
International Conference RANLP 2009 - Borovets, Bulgaria, pages 428–433

Amharic Part-of-Speech Tagger for Factored Language
Modeling

Martha Yifiru Tachbelie and Wolfgang Menzel
Department of Informatics, University of Hamburg
Vogt-Kölln Srt. 30, D-22527 Hamburg, Germany

tachbeli, menzel@informatik.uni-hamburg.de

Abstract
This paper presents Amharic part of speech tag-
gers developed for factored language modeling.
Hidden Markov Model (HMM) and Support Vec-
tor Machine (SVM) based taggers have been
trained using the TnT and SVMTool. The over-
all accuracy of the best performing TnT- and
SVM-based taggers is 82.99% and 85.50%, re-
spectively. Generally, with respect to accuracy
SVM-based taggers perform better than TnT-
based taggers although TnT-based taggers are
more efficient with regard to speed and memory
requirement. We have developed factored lan-
guage models (with two and four parents) for
which the estimation of the probability for each
word depends on the previous one or two words
and their POS. These language models have been
used in an Amharic speech recognition task in a
lattice rescoring framework and a significant im-
provement in word recognition accuracy has been
observed.

Keywords

POS tagging, Amharic, factored language model

1 Introduction

Language models are fundamental to many natural
language applications such as automatic speech recog-
nition (ASR). The most widely used class of language
models, namely statistical ones, provide an estimate
of the probability of a word sequence W for a given
task. However, the probability distribution depends
on the available training data — large amounts of
training data are required so as to ensure statistical
significance.

Even if a large training corpus is available, there
may be still many possible word sequences which will
not be encountered at all, or which appear with a sta-
tistically insignificant frequency (data sparseness prob-
lem) [21]. In morphologically rich languages, there are
even individual words that might not be encountered
in the training data irrespective of its size (Out-Of-
Vocabulary words problem).

The data sparseness problem in statistical language
modeling is more serious for languages with a rich
morphology. These languages have a high vocabulary
growth rate which results in a high perplexity and a
large number of out of vocabulary words [19]. There-
fore, sub-words (morphemes), instead of words, have

been and are being used as modeling units in language
modeling so as to build more robust language models
even if only insufficient training data is available.

1.1 The morphology of Amharic

Amharic is one of the morphologically rich languages.
It is a major language spoken mainly in Ethiopia and
belongs to the Semitic branch of the Afro-Asiatic su-
per family. Amharic is related to Hebrew, Arabic and
Syrian.

Like other Semitic languages such as Arabic,
Amharic exhibits a root-pattern morphological phe-
nomenon. A root is a set of consonants (called radi-
cals) which has a basic ’lexical’ meaning. A pattern
consists of a set of vowels which are inserted (inter-
calated) among the consonants of a root to form a
stem. The pattern is combined with a particular pre-
fix or suffix to create a single grammatical form [4]
or another stem [20]. For example, the Amharic root
sbr means ’break’, when we intercalate the pattern
ä ä and attach the suffix ä we get säbbärä ’he broke’
which is the first form of a verb (3rd person masculine
singular in past tense as in other semitic languages)
[4]. In addition to this non-concatenative morpholog-
ical feature, Amharic uses different affixes to create
inflectional and derivational word forms.

Some adverbs can be derived from adjectives. Nouns
are derived from other basic nouns, adjectives, stems,
roots, and the infinitive form of a verb by affixation
and intercalation. For example, from the noun lIǧǧ
’child’ another noun lIǧnät ’childhood’; from the adjec-
tive däg ’generous’ the noun dägnät ’generosity’; from
the stem sInIf, the noun sInIfna ’laziness’; from root
qld, the noun qäld ’joke’; from infinitive verb mäsIbär
’to break’ the noun mäsIbäriya ’an instrument used for
breaking’ can be derived. Case, number, definiteness,
and gender marker affixes inflect nouns.

Adjectives are derived from nouns, stems or verbal
roots by adding a prefix or a suffix. For example, it
is possible to derive dIngayama ’stony’ from the noun
dIngay ’stone’; zIngu ’forgetful’ from the stem zIng;
sänäf ’lazy’ from the root snf by suffixation and inter-
calation. Adjectives can also be formed through com-
pounding. For instance, hodäsäfi ’tolerant, patient’, is
derived by compounding the noun hod ’stomach’ and
the adjective säfi ’wide’. Like nouns, adjectives are
inflected for gender, number, and case [20].

Unlike the other word categories such as noun and
adjectives, the derivation of verbs from other parts of

428



speech is not common. The conversion of a root to a
basic verb stem requires both intercalation and affix-
ation. For instance, from the root gdl ’kill’ we obtain
the perfective verb stem gäddäl- by intercalating the
pattern ä ä. From this perfective stem, it is possible
to derive a passive (tägäddäl-) and a causative stem
(asgäddäl-) using the prefixes tä- and as-, respectively.
Other verb forms are also derived from roots in a sim-
ilar fashion.

Verbs are inflected for person, gender, number, as-
pect, tense and mood [20]. Other elements like nega-
tive markers also inflect verbs in Amharic.

1.2 Language modeling for Amharic

Since Amharic is a morphologically rich language, it
suffers from data sparseness and out of vocabulary
words problems. The negative effect of Amharic mor-
phology on language modeling has been reported by
[1], who, therefore, recommended the development of
sub-word based language models for Amharic.

To this end, [17, 18] have developed various
morpheme-based language models for Amharic and
gained a substantial reduction in the out-of-vocabulary
rate. They have concluded that, in this regard, us-
ing sub-word units is preferable for the development
of language models for Amharic. In their experiment,
[17, 18] considered individual morphemes as units of
a language model. This, however, might result in a
loss of word level dependencies since the root conso-
nants of the words may stand too far apart. Therefore,
approaches that capture word level dependencies are
required to model the Amharic language. [12] intro-
duced factored language models that can capture word
level dependency while using morphemes as units in
language modeling. That is why we opted for devel-
oping factored language models also for Amharic.

1.3 Factored language modeling

Factored language models (FLM) have first been intro-
duced in [13] for incorporating various morphological
information in Arabic language modeling. In FLM a
word is viewed as a bundle or vector of K parallel fac-
tors, that is, wn ≡ f1

n, f2
n, ..., fk

n . The factors of a given
word can be the word itself, stem, root, pattern, mor-
phological classes, or any other linguistic element into
which a word can be decomposed. The goal of an FLM
is, therefore, to produce a statistical model over these
factors.

There are two important points in the development
of FLM: choosing the appropriate factors which can
be done based on linguistic knowledge or using a data
driven technique and finding the best statistical model
over these factors. Unlike normal word or morpheme-
based language models, in FLM there is no obvious
natural backoff order. In a trigram word based model,
for instance, we backoff to a bigram if a particular tri-
gram sequence has not been observed in our corpus by
dropping the most distant neighbor, and so on. How-
ever, in FLM the factors can be temporally equivalent
and it is not obvious which factor to drop first during
backoff. If we consider a quadrogram FLM and if we
drop one factor at a time, we can have six possible
backoff paths as it is depicted in Figure 1 and we need

to choose a path that results in a better model. There-
fore, choosing a backoff path is an important decision
one has to make in FLM. There are three possible
ways of choosing a backoff path: 1) Choosing a fixed
path based on linguistic or other reasonable knowl-
edge; 2) Generalized all-child backoff where multiple
backoff paths are chosen at run time; and 3) General-
ized constrained-child backoff where a subset of backoff
paths is chosen at run time [14]. A genetic algorithm
for learning the structure of a factored language model
has been developed by [7].

Fig. 1: Possible backoff paths

In addition to capturing the word level dependencies,
factored language models also enable us to integrate
any kind of relevant information to a language model.
Part of speech (POS) or morphological class informa-
tion, for instance, might improve the quality of a lan-
guage model as knowing the POS of a word can tell us
what words are likely to occur in its neighborhood [11].
For this purpose, however, a POS tagger is needed
which is able to automatically assign POS information
to the word forms in a sentence. This paper presents
the development of Amharic POS taggers and the use
of POS information in language modeling.

1.4 Previous works on POS tagging

[9] attempted to develop a Hidden Markov Model
(HMM) based POS tagger for Amharic. He extracted
a total of 23 POS tags from a page long text (300
words) which is also used for training and testing the
POS tagger. The tagger does not have the capability
of guessing the POS tag of unknown words, and con-
sequently all the unknown words are assigned a UNC
tag, which stands for unknown category. As the lex-
icon used is very small and the tagger is not able to
deal with unknown words, many of the words from the
test set were assigned the UNC tag.

[3] developed a POS tagger using Conditional Ran-
dom Fields. Instead of using the POS tagset developed
by [9], [3] developed another abstract tagset (consist-
ing of 10 tags) by collapsing some of the categories
proposed by [9]. He trained the tagger on a manually
annotated text corpus of five Amharic news articles
(1000 words) and obtained an accuracy of 74%.

429



As the data sets used to train both of the above sys-
tems are very small it is not possible to apply the tag-
gers to large amounts of text which is needed for train-
ing a language model.

In a very recent, but independent development, a
POS tagging experiment similar to the one described
in this paper has been conducted by [8]. There,
three tagging strategies have been compared – Hid-
den Markov Models (HMM), Support Vector Machines
(SVM) and Maximum Entropy (ME) – using the man-
ually annotated corpus [6] (which has also been used
in our experiment) developed at the Ethiopian Lan-
guage Research Center (ELRC) of the Addis Ababa
University. Since the corpus contains a few errors
and tagging inconsistencies, they cleaned the corpus.
Cleaning includes tagging non-tagged items, correct-
ing some tagging errors and misspellings, merging col-
locations tagged with a single tag, and tagging punc-
tuations (such as ’“’ and ’/’) consistently. They have
used three tagsets: the one used in [3], the original
tagset developed at ELRC that consists of 30 tags and
the 11 basic classes of the ELRC tagset. The average
accuracies (after 10-fold cross validation) are 85.56,
88.30, 87.87 for the TnT-, SVM- and maximum en-
tropy based taggers, respectively for the ELRC tagset.
They also found that the maximum entropy tagger
performs best among the three systems, when allowed
to select its own folds. Their result also shows that
the SVM-based tagger outperforms the other ones in
classifying unknown words and in the overall accuracy
for the tagset (ELRC) that is used in our experiment
too.

2 Amharic part-of-speech tag-
gers

2.1 The POS tagset

In our experiment, we used the POS tagset devel-
oped within “The Annotation of Amharic News Doc-
uments” project at the Ethiopian Language Research
Center. The purpose of the project was to manu-
ally tag each Amharic word in its context [6]. In
this project, a new POS tagset for Amharic has been
derived. The tagset has 11 basic classes: nouns
(N), pronouns (PRON), adjectives (ADJ), adverbs
(ADV), verbs (V), prepositions (PREP), conjunction
(CONJ), interjection (INT), punctuation (PUNC), nu-
meral (NUM) and UNC which stands for unclassified
and used for words which are difficult to place in any
of the classes. Some of these basic classes are fur-
ther subdivided and a total of 30 POS tags have been
identified as shown in Table 1. Although the tagset
contains a tag for nouns with preposition, with con-
junction and with both preposition and conjunction,
it does not have a separate tag for proper and plural
nouns. Therefore, such nouns are assigned the com-
mon tag N.

2.2 The corpus

The corpus used to train and test the taggers is the
one developed in the above mentioned project — “The

Categories Tags
Verbal Noun VN
Noun with prep. NP
Noun with conj. NC
Noun with prep. & conj. NPC
Any other noun N
Pronoun with prep. PRONP
Pronoun with conj. PRONC
Pronoun with prep. & conj. PRONPC
Any other pronoun PRON
Auxiliary verb AUX
Relative verb VREL
Verb with prep. VP
Verb with conj. VC
Verb with prep. & conj. VPC
Any other verb V
Adjective with prep. ADJP
Adjective with conj. ADJC
Adjective with prep. & conj. ADJPC
Any other adjective ADJ
Preposition PREP
Conjunction CONJ
Adverbs ADV
Cardinal number NUMCR
Ordinal number NUMOR
Number with prep. NUMP
Number with conj. NUMC
Number with prep. & conj. NUMPC
Interjection INT
Punctuation PUNC
Unclassified UNC

Table 1: Amharic POS tagset (extracted from [6])

Annotation of Amharic News Documents” [6]. It con-
sists of 210,000 manually annotated tokens of Amharic
news documents.

In this corpus, collocations have been annotated in-
consistently. Sometimes a collocation assigned a single
POS tag and sometimes each token in a collocation got
a separate POS tag. For example, ’tmhrt bEt’, which
means school, has got a single POS tag, N, in some
places and a separate POS tags for each of the tokens
in some other places. Therefore, unlike [8] who merged
a collocation with a single tag, effort has been exerted
to annotate collocations consistently by assigning sep-
arate POS tags for the individual words in a colloca-
tion.

2.3 The software

We used two kinds of software, namely TnT and SVM-
Tool, to train different taggers.

TnT, Trigram’n’Tags, is a Markov model based, effi-
cient, language independent statistical part of speech
tagger [5]. It has been applied on many languages
including German, English, Slovene, Hungarian and
Swedish successfully. [15] showed that TnT is better
than maximum entropy, memory- and transformation-
based taggers.

SVMTool is support vector machine based part-of-
speech tagger generator [10]. As indicated by the de-
velopers, it is a simple, flexible, effective and efficient
tool. It has been successfully applied to English and
Spanish.

430



2.4 TnT-based tagger

We have developed three TnT-based taggers by taking
different amounts of tokens (80%, 90% and 95%) from
the corpus as training data and named the taggers as
tagger1, tagger2 and tagger3, respectively. Five per-
cent of the corpus (after taking 95% for training) has
been reserved as a test set. This test set has also been
used to evaluate the SVM-based taggers to make the
results comparable.

Table 2 shows the accuracy of each tagger. As it is
clear from the table, the maximum accuracy was found
when 95% of the data (199,500 words) have been used
for training. This tagger has an overall accuracy of
82.99%. The results also show that the training has
not yet reached the point of saturation and the overall
accuracy increases, although slightly, as the amount of
training data increases. This conforms with findings
for other languages that “... the larger the corpus and
the higher the accuracy of the training corpus, the
better the performance of the tagger“ [5]. One can
also observe that improvement in the overall accuracy
is affected with the amount of data added. Higher
improvement in accuracy has been obtained when we
increase the training data by 10% than increasing by
only five percent. Compared to similar experiments
done for other languages and the result which has been
recently reported for Amharic by [8], our taggers have
worse performance. The better result obtained in [8]
might be due to the use of cleaned data and a 10-
fold cross-validation technique to train and evaluate
the taggers. Nevertheless, we still consider the result
acceptable for the given purpose.

Taggers Accuracy in %
Known Unknown Overall

Tagger1 88.24 48.77 82.70
Tagger2 88.09 48.11 82.94
Tagger3 88.00 47.82 82.99

Table 2: Accuracy of TnT taggers

2.5 SVM-based tagger

We trained SVM-based tagger, SVMM0C0, using 90%
of the tagged corpus. To train this model, we did not
tune the cost parameter (C) that controls the trade
off between allowing training errors and forcing rigid
margins. We used the default value for other features
like the size of the sliding window. The model has
been trained in a one pass, left-to-right and right-to-
left combined, greedy tagging scheme. The resulting
tagger has an overall accuracy of 84.44% (on the test
set used to evaluate the TnT-based taggers) as Table
3 shows.

A slight improvement of the overall accuracy and
the accuracy of known words has been achieved setting
the cost parameter to 0.1 (see SVMM0C01 in Table 3).
The accuracy improvement for unknown words is big-
ger (from 73.64 to 75.30) compared to the accuracy of
known words and the overall accuracy. However, when
the cost parameter was increased above 0.1, the accu-
racy declined. We experimented with cost parameters
0.3 (SVMM0C03) and 0.5 (SVMM0C05) and in both
cases no improvement in accuracy has been observed

(neither for the overall accuracy nor for the accuracy
of known and unknown words).

Taggers Accuracy in %
Known Unknown Overall

SVMM0C0 86.03 73.64 84.44
SVMM0C01 86.97 75.30 85.47
SVMM0C03 86.71 73.49 85.01
SVMM0C05 86.48 71.97 84.61

Table 3: Accuracy of SVM-based taggers

To determine how the amount of training data affects
accuracy, we trained another SVM-based tagger using
95% of the data and the cost parameter of 0.1. Only a
slight improvement in the overall accuracy (85.50%)
and accuracy for classifying unknown words (from
75.30% to 75.35%) has been achieved compared to the
SVMM0C01 tagger which has been trained on 90% of
the data. This corresponds to the findings for TnT-
based taggers that improved only marginally when
a small amount of data (5%) is added. For known
words the accuracy declined slightly (from 86.97% to
86.95%). Although this tagger is better (in terms of
the overall accuracy) than all the other ones, it per-
forms not better than the one reported by [8] who used
a 10-fold cross-validation technique and cleaned data.

Another tagger has been developed using the same
data but with a different cost parameter (0.3). How-
ever, no improvement in performance has been ob-
served. This model has an overall accuracy of 85.09%
and accuracy of 86.76% and 73.40% for known and
unknown tokens, respectively.

2.6 Comparison of TnT- and SVM-
based taggers

The SVMM0C0 has been trained with the same data
that has been used to train the TnT-based tagger, tag-
ger2. The same test set has also been used to test the
two types of taggers so that we can directly compare
results and decide which algorithm to use for tagging
our text for factored language modeling. As it can be
seen from Table 3, the SVM-based tagger has an over-
all accuracy of 84.44%, which is better than the result
we found for the TnT-based tagger (82.94%). This
finding is in line with what has been reported by [10].
We also noticed that SVM-based taggers have a bet-
ter capability of classifying unknown words (73.64%)
than a TnT-based tagger (48.11%) as it has also been
reported in [8].

With regard to speed and memory requirements,
TnT-based taggers are more efficient than the SVM-
based ones. A SVM-based tagger tags 366.7 tokens
per second whereas the TnT-based tagger tags 114083
tokens per second. Moreover, the TnT-based tagger,
tagger2, requires less (647.68KB) memory than the
SVM-based tagger, SVMM0C0, (169.6MB). However,
our concern is on the accuracy of the taggers instead of
their speed and memory requirement. Thus, we pre-
ferred to use SVM-based taggers to tag our text for
the experiment in factored language modeling.

Therefore, we trained a new SVM-based tagger us-
ing 100% of the tagged corpus based on the assump-
tion that the increase in the accuracy (from 85.47 to

431



85.50%) observed when increasing the training data
(from 90% to 95%) will continue if more training data
are added. Again, the cost parameter has been set to
0.1 which yielded good performance in the previous
experiments. It is this tagger that was used to tag the
text for training factored language models.

3 Application of the POS infor-
mation

To determine how the addition of an extra informa-
tion, namely POS, improves the quality of a language
model and consequently the performance of a natu-
ral language application that uses the language model,
we have developed factored language models that use
POS as an additional information. The language mod-
els have then been applied to an Amharic speech recog-
nition task in a lattice rescoring framework [12]. Us-
ing factored language models in standard word-based
decoders is problematic, because they do not predict
words but factors.

3.1 Baseline speech recognition system

3.1.1 Speech and text corpus

The speech corpus used to develop the speech recog-
nition system is a read speech corpus developed by
[2]. It contains 20 hours of training speech collected
from 100 speakers who read a total of 10850 sentences
(28666 tokens). Compared to other speech corpora
that contain hundreds of hours of speech data for train-
ing, for example, British National Corpus (1,500 hours
of speech), it is a fairly small one and a model trained
on it will suffer from lack of training data.

Although the corpus includes four different test sets
(5k and 20k both for development and evaluation),
for the purpose of the current investigation we have
generated the lattices only for the 5k development test
set, which includes 360 sentences read by 20 speakers.

The text corpus used to train the baseline backoff
bigram language model consists of 77,844 sentences
(868929 tokens or 108523 types).

3.1.2 Acoustic and language models

The acoustic model is a set of intra-word triphone
HMM models with 3 emitting states and 12 Gaussian
mixtures that resulted in a total of 33,702 physically
saved Gaussian mixtures. The states of these models
are tied, using decision-tree based state-clustering that
reduced the number of triphone models from 5,092 log-
ical models to 4,099 physical ones.

The baseline language model is a closed vocabu-
lary (for 5k) backoff bigram model developed using
the HTK toolkit. The absolute discounting method
has been used to reserve some probabilities for unseen
bigrams and the discounting factor, D, has been set to
0.5, which is the default value in the HLStats module.
The perplexity of this language model on a test set
that consists of 727 sentences (8337 tokens) is 91.28.

3.1.3 Performance of the baseline system

We generated lattices from the 100 best alternatives
for each test sentence of the 5k development test set
using the HTK tool and decoded the best path tran-
scriptions for each sentence using the lattice processing
tool of SRILM [16]. Word recognition accuracy of the
baseline system was 91.67% with a language model
scale of 15.0 and a word insertion penalty of 6.0.

3.2 Lattice rescoring with FLM

We substituted each word in a lattice and in the train-
ing sentences with its factored representation. A word
bigram model that is equivalent to the baseline word
bigram language model has been trained using the fac-
tored version of the data1. This language model is
used as a baseline for factored representations and has
a perplexity of 58.41 (see Table 4). The best path
transcription decoded using this language model has a
word recognition accuracy of 91.60%, which is slightly
lower than the performance of the normal baseline
speech recognition system (91.67%). This might be
due to the smoothing technique applied in the devel-
opment of the language models. Although absolute
discounting with the same discounting factor has been
applied to both bigram models, the unigram models
have been discounted differently. While in the base-
line word based language model the unigram models
have not been discounted at all, in the equivalent fac-
tored model the unigrams have been discounted using
Good-Turing discounting technique which is the de-
fault discounting technique in SRILM.

In addition to the baseline, we have trained mod-
els with two (wn|wn−1posn−1) and four parents
(wn|wn−1posn−1wn−2posn−2) for which the estima-
tion of the probability of each word depends on the
previous word/s and its/their POS. A fixed backoff
strategy has been applied during backoff, dropping the
most distant factor first and so on. The perplexity of
the language models is indicated in Table 4.

Language models Perplexity
Baseline word bigram (FBL) 58.41
FLM with two parents 115.89
FLM with four parents 17.03

Table 4: Perplexity of factored language models

The factored language models have then been used to
rescore the lattices and an improvement of the word
recognition accuracy was observed. As it can be seen
from Table 5, the addition of the POS information
makes language models more robust and consequently
the word recognition accuracy improved from 91.60
to 92.92. Although normally the use of higher order
ngram models also improves the word recognition ac-
curacy, this is not the case for our factored language
models.

1 A data in which each word is considered as a bundle of fea-
tures including the word itself, POS tag of the word, prefix,
root, pattern and suffix.

432



Language models used Word accuracy
Baseline word bigram (FBL) 91.60%
FBL + FLM with two parents 92.92%
FBL + FLM with four parents 92.75%

Table 5: Word recognition accuracy improvement
with factored language models

4 Conclusion

This paper describes a series of POS tagging experi-
ments aimed at providing a factored language model
with an additional information source. For the POS
tagger development, we used a manually tagged corpus
which consist of 210,000 tokens. Two software tools,
TnT and SVMTool, have been applied to train differ-
ent taggers. As SVM-based taggers outperformed the
probabilistic ones, we decided to use them to tag the
text for our factored language modeling experiment.

We have developed factored language models (with
two and four parents) which estimate the probabil-
ity of each word depending on the previous one or
two words and their POS. Using these language mod-
els in an Amharic speech recognition task in a lat-
tice rescoring framework, we obtained improvement of
word recognition accuracy (1.32% absolute).

Acknowledgments

We would like to thank the people who developed and
made freely available the Amharic manually tagged
corpus as well as TnT and SVMTool software tools.
Thanks are due to the reviewers who provided con-
structive comments.

References
[1] S. T. Abate. Automatic Speech Recognition for Amharic. PhD

thesis, Univ. of Hamburg, 2006.

[2] S. T. Abate, W. Menzel, and B. Tafila. An Amharic speech
corpus for large vocabulary continuous speech recognition. In
Proceedings of 9th. European Confference on Speech Com-
munication and Technology, Interspeech-2005, 2005.

[3] S. F. Adafre. Part of speech tagging for Amharic using con-
ditional random fields. In Proceedings of the ACL Workshop
on Computational Approaches to Semitic Languages, pages
47–54, 2005.

[4] M. Bender, J. Bowen, R. Cooper, and C. Ferguson. Languages
in Ethiopia. Oxford Univ. Press, London, 1976.

[5] T. Brants. TnT — a statistical part-of-speech tagger. In Pro-
ceedings of the 6th ANLP, 2000.

[6] G. A. Demeke and M. Getachew. Manual annotation of
Amharic news items with part-of-speech tags and its chal-
lenges. ELRC Working Papers, II(1), 2006.

[7] K. Duh and K. Kirchhoff. Automatic learning of language
model structure. In Proceeding of International Conference
on Computational Linguistics, 2004.

[8] B. Gambäck, F. Olsson, A. A. Argaw, and L. Asker. Meth-
ods for Amharic part-of-speech tagging. In Proceedings of the
EACL Workshop on Language Technologies for African Lan-
guages - AfLaT 2009, pages 104–111, March 2009.

[9] M. Getachew. Automatic part of speech tagging for Amharic
language: An experiment using stochastic hmm. Master’s the-
sis, Addis Ababa University, 2000.

[10] J. Giménez and L. Màrquez. Svmtool: A general pos tagger
generator based on support vector machines. In Proceedings
of the 4th International Conference on Language Resources
and Evaluation, 2004.

[11] D. S. Jurafsky and J. H. Martin. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. Prentice
Hall, New Jersey, 2nd. ed. edition, 2008.

[12] K. Kirchhoff, J. Bilmes, S. Das, N. Duta, M. Egan, G. Ji, F. He,
J. Henderson, D. Liu, M. Noamany, P. Schone, R. Schwartz,
and D. Vergyri. Novel approaches to Arabic speech recognition:
Report from the 2002 johns-hopkins summer workshop. In Pro-
ceedings of International Conference on Acoustics, Speech,
and Signal Processing, volume 1, pages 1–344 – 1–347, 2003.

[13] K. Kirchhoff, J. Bilmes, J. Henderson, R. Schwartz, M. Noa-
many, P. Schone, G. Ji, S. Das, M. Egan, F. He, D. Vergyri,
D. Liu, and N. Duta. Novel speech recognition models for
arabic. Technical report, Johns-Hopkins University Summer
Research Workshop, 2002.

[14] K. Kirchhoff, J. Bilmes, and kevin Duh. Factored language
models - a tutorial. Technical report, Dept. of Electrical Eng.,
Univ. of Washington, 2008.

[15] B. Megyesi. Comparing data-driven learning algorithms for pos
tagging of Swedish. In Proceedings of the 2001 Conference on
Emperical Methods in Natural Language Processing, pages
151–158, 2001.

[16] A. Stolcke. SRILM — an extensible language modeling toolkit.
In Proceedings of International Conference on Spoken Lan-
guage Processing, volume II, pages 901–904, 2002.

[17] M. Y. Tachbelie and W. Menzel. Sub-word based language
modeling for Amharic. In Proceedings of International Con-
ference on Recent Advances in Natural Language Processing,
pages 564–571, September 2007.

[18] M. Y. Tachbelie and W. Menzel. Morpheme-based Language
Modeling for Inflectional Language – Amharic. John Ben-
jamin’s Publishing, Amsterdam and Philadelphia, forthcom-
ing.

[19] D. Vergyri, K. Kirchhoff, K. Duh, and A. Stolcke. Morphology-
based language modeling for Arabic speech recognition. In
Proceedings of International Conference on Spoken Language
Processing, pages 2245–2248, 2004.

[20] B. Yemam. yäamarIña säwasäw. EMPDE, Addis Ababa, 2nd.
ed. edition, 2000 EC.

[21] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,
and P. Woodland. The HTK Book. Cambridge University
Engineering Department, 2006.

433


