipedia and wiktionary. In Proceedings
of the 6th International Conference on Language Resources
and Evaluation, Marrakech, Marocco, 2008.

C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond indepen-
dent relevance: methods and evaluation metrics for subtopic
retrieval. In Proceedings of the 26th Annual International
ACM SIGIR Conference, pages 10-17, Toronto, Canada, 2003.

B. Zhang, H. Li, Y. Liu, L. Ji, W. Xi, W. Fan, Z. Chen, and
W.-Y. Ma. Improving web search results using affinity graph.
In Proceedings of the 28th Annual International ACM SIGIR
Conference, Salvador, Brazil, 2005. ACM.

Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy
detection in adaptive filtering. In Proc. ACM SIGIR 2002,
pages 81-88. ACM Press, 2002.

Z. Zhang, J. Iria, C. Brewster, and F. Ciravegna. A Compara-
tive Evaluation of Term Recognition Algorithms. In Proceed-
ings of the 6th International Conference on Language Re-
sources and Evaluation, Marrakech, Marocco, 2008.

X. Zhu, A. B. Goldberg, J. V. Gael, and D. Andrezejewski. Im-
proving Diversity in Ranking using Absorbing Random Walks.
In Proceedings of NAACL/HLT, 2007.

