
International Conference RANLP 2009 - Borovets, Bulgaria, pages 251–257

Diacritization for Real-World Arabic Texts

Emad Mohamed
Indiana University

emohamed@indiana.edu

Sandra Kübler
Indiana University

skuebler@indiana.edu

Abstract
For Arabic, diacritizing written text is impor-
tant for many NLP tasks. In the work presented
here, we investigate the quality of a diacritization
approach, with a high success rate for treebank
data but with a more limited success on real-
world data. One of the problems we encountered
is the non-standard use of the hamza diacritic,
which leads to a decrease in diacritization accu-
racy. If an automatic hamza restoration mod-
ule precedes diacritization, the results improve
from a word error rate of 9.20% to 7.38% in tree-
bank data, and from 7.96% to 5.93% on selected
real-world texts. This shows clearly that hamza
restoration is a necessary step for improving di-
acritization quality for Arabic real-world texts.

Keywords

Arabic diacritization, memory-based learning

1 Introduction

The problem of diacritization, or vocalization, is es-
sential to many tasks in Arabic NLP. Arabic is gen-
erally written without the short vowels, which means
that one written form can have several pronunciations,
each pronunciation carrying its own meaning(s). The
word form ’mskn’ is an example for a highly ambigu-
ous word. Its possible pronunciations include ’maskan’
(home), ’musakkin’ (analgesic), ’masakn’ (they-fem.
have held), or ’musikn’ (they-fem. have been held).
The importance of diacritization becomes clear when
we look at how Google Translate renders ’A$tryt Alm-
skn mn AlSydlyp’ (I bought a pain killer from the
pharmacy): as ’I bought the home from the phar-
macy’. This error would not occur if the input to the
translation system were diacritized in a first step be-
fore the actual translation process. However, diacriti-
zation is far from trivial: the example above shows
that the diacritized forms of a single undiacritized
word differ in their parts of speech (POS) as well as
in their meaning. This shows that to a certain degree,
diacritization performs implicit POS tagging and word
sense disambiguation. It also shows very clearly that
word forms cannot be diacritized in isolation; the task
is heavily dependent on the context of the word.

The goal of the work reported here is the creation
of a diacritization system that works reliably on real-
world data taken from websites. The first step towards
this problem is a system that reaches a high accuracy
in an in-vitro evaluation, i.e. on data from the same
treebank on which it was trained. After we obtain a

reliable system for the treebank data, we will test it to
determine how well it works in an in-vivo evaluation,
i.e. on real-world data. More importantly, in the sec-
ond step, we will investigate how the system needs to
be modified in order to produce reliable diacritizations
in the in-vivo situation.

In the first step, we concentrate on investigating how
important different types of context are for diacritiza-
tion. We follow Zitouni et al. [16] in defining diacriti-
zation as a classification problem in which we decide
for each character in the undiacritized word whether
it is followed by a short vowel. Additionally, the clas-
sification task includes the shadda and sokoon (lack of
a vowel). The shadda is consonant gemination and is
usually found in combination with another vowel, thus
resulting in 3 classes, ã, ĩ, ũ. The shadda plays an im-
portant role in the interpretation of Arabic words be-
cause it is used, inter alia, to discriminate between the
base form of a verb and its causative form: kataba (to
write), kat ãba (to make write). At present, we ignore
case endings, mood endings, and nunation (syntactic
indefiniteness marker for a noun or adjective). In this
setting, we also ignore the hamza, the glottal stop.

Most experiments are performed on treebank data,
which is preprocessed and standardized to a very high
degree. When such a model is used for naturally oc-
curring data, such as newspaper texts published on
the world-wide web, the results are considerably lower
than the results published by Zitouni et al. [16], for
example.

For the second set of experiments, our intention is
to investigate how such a treebank trained diacriti-
zation system performs on real-world data. For this
experiment, we use the diacritization approach that
proved optimal on the treebank data (from the Penn
Arabic Treebank (ATB) [1]) and use it to diacritize
articles from the Agence France Press (AFP) Arabic
website. Although, data from AFP were included in
the training set, so that there are no cross-genre prob-
lems, our first results were disappointing. Examina-
tion of the data shows that one major difference be-
tween our training data from the ATB and the real-
world test data is that the latter collapses the differ-
ent forms of ’hamza’, the glottal stop, into the long
vowel alef, a common, but non-standard, practice. In
the real-world texts, however, practices vary consider-
ably in terms of whether the hamza is used carefully
or carelessly, or even whether it is used at all. Some
texts, like those of the AFP news agency do not use
hamzas at all. In other texts, such as the Egyptian
Al-Ahram 1, they are used correctly. From these find-
ings, we conclude that a hamza restoration program is

1 www.ahram.org.eg

251

necessary for the treatment of such texts.
In further experiments, we examine the different op-

tions of hamza restoration or normalization in search
of the optimal settings of diacritization. For this pur-
pose, we conduct two kinds of experiments: 1) in-vitro
experiments, in which we test the different settings in
a controlled setting on data from the Arabic Treebank,
and 2) in-vivo experiments, in which we use the best
settings from step 1) for diacritizing real-world data.

2 Related work

The first approaches to the diacritization of Arabic de-
fine the problem word-based, i.e. the task is to deter-
mine for each word the complete diacritized form. Gal
[10] uses a bigram Hidden Markov Model for diacritiz-
ing the Qur’an and achieves a word error rate (WER)
of 14%. His error analysis shows that the errors result
mostly from unknown words. Kirchhoff et al. [12] de-
sign a diacritization module for use in a speech recog-
nition system. Their system uses a unigram model
extended by a heuristic for unknown words, which re-
trieves the most similar unlexicalized word and then
applies edit distance operations to turn it into the
unknown word. They reach a WER (for diacritiza-
tion) of 16.5% on conversational Arabic. Nelken and
Shieber [14] tackle the problem with weighted finite-
state transducers. For known words, morphological
units are used for retrieving the diacritization while
unknown words are diacritized based on the sequence
of characters. They reach a WER of 12.8%. Zitouni
et al. [16] use a maximum entropy model in combina-
tion with a character based classification. Their fea-
tures are based on single characters of the focus word,
morphological segments, and POS tags. They reach a
WER of 17.9%. Habash and Rambow [11] perform a
full diacritization including case endings and nunation.
They use the Buckwalter analyzer [3] to obtain all pos-
sible morphological analyses, including all diacritics.
Then they train individual classifiers to disambiguate
between these analyses. Residual ambiguity is resolved
via an n-gram language model. Habash and Rambow
reach a WER of 14.9% on the test set of Zitouni et
al. [16]. Shaalan et al. [15] compare a lexicon-based
approach with an approach using word bigram statis-
tics and a Support Vector Machine (SVM) classifier.
The SVM approach uses features from automatic seg-
mentation, POS tagging, and chunk parsing. Shaalan
et al. show that the best results for diacritization are
reached by combining all three approaches. Unfortu-
nately, they use the Ummah section of the treebank
for training and testing, which can be shown to give
better results than the An Nahar News section that
Zitouni et al. and Habash and Rambow use (see Sec-
tion 3.3). To our knowledge, Shaalan et al. are the
first to include case endings as features in the task.
however, a comparison of the SVM approach with and
without case endings shows that their inclusion results
in a considerable decrease in performace: The WER
increases from 16.26% to 69.94%.

A comparison of the different approaches shows that
the definition of diacritization as inserting vowels be-
tween characters results in the best WER. However,
these studies leave the lexical context of words for the

most part unexplored. In the present study, we will
investigate this area of research. The studies also con-
centrate on treebank data, which means that it is un-
clear how well they work on real-world data.

We are not aware of any automatic approaches to
hamza restoration. For example, Diab et al. [9] do not
consider the hamza in their diacritization since “most
Arabic encodings do not count the hamza a diacritic,
but rather a part of the letter”. The relaxed attitude
towards the hamza in the Arabic orthography is part of
what Buckwalter [4] calls “suboptimal orthography”.

3 The baseline system

3.1 Data

For the baseline system, we use the Penn Arabic Tree-
bank (ATB) [1] as the data source. The treebank is en-
coded in Buckwalter transliteration [3] and is available
in a diacritized and an undiacritized version. Based
on the treebank, we performed three different experi-
ments: 1) In order to test the limits of the approach,
we decided to use a large and varied data set, with
10-fold cross-validation (CV). 2) To ensure that our
results can be compared with the results of Zitouni
et al. [16], we perform a second experiment on their
data set. 3) Based on the results from the first ex-
periment, we selected one fold of this experiment as
test set and the other 9 folds as training set for the
third experiment. This data set will also be used in
the experiments concerning the hamza restoration. In
order to keep consistency with the real-world test set
from the internet in this second series of experiments,
we chose the set including AFP data. An earlier ver-
sion of the first two experiments described here was
published in [13].

For the first experiment, we extract 170 000 words
from the AFP section (part 1 version 2.0) and approxi-
mately 160 000 words from the Ummah section (part 2
version 2.0), in a 10-fold CV setting. This experiment
is intended to determine the optimal parameter set-
tings for the machine learner and the optimal context
used for diacritization. For the second experiment,
which serves as comparison to Zitouni et al., the data
are taken from part 3, version 1.0. This data set con-
tains news items from the An Nahar News text, it is
split into a training set of approximately 288 000 words
and a devtest set of approximately 52 000 words. For
the third experiment, we chose a subset of the first
experiment, part 1, version 2.0, in order to use data
that originates from the same source, AFP, as the real-
world test files. In this setting, the 90% from the be-
ginning of the data set serve as training data and the
tail 10% are used for testing.

As mentioned previously, we define diacritization as
a classification problem: For each character in the fo-
cus word, the learner needs to decide whether the char-
acter is followed by a short vowel and what the short
vowel is. We will call this character the focus char-
acter. The task also involves the restoration of the
shadda (gemination).

The features used for determining the short vowel
following the focus character consist of the focus char-
acter itself (c), its local context in terms of neighboring

252

w−5 w−4 w−3 w−2 w−1 c−5 c−4 c−3 c−2 c−1 c c1 c2 c3 c4 c5 w1 w2 w3 w4 w5 v
kl $y” tgyr fy HyAp A l m t $ r styfn knt EndmA Evrt Ely
kl $y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely
kl $y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely u
kl $y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely a
kl $y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely a
kl $y” tgyr fy HyAp A l m t $ r d styfn knt EndmA Evrt Ely ĩ

Fig. 1: The word ’Almt$rd’ represented with one instance per word; the class represents the vowel to be inserted
after the character.

characters within the focus word, and a more global
context of neighboring words. For the local context,
5 characters to the left (c−5 . . . c−1) and 5 characters
to the right (c1 . . . c5) are used; for the lexical con-
text, 5 words to the left (w−5 . . . w−1), and 5 words to
the right (w1 . . . w5). The last value in the vector (v)
provides the correct classification, i.e. the short vowel
to be inserted after c, or - in cases where no vowel is
inserted in that position. The instances for the Arabic
word ’Almt$rd’, for example, are shown in Figure 1.
The last instance contains an example of the shadda,
represented by the tilde sign.

3.2 Methods

For classification, we use a memory-based learner,
TiMBL [7]. Memory-based learning is a lazy-learning
paradigm, which assumes that learning does not con-
sist of abstraction of the training instances into rules
or probabilities. Instead, the learner uses the training
instances directly. As a consequence, training consists
in storing the instances in an instance base, and clas-
sification finds the k nearest neighbors in the instance
base and chooses their most frequent class as the class
for the new instance. Memory-based learning has been
proven to have a suitable bias for many NLP problems
[5, 6]. One of the reasons for this success is that natural
language exhibits a high percentage of subregularities
or irregularities, which cannot be distinguished from
noise. Eager learning paradigms smooth over all these
cases while memory-based learning still has access to
the original instance. Thus, if a new instance is similar
enough to one of these irregular instances, it can be
correctly classified as such.

Memory-based learning was chosen for two reasons:
First, this approach weights features based on informa-
tion gain or gain ratio [7], thus giving some indication
of the most and the least important features. Addi-
tionally, it is a paradigm that is capable of handling
symbolic features with a high number of different fea-
ture values. This allows us to use complete context
words as features.

Parameter settings for TiMBL need to be deter-
mined first. The best results are obtained for all ex-
periments with the IB1 algorithm with similarity com-
puted as weighted overlap, i.e. with a standard city
block metric as distance measure. Relevance weights
are computed with gain ratio, and the number of k
nearest neighbors (or in TiMBL’s case, nearest dis-
tances) is set to 1. The latter setting is noteworthy in
that it signals that only the closest training examples
provide reliable information for classifying a character.
Normally, higher values of k are beneficial since they

provide a certain smoothing factor. A more detailed
investigation of different options in feature settings, as
well as optimal training set sizes can be found in [13].

For the experiments to determine the effect of con-
text on diacritization accuracy, we use 10-fold cross
validation (CV). For the experiments with the data set
from Zitouni et al. and for the AFP set, we use a desig-
nated test set. For the 10-fold CV experiments, we do
not build the folds randomly but rather sequentially,
thus ensuring that a single fold contains consecutive
articles. This may result in folds which cover different
topics from the other folds. We are convinced that
this approach is closer to real-world situations since
we cannot be sure that the training data will be from
the same time period and thus cover the same topics.
However, we make sure that all instances of a word are
put in the same fold.

For evaluation, we calculate the error rate based on
characters (CER) and based on words (WER). A de-
cision of the classifier is considered correct if both the
vowel to be inserted and the shadda (if present) are
correct. Since previous work has been evaluated on all
words in the texts, including punctuation and other
non-diacritized words such as numbers, we will present
these results to allow a comparison to previous work.
However, we believe that words that are never dia-
critized (such as numbers or punctuation signs) should
not be considered in the evaluation. For this reason,
we also provide results where such words were present
in the classification, but were excluded in the evalua-
tion.

3.3 Baseline results for treebank data

Before we start with the evaluation proper, we need to
establish the level of difficulty of the task. One mea-
sure for difficulty is the average number diacritizations
per word. A closer look at the large data set used for
the fist experiment shows that a word on average has
only 1.67 diacritizations. This figure is considerably
lower than the average in normal texts. Debili et al.
[8] found that on average, each undiacritized word type
has 2.9 diacritized versions, and there is an average of
11.6 diacritized versions per word token in a text. We
assume that the difference is a consequence of the dif-
ferent text genres.

The results of our experiments with regard to dif-
ferent contexts on the large data set are shown in the
first part of Table 1. The first experiment uses only
a character context of 5 characters to each side of the
focus character but ignores the context words, i.e. the
features from c−5 to c5 in Figure 1 are used. The next
experiment uses the lexical context to the left of the

253

With punct. W/o punct.
CER WER CER WER

Character context 2.22 6.64 6.20 14.40
Left word context 2.26 7.06 2.33 7.57
Word context 2.35 6.86 2.64 9.91
Zitouni data set 5.70 17.50 5.70 20.49
Zitouni et al. 5.5 18.0 n/a n/a
AFP data set 2.53 7.39 2.83 13.65

Table 1: The results of the diacritization experiments
on different parts of the ATB

focus word in addition to the character context but
ignores the context words on the right, i.e. the fea-
tures from w−5 to c5 are used. Finally, the last exper-
iment uses all features shown in Figure 1, i.e. it uses
the character context as well as the lexical features
to the left and to the right of the focus word. The
results show that in the evaluation including punctu-
ation and words that are never diacritized, both the
CER and the WER are slightly worse when context
is added. However, in the evaluation where punctua-
tion and non-diacritized words are excluded, we find
a considerable improvement when words from the left
context are added. Adding the right context, in con-
trast, has a negative effect on both error rates. From
these results, we conclude that the left context is more
important (which is also corroborated by the weights
assigned to the word features). And we assume that
the inclusion of words from the right context lead to
data sparseness problems. For this reason, all the re-
maining experiments are carried out with the charac-
ter context plus 5 words on the left of the focus word.

The experiment on the data set by Zitouni et al.
shows that there is considerable variability in the data
sets of the Penn Arabic Treebank. Here, the error rates
are more than twice as high as on the first, larger data
set. A comparison of our approach on this data set
shows that the results are comparable to those by Zi-
touni et al., which are listed in the row below ours.
This is notable since our system does not have access
to any linguistic preprocessing. The system by Zi-
touni et al., in contrast, has access to morphological
segments and POS tags.

The third experiment is performed on a data set that
is a subset of the first set, namely the AFP section
from part 1, version 2.0. Here, the error rates are
slightly worse than for the first set. This is the data set
that will be used for the experiments in the following
section.

4 Beyond treebank data

In this section, we will investigate the question how
the system presented in the previous section needs to
be modified in order to be usable for real-world texts,
which is not as clean as the treebank data. A first
informal evaluation of some real-world texts shows a
surprisingly high number of errors in diacritization. A
closer look at these errors shows that many of them
involved a non-standard use of the hamza. For this
reason, we decided to carry out a series of experiments
to determine a usable strategy to improve the results.

As mentioned before for all experiments reported in
this section, we use the Arabic Treebank part 1, ver-
sion 2.0, where the 90% from the beginning serve as
training data and the tail 10% are used for testing.
This section is based on AFP news, the same genre
as the real-world texts we use for evaluation. This
ensures that the effects we will see in the results are
due to our modifications and not due to out-of-domain
phenomena. All the experiments are conducted with
the optimal parameter and feature settings as deter-
mined in the first experiment described in Section 3.

We conduct four experiments to test the effect of
hamza presence or absence on diacritization as de-
tailed below:

1. Pure treebank: In order to determine the upper
bound, we train and test the diacritization system
on the treebank in its original form.

2. Normalized treebank: For this experiment, we
normalized all hamzas both in the training and
the test set. To this end, we replaced all hamzas
with the alef (A in Buckwalter transliteration [2]).
The intuition behind this experiment is to test
a simple normalization of non-standard uses of
the hamza, which might solve the problems with
non-conventional diacritization. If this experi-
ment reaches the same results as the upper bound
from experiment 1, hamzas are not important for
diacritization.

3. Hamza-free test set: Here, we train on the orig-
inal training set (with all hamzas) and test on the
test set with all hamzas removed. This experi-
ment is intended to show whether the variation
in hamzas between the training and test sets has
any bearing on diacritization. If there are no dif-
ferences, then we can reach good results on real-
world texts by simply removing all hamzas.

4. Hamza-free training set: This experiment is
the exact opposite of experiment 3. Here, we train
on the training set without hamzas and test on the
original test set (containing all hamzas).

4.1 Results

The results of the experiments presented above are
shown in Table 2. For the upper bound experiment,
in which the original treebank data are used for both
training and testing, the memory-based diacritization
system reached an overall CER of 2.53% and a WER of
7.39% when punctuation is included in the evaluation
and a CER of 2.83 and WER of 13.65 when punctu-
ation is excluded. A word is considered ill-diacritized
if any of its vowels is wrong. These results are in
the range of other published results although they are
slightly worse than the best results of the first exper-
iment described in Section 3. The reason for this can
be found in the choice of the training set, which is here
restricted to one part of the treebank. Additionally,
in the present experiments, we do not use 10-fold CV
but a single fold for testing.

When we remove all hamzas from the training and
test set (normalized treebank), the diacritization sys-
tem reaches a CER of 3.08% and a WER of 9.20%

254

With punct. W/o punct.
CER WER CER WER

Pure treebank (AFP set) 2.53 7.39 2.83 13.65
Normalized treebank 3.08 9.20 3.43 17.02
Hamza-free test set 6.51 18.11 7.26 33.48
Hamza-free training set 3.53 10.48 3.94 19.38
Hamza-restored 2.54 7.38 2.83 13.66

Table 2: The results of the in-vitro experiments with the AFP part of the ATB

including punctuation. When punctuation is not in-
cluded in evaluation, the WER increases by approx-
imately 3.5 percent points. These results show that
removing the hamzas from both the training and test-
ing sets decreases the accuracy of diacritization at
both the character and word level so that we have
to conclude that the hamza is important for diacriti-
zation and should not be normalized. The normal-
ization option may also be dis-preferred for lingustic
reasons as it collapses different characters into one,
and these characters may at times distiniguish mini-
mal pairs. For example, the words vAr and v>r (in
Buckwalter transliteration) mean ”to revolt” and ”re-
venge” respectively. The difference is not merely al-
lophonic. Similar meaning-distinguishing hamzas in-
clude the pairs: fAr (fugitive) and f>r (mouse), <rm
(a city name) and Arm (throw, imperative), mAl
(money) and m|l (destination).

The experiments in which either the training set or
the test set contained hamzas show the worst results:
For the hamza-free training set, the WER reached
10.48% including punctuation and 19.38% when punc-
tuation is excluded. For the experiment with the
hamza-free test set, both the CER (6.51% with punc-
tuation and 7.26% without punctuation) and the WER
(18.11% with punctuation and a staggering 33.48%
without punctuation) are the highest for all experi-
ments. This shows that the standard approach for
diacritizing real-world data, i.e. training on the ATB
treebank and testing on texts that may not contain
hamzas is the worst possible setting.

5 Creating a hamza restoration
module

The experiments described above lead to the conclu-
sion that we need a hamza module that can take the
raw text and restore the hamzas if necessary, before
the text is passed to the diacritization system. How-
ever, such an approach is only feasible if the hamza
restoration module reaches a high accuracy. Other-
wise, incorrectly placed hamzas may even further harm
diacritization results.

In order to test the usefulness of hamza restora-
tion, we designed a hamza restoration module using
the same training and testing sets as the AFP experi-
ment in Section 3. The module uses TiMBL with the
following settings, which proved to be optimal in a
non-exhaustive search: IB1, with similarity computed
as weighted overlap, relevance weights computed with
gain ratio, and the number of k nearest neighbors set
to ???. Similar to diacritization, hamza restoration is

treated as a classification problem, in which the clas-
sifier assigns one of the four classes A, |, <, > (alef
and the 3 hamza forms) to each potential hamza loca-
tion, whether it occurs word-initially, word-medially,
or word-finally. In order to remove non-standard dia-
critization, the module removes all hamza forms first,
including the alef, and then re-assigns a hamza form
or an alef to each location. We use the focus hamza
location and a context of the previous and following
5 characters as features. The hamza restoration accu-
racy we obtain using this module is 98.09%.

Given a hamza restoration module with sufficient
accuracy, we need to test the effect of hamza restora-
tion on diacritization. For this experiment, we use the
normalized treebank version from Section 4 (with all
hamzas replaced by alephs). This version is passed
to the hamza restoration module, and subsequently to
the diacritization system, now with the original train-
ing set, and the hamza-restored file as the test set.
We obtain considerably improved results: a CER of
2.54% and a WER of 7.38% including punctuation and
a CER of 2.83% and a WER of 13.66% without punc-
tuation (cf. experiment hamza-restored in Table 2).
This means, our results are nearly identical to the re-
sults when both training and test data contain perfect
hamza information, at least on treebank data.

In the next section, we describe the in-vivo exper-
iments, using our hamza restoration module for dia-
critizing text obtained from the AFP website. This
experiment will show whether the method presented
here can also improve results for real-world texts.

6 Diacritizing real-world texts

The test corpus we selected for this experiment con-
sists of four news stories from the AFP Arabic website
published on December 2, 2008. The resulting test set
consists of 1 332 words. None of these texts have any
hamza represented in the texts.

We conduct two experiments on these four files: The
first one uses the texts in the original form as taken
from the website as input for the diacritization sys-
tem. The second experiment passes the texts through
the hamza restoration module before sending them to
the diacritization system. We use the same parame-
ter settings and features as for the the experiments in
Section 4.

The resulting diacritized versions were given to two
independent raters for evaluation. Both raters are na-
tive speakers of Arabic and graduate students; one
of them teaches undergraduate Arabic courses. Each
rater was familiarized with the task and was given

255

No hamza restoration With hamza restoration
Text No. of words No. incorrect words WER No. incorrect words WER
1 272 20 7.35 11 4.04
2 556 51 9.17 37 6.65
3 252 19 7.54 20 7.94
4 252 16 6.35 11 4.37
Total 1332 106 7.96 79 5.93

Table 3: Diacritization of real-world texts with and without hamza restoration

instructions to correct all wrongly diacritized words.
Then the two texts were compared, and the first au-
thor, a native speaker of Arabic, served as arbitrator.

It is worth noting that rater A found 3 errors that
require a very deep knowledge at the discourse level.
The news item talks about prisoners. The number of
the prisoners is declared to be two towards the end of
the story. This requires some change in the diacritiza-
tion of the word ”prisoners” to reflect the dual. Even
an expert Arabicist would not find the correct diacriti-
zation for these three consecutive words (1 noun and 2
adjectives) without reading the whole story first. This
indicates that diacritization is sometimes challenging
even for native speakers. These three errors are not
included in the calculation.

The results of the experiments on real-world texts
are shown in Table 3. The comparison of the results
with and without hamza restoration before diacritiza-
tion show that using hamza restoration reduces the
word error rate by 2 percent points. This corresponds
to an error reduction of 25.5%.

The results for diacritization with hamza restora-
tion are clearly better than the results for the same
approach on the treebank data (experiment hamza-
restored in Table 2). We assume that the high results
are due to the selection of a small number of short
news stories in order not to overtax the human raters.
These texts are in general easier to diacritize than the
treebank texts.

7 Conclusion and Future Work

We presented a system for diacritization trained on
the Penn Arabic Treebank. After parameter and fea-
ture optimization, the system reaches competitive er-
ror rates as compared to systems such as the one by
Zitouni et al. [16] although it does not use any linguis-
tic preprocessing. In a next step, we investigated how
well such a treebank trained system performs on texts
that differ in whether the hamza is present or not. The
results show that inconsistencies between training and
test set in this respect lead to a higher number of er-
rors in diacritization. In a last experiment, we tested
our approach on real-world data taken from the AFP
website, with parallel improvements for the version
with the integrated hamza restoration module. The
experiments here show clearly that hamza restoration
is a necessary step for improving diacritization qual-
ity for Arabic real-world texts. Treebanks tend to be
more perfect than naturally occurring texts in terms
of adherence to spelling conventions, especially with
regard to diacritization. This makes them suboptimal

for training modules that are intended for real-world
texts.

For the future, we are planning to investigate a post-
processing module for hamza restoration, which checks
whether the suggested hamza belongs to the confusion
set allowed in a certain context. We are also planning
to integrate linguistic information such as segmenta-
tion and POS tagging into the diacritization module.
Additionally, we are planning to investigate how dia-
critization affects POS tagging. We assume that reli-
able POS tags will improve diacritization while at the
same time, reliable diacritics will improve POS tag-
ging, thus leading to a circular optimization problem.

References
[1] A. Bies and M. Maamouri. Penn Arabic Treebank guidelines.

Technical report, LDC, University of Pennsylvania, 2003.

[2] T. Buckwalter. Arabic morphological analyzer version 1.0. Lin-
guistic Data Consortium, 2002.

[3] T. Buckwalter. Arabic morphological analyzer version 2.0. Lin-
guistic Data Consortium, 2004.

[4] T. Buckwalter. Issues in Arabic morphological analysis. In
A. Soudi, A. van den Bosch, and G. Neumann, editors, Arabic
Computational Morphology: Knowledge-Based and Empiri-
cal Methods. Springer Verlag, 2007.

[5] W. Daelemans and A. van den Bosch. Memory Based Lan-
guage Processing. Cambridge University Press, 2005.

[6] W. Daelemans, A. van den Bosch, and J. Zavrel. Forgetting
exceptions is harmful in language learning. Machine Learning,
34:11–43, 1999. Special Issue on Natural Language Learning.

[7] W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. TiMBL: Tilburg memory based learner – version 6.1 –
reference guide. Technical Report ILK 07-07, Induction of Lin-
guistic Knowledge, Computational Linguistics, Tilburg Univer-
sity, 2007.

[8] F. Debili, H. Achour, and E. Souissi. De l’etiquetage grammat-
ical a la voyellation automatique de l’arabe. Technical report,
Correspondances de l’Institut de Recherche sur le Maghreb
Contemporain, 2002.

[9] M. Diab, M. Ghoneim, and N. Habash. Arabic diacritization in
the context of statistical machine translation. In Proceedings
of the Machine Translation Summit (MT-Summit), Copen-
hagen, Denmark, 2007.

[10] Y. Gal. An HMM approach to vowel restoration in Arabic and
Hebrew. In Proceedings of the ACL-02 Workshop on Compu-
tational Approaches to Semitic Languages, Philadelphia, PA,
2002.

[11] N. Habash and O. Rambow. Arabic diacritization through full
morphological tagging. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics (NAACL), Rochester, NY, 2007.

[12] K. Kirchhoff, J. Bilmes, J. Henderson, R. Schwartz, M. Noa-
many, P. Schone, G. Ji, S. Das, M. Egan, F. He, D. Vergyri,
D. Liu, and N. Duta. Novel speech recognition models for
Arabic - final report of the JHU summer workshop. Technical
report, Johns Hopkins University, 2002.

256

[13] S. Kübler and E. Mohamed. Memory-based vocalization of
Arabic. In Proceedings of the LREC Workshop on HLT and
NLP within the Arabic World, Marrakech, Morocco, 2008.

[14] R. Nelken and S. Shieber. Arabic diacritization using weighed
finite-state transducers. In Proceedings of the ACL Workshop
on Computational Approaches to Semitic Language, Ann Ar-
bor, MI, 2005.

[15] K. Shaalan, H. Abo Bakr, and I. Ziedan. A hybrid approach for
building Arabic diacritizer. In Proceedings of the EACL Work-
shop on Computational Approaches to Semitic Languages,
Athens, Greece, 2009.

[16] I. Zitouni, J. Sorensen, and R. Sarikaya. Maximum entropy
based restoration of Arabic diacritics. In Proceedings of the
21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computa-
tional Linguistics, COLING-ACL-2006, Sydney, Australia,
2006.

257

