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Abstract
This paper introduces Stochastic Definite Clause
Grammars, a stochastic variant of the well-
known Definite Clause Grammars. The grammar
formalism supports parameter learning from an-
notated or unannotated corpora and provides a
mechanism for parse selection by means of sta-
tistical inference. Unlike probabilistic context-
free grammars, it is a context-sensitive gram-
mar formalism and it has the ability to model
cross-serial dependencies in natural language.
SDCG also provides some syntax extensions
which makes it possible to write more compact
grammars and makes it straight-forward to add
lexicalization schemes to a grammar.

1 Introduction and background

We describe a stochastic variant of the well-known Def-
inite Clause Grammars [12], which we call Stochastic
Definite Clause Grammars (SDCG).

Definite Clause Grammars (DCG) is a grammar for-
malism built on top of Prolog, which was developed by
Pereira and Warren [12] and was based the principles
from Colmerauers metamorphis grammars [6]. The
grammars are expressed as rewrite rules which may
include logic variables, like normal Prolog rules. DCG
exploit Prologs unification semantics, which assures
equality between different instances of the same logic-
variable. DCG also allows modeling of cross-serial of
dependencies, which is known to be beyond the capa-
bility of context-free grammars [4].

In stochastic grammar formalisms such as proba-
bilistic context-free grammars (PCFG), every rewrite
rule has an associated probability.

For a particular sentence, a grammar can produce an
exponential number of derivations. In parsing, we are
usually only interested in one derivation which best
reflects the intended sentence structure. In stochas-
tic grammars, a statistical inference algorithm can be
used to find the most probable derivation, and this is a
very successful method for parse disambiguation. This
is especially true variants of PCFGs which condition
rule expansions on lexical features. Charniak [3] re-
ports that ”a vanilla PCFG will get around 75% preci-
sion/recall whereas lexicalized models achieve 87-88%
precision recall”. The reason for the impressive preci-
sion/recall of stochastic grammars is that the proba-
bilities governing the likelihood of rule expansions are
normally derived from corpora using parameter esti-
mation algorithms. Estimation with complete data,

where corpus annotations dictate the derivations, can
be done by counting expansions used in the annota-
tions. Estimation with incomplete data can be ac-
complished using the Expectation-Maximization (EM)
algorithm [8].

In stochastic unification grammars, the choice of
rules to expand is stochastic and the values assigned
to unification variables are determined implicitly by
rule selection. This means that in some derivations,
instances of the same logic variable may get different
values and unification will fail as result.

Some of the first attempts to define stochastic uni-
fication grammars did not address the issue of how
they should be trained. Brew [2] and Eisele [9] tries
to address this problem using EM, but their methods
have problems handling cases where variables fails to
unify. The resulting probability distributions are miss-
ing some probability mass and normalization results in
non-optimal distributions.

Abney [1] defines a sound theory of unification gram-
mars based on Markov fields and shows how to esti-
mate the parameters of these models using Improved
Iterative Scaling (IIS). Abney’s proposed solution to
the parameter estimation problem depends on sam-
pling and only considers complete data. Riezler[13]
decribes the Iterative Maximization algorithm which
also work for incomplete data. Finally, Cussens [7]
provide an EM algorithm for stochastic logic programs
which handles incomplete data and is not dependent
on sampling.

SDCG is implemented as a compiler that translates
a grammar into a program in the PRISM language.
PRISM [16, 19, 15] is an extension of Prolog that al-
lows expression of complex statistical models as logic
programs. A PRISM program is a usual Prolog pro-
gram augmented with random variables. PRISM de-
fines a probability distribution over the possible Her-
brand models of a program. It includes efficient im-
plementations of algorithms for parameter learning
and probabilistic inference. The execution, or sam-
pling, of a PRISM program is a simulation where
values for the random variables is selected stochasti-
cally, according to the underlying probability distribu-
tion. PRISM programs can have constraints, usually
in the form of equality between unified logic variables.
Stochastic selection of values for such variables may
lead to unification failure and resulting failed deriva-
tions must be taken into account in parameter estima-
tion. PRISM achieves this using the fgEM algorithm
[17, 20, 18], which is an adaptation of Cussen’s Failure-
Adjusted Maximization algorithm [7]. A central part
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of Cussens algorithm is the estimation of the number
of times rules are used in failed derivations. PRISM
estimates failed derivations using a failure program,
derived through a program transformation called First
Order Compilation (FOC) [14].

2 Stochastic Definite Clause
Grammars

Stochastic Definite Clause Grammars is a stochastic
unification based grammar formalism. The grammar
syntax is modeled after, and is compatible with, Defi-
nite Clause Grammars. To facilitate writing stochastic
grammars in DCG notation, a custom DCG compiler
has been implemented. The compiler converts a DCG
to a PRISM program, which is a stochastic model of
the grammar.

Utilizing the functionality of PRISM, the grammar
formalism supports parameter learning from anno-
tated or unannotated corpora and provides and mech-
anism for parse selection through statistical inference.
Parameter learning and inference is performed using
PRISMs builtin functionality.

SDCG include some extensions to the DCG syntax.
It includes a compact way of expressing recursion, in-
spired by regular expressions. It has expansion macros
used for writing template rules which allow compact
expression of multiple similar rules. The grammar syn-
tax also adds a new conditioning operator which makes
possible to condition rule expansions on previous ex-
pansions.

2.1 Grammar syntax

A grammar consist grammar rules and possibly some
helper Prolog rules and facts. A grammar rule takes
the form,

H ==> C1,C2,..,Cn.

H is called the head or left-hand side of the rule and
C1,C2,...,Cn is called the body or right-hand side of
the rule. The head is composed of a name, followed by
an optional parameter list and an optional condition-
ing clause. It has the form,

name(F1,F2,...,Fn) | V1,V2,...,Vn

The name of the rule is a Prolog atom. The pa-
rameter list is a non-empty parenthesized, comma-
separated list of features which may be Prolog vari-
ables or atoms. The number of features in rules is re-
ferred to as its arity. The optional conditioning clause
starts with the pipe (included) and is a non-empty,
comma-separated list of Prolog variables or atoms, or
a combination of the two. The conditioning clause
may also contain expansion macros in the case of un-
expanded rules.

The body of a rule is a comma-separated list of con-
stituents, of which there are four basic types: Rule
constituents, embedded Prolog code, symbol lists and
expansion macros.

Rule constituents are references to other SDCG
grammar rules. They have the same format of Prolog
goals, but may not be variables. A rule constituent

consists of a name which is a Prolog atom, followed
by an optional parenthesized, comma-separated list of
features; (F1..Fn). Features are either Prolog atoms
or variables. Rule constituents may additionally have
prefix regular expression modifiers. The allowed mod-
ifiers are * (kleene star) meaning zero or more oc-
currences, + meaning one or more occurrences and ?
meaning zero or one occurrence.

Embedded code takes the form, { P }, where P is
a block of Prolog goals and control structures. The
allowed subset of Prolog corresponds to what is al-
lowed in the body of a Prolog rule, but with the re-
striction that every goal must return a ground answer
and may not be a variable. Also, while admitted by
the syntax, meta-programming goals like call are not
allowed. The goals unify with facts and rules defined
outside the embedded Prolog code, but not in other
embedded code blocks.

Symbol lists are Prolog lists of either atoms or vari-
ables or a combination of the two. The list usually
take the form, [ S1,S2,..,SN ], but the list opera-
tor | may also be used. However, it is required that
every variable in the list is ground. A symbol list may
not be empty.

Expansion macros have the form,

@name(V1,V2,...,Vn)

where name is an atom and is followed by a non-empty
parenthesized, comma-separated list, V1...Vn, con-
sisting of atoms or variables or a combination. A
macro corresponds have a corresponding goal, name/n,
which must be defined.

2.2 Procedural semantics

The grammar rules govern the rewriting the head of
a rule into the constituents in the body of a rule. A
rule is rewritten when all its constituents have been
expanded. The order of the constituents in the body
are significant and they are expanded in a left-to-right
manner. The rewriting process always begins with the
start rule and progress in a depth-first manner. A rule
constituent in the body of a rule is thus a reference
to one or more other rules of the grammar. A gram-
mar rule is said to be matched by a constituent rule if
the name and arity of are the same and their features
unify. A constituent rule is expanded by replacing it
with the body of some matching rule. Symbol lists
are terminals and are not expanded. Embedded Pro-
log code is expanded to nothing and executed as a
side-effect. The expansion terminates when the body
only contains symbols or some constituent cannot be
expanded (derivation fails).

When a constituent matches more than one rule
there might be more than one derivation. The choice
of the rule to expand given such a constituent, should
be seen in the light of the probabilistic inference being
performed. In general, we can assume that only the
derivations relevant to the probabilistic query being
used are expanded.

2.3 Statistical semantics

A rule r ∈ Rn,a with the distinct name n and arity
a has a probability P (r) ∈ [0, 1] of being expanded in
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place of a matching rule constituent.
A rule ri may have a condition (conditioning clause),

in which case the probability of its expansion depend
on the probability of the condition ci ∈ Cn,a being
true, Cn,a being the set of possible values for condi-
tion clauses for rules in Rn,a. Each distinct condition
(clause value) has a separate probability, such that

|Cn,a|∑
i=1

P (ci) = 1

We denote number of rules in Rn,a satisfying a partic-
ular condition c, |n, a, c|.

It holds for the sum of probabilities of such rules
rn,a
i ∈ Rn,a that,

|n,a,c|∑
i=1

P (rn,a
i |c) = 1

where the probability of a rule r given a combination
of conditions c is their product, P (r|c) = P (r)P (c). If
rules with the same head (Rn,a) occur without condi-
tioning (Cn,a = ∅) then the condition true is assumed
and P (true) = 1.

The probability of a derivation is the product of the
probabilities of all rules used in that derivation. The
probability of given sentence is the sum of the proba-
bilities for each possible derivation of the sentence. A
derivation may be unsuccessful due to failure of vari-
able unification. The probability of all possible deriva-
tions, successful and unsuccessful sums to unity, given
by the relation, Psuccess = 1− Pfailure.

2.4 The translated SDCG

The compiler behaves similar to a usual DCG com-
piler, by transforming rules in a DCG syntax to Pro-
log rules with difference lists. In addition to these nor-
mal Prolog rules, which we call implementation rules,
special selection rules are used to control the stochas-
tic derivation process. Each rule head with the same
number and arity in the original DCG grammar are
grouped together and managed by one selection rule.
The selection rule has the same name and number of
features as the of the original rule, but any ground
atoms in the original rule are replaced by variables in
the selection rule. Consider the two rules in the exam-
ple below,

np(Number) ==> det(Number), noun(Number).
np(Number) ==> noun(Number).

The generated selection rule for the two rules is shown
below:

np(Number, In, Out) :-
msw(np(1), RuleIdentifier),
np_impl(RuleIdentifer, Number, In, Out).

The msw goal is a special PRISM primitive which
implements simulation of a random variable, which
here stochastically unifies RuleIndentifier to a value
given the name of the random variable. The name of
the random variable is assigned according to the name

of the nonterminal and its arity. For instance, since
np has an arity of 1, the corresponding random vari-
able is named np(1). The possible outcomes of this
particular random variable are np_1_1 and np_1_2.

The first parameter of the implementation rules
uniquely identifies them and this name corresponds
to an outcome of the random variable used by the se-
lection rule. The implementation rules for the above
grammar is shown below:

np_impl(np_1_1, Number, In, Out) :-
det(Number, In, InOut1),
noun(Number, InOut1, Out).

np_impl(np_1_2, Number, In, Out) :-
noun(Number, In, Out).

2.5 Grammar extensions

Regular expression operators, expansion macros and
conditioning clauses, which are extensions of the usual
DCG syntax, makes it possible to express aspects of
the grammar more compactly. These operators are
implemented in a preprocessing step which expands
the compacted grammar.

2.5.1 Regular expression modifiers

Regular expression operators is a way of expressing
recursion in a more convenient manner. An example
grammar rule containing all the allowed regular ex-
pression operators is shown below:

name ==> ?(title), *(firstname), +(lastname).

The regular expression operators are implemented
by generating some additional rules and replacing the
original constituent (orig const), which the operator
is applied to, with another constituent (new const).
All regular expression operators can be implemented
generating a subset of the following rules:

1) new_const ==> []
2) new_const ==> orig_const
3) new_const ==> new_const, new_const

The ? operator is implemented by adding rules 1-2.
The + operator is implemented adding rules 2-3 and
the * operator is implemented adding all the rules.
The name new_const is symbolic. The compiler use a
naming scheme, which avoids conflicting names: The
name of the regular expression modifier is prefixed to
the constituent name. For instance *(firstname) be-
comes sdcg_regex_star_firstname/0. The compiler
only adds the implementation rules for the same regu-
lar expression once, even if it is used in multiple rules.

2.5.2 Expansion macros

Macros are special Prolog goals embedded in gram-
mar rules. They may occur in both the head and the
body of rules. Grammar rules with macros are meta
grammar rules; they act as templates for the genera-
tion similar rules. The result of macro expansion of a
rule is a set of rules, equal in structure to the original
rule, but where each macro is replaced with selected
parameters from an answer for the goal. The ground
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input to the goal is omitted by default. It is possible to
explicitly configure which parameters of a goal should
be inserted using an expand_mode directive. If the
goal contains more than one non-ground/answer pa-
rameter, the answer parameters are inserted comma-
separated. If a rule contains more than one macro,
then the set of expanded rules correspond to a carte-
sian product of the answers for all the macros. When
several macros in the same rule use the same name for
a variable, this works as a constraint on the answers
for the macros. This is exactly as if the goals of the
macros were constituents in the body of a Prolog rule.

The original motivation for expansion macros was
integration of lexical resources. Suppose that we wish
to integrate the lexicon defined by the following simple
Prolog program,

word(he,sg,masc). word(she,sg,fem).
number(Word,Number) :- word(Word,Number,_).
gender(Word,Gender) :- word(Word,_,Gender).

expand_mode(number(-,+)).
expand_mode(gender(-,+)).

term(@number(Word,N),@gender(Word,G)) ==>
[ Word ].

We select the variables which should be inserted in
the resulting rules. A minus (-) indicates that the
parameter is an input parameter and will not appear in
place of the substituted macro and a plus (+) indicates
an output parameter which will appear in place of the
macro.

Since the macros in the example share the Word vari-
able, it must unify to the same value for all macros.
The result of performing macro substitutions on the
grammar above is another, macro free, grammar:

term(sg,fem)==>[she]. term(sg,masc)==>[he].

2.5.3 Conditioning

Conditioning makes it possible to condition an expan-
sion on previous expansions, which is useful for adding
lexicalization schemes to the grammar. An example of
a rule with a conditioning clause is shown below:

n1(A,B,C) | a,b ==> n2, n3.

The values of the conditioning clause, (a,b), cor-
responds to values for parameters in the head of
the rule. This relation is defined by adding a fact,
conditioning_mode(n1(+,+,-)), to the grammar.
The parameter is a compound term with the same
functor as a corresponding nonterminal. The param-
eters of this term indicate which parameters to gram-
mar rules named by the functor are subject to con-
ditioning. For instance, the conditioning mode in the
above example states that the two first parameters of
n1 should be conditioned on (indicated with +), but
the last one should not (indicated with -).

In the simple grammar fragment below, we illustrate
a simple conditioning scheme, inspired from [5], where
we condition on a single headword:

sentence ==>
np(nohead,NPHead),vp(NPHead,VPHead).

np(ParentHead,Head) | @headword(W) ==>
det(ParentHead,DetHead),noun(DetHead,Head).

vp(ParentHead,Head) | @headword(W) ==>
verb(ParentHead,Head).

We have not specified conditioning modes for the
rules, but in each case the condition corresponds to the
first parameter in the head. Assume that the macro
@headword expands to each of the words (terminals)
in the grammar. The headword is propagated from
the terminals, so for instance in the sentence rule, the
choice of which vp rule to expand depends on head-
word propagated from the preceding np. Conditioning
a rule on every word implicates that the rule given that
word will have a distinct probability distribution.

More advanced lexicalization schemes can easily be
created using the conditioning mechanism. The limi-
tation lies in the order in which variables conditioned
on are unified (and thus derivation order). It is not
possible to condition on a variable which is not yet
ground.

2.5.4 Syntax extensions example

As an illustrative example which applies all the syntax
extensions, we demonstrate a part of speech tagger ex-
pressed with SDCG. A part of speech tagger is can be
implemented as a stochastic regular grammar/Hidden
Markov Model (HMM). A HMM based POS tagger
can be created in SDCG with a single rule,

tag_word(Prev, @tag(Cur), [CurRest])
| @tag(_) ==>

@consume_word(W),
?(tag_word(Cur,_,Rest)).

This assumes definition of words, tags, a condition-
ing mode declaration. The grammar rule consumes
one word for each time it is expanded. Note that
there will be separate rules for each word, because of
the @consume_word macro, which expands the rule for
all the words in the lexicon (enclosing them in square
brackets). The next constituent in the body is a recur-
sive reference to the rule itself. It is governed by the
regular expression operator ?, which indicates that the
constituent may or may not be matched. If it is not
matched, we have termination of the recursion. The
model defined by the rule is a fully connected second
order HMM model, where the expanded grammar has
a rule for each possible transition.

To illustrate the use of the tagger we consider an
example from [3], defined here as a simple Prolog lex-
icon,

tag(none). tag(det). tag(noun).
tag(verb). tag(modalverb).
word(the). word(can). word(will). word(rust).

We introduce a helper rule to interact with the lexicon
and also a start rule,

consume_word([Word]) :- word(Word).
start(TagList) ==> tag_word(none,_,TagList).

To train the grammar we feed it with tagged sentences,
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learn([ start([det,noun,modalverb,verb],
[the,can,will,rust],[]),

start([det,noun,modalverb,verb],
[the,can,can,rust],[]),

start([det,noun,noun], [the,can,rust],[]),
start([det,noun],[the,rust],[]),
start([modalverb,noun,verb],

[will,rust,rust],[]),
start([noun,modalverb,verb],

[will,can,rust],[]),
start([noun,noun],[the,the],[]) ]).

When the grammar/tagger has been trained we can
pose a viterbi query to find the most likely tag se-
quence for a sentence,

| ?- viterbig(start(T,[the,can,will,rust],[])).
T = [det,noun,modalverb,verb|_4794] ?
yes

3 Evaluation

To test the grammar formalism with regard to more
realistic grammars, a grammar for a subset of the En-
glish language was developed. The grammar consists
of about 90 rules, not counting pre-terminal rules, and
models various different sentences types. It was orig-
inally modeled after the descriptions of context-free
grammars for English in [11] and extended with some
common agreement features, chosen with the tagset of
the Brown corpus in mind.

In a small scale experiment, the grammar was used
to parse 4000 select sentences from the Brown corpus
[10], between 2 and 60 words in length. Parsing was
relatively fast - usually less than 100 milliseconds per
sentence excluding the time used to load the grammar
and sentences. Training the grammar on the same
sentences takes quite a while longer, approximately 4
minutes.

Introducing a lexicalization scheme similar to [5] in-
creases the resulting number of random variables and
affects both training time and inference time drasti-
cally. Some optimizations are needed to work with
such lexicalized grammars in more realistic settings.

A limitation seems to be the first order compilation
process in PRISM which takes a lot of time and con-
sumes a lot of memory as the grammar grows larger.
With recursion, the process may not complete, which
has motivated the addition of an option to limit the
depth of the derivation tree.

Precision/Recall was not measured, as the intention
was only to measure the performance of the formalism,
not the usefulness of the grammar.

4 Conclusion and future work

We introduced Stochastic Definite Clause Grammars,
a new stochastic unification-based grammar formal-
ism syntacticly compatible with Definite Clause Gram-
mars. The grammar formalism borrows the expressiv-
ity and ability to model natural language phenomena
from DCG, but also enjoys the benefits from of sta-
tistical models. SDCG extends DCG syntax which

allow expression of probabilistic grammars very com-
pactly. This naturally includes probabilistic regular
grammars (such as the demonstrated POS tagger) and
probabilistic context-free grammars, but also includes
context sensitive grammars. It was demonstrated that
lexicalization schemes can be compactly expressed in
the formalism through conditioning and macros.

Some optimizations are needed in order to utilize
large grammars (and training sets) for natural lan-
guages. Alternative methods for parameter learning
may be explored.

Finally, the success of the grammar formalism de-
pends on the applications that using it. SDCG will
evolve with the development of applications using it.
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