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Abstract

In this paper, we propose a novel way to
include unsupervised feature selection meth-
ods in probabilistic taxonomy learning mod-
els. We leverage on the computation of logistic
regression to exploit unsupervised feature se-
lection of singular value decomposition (SVD).
Experiments show that this way of using SVD
for feature selection positively affects perfor-
mances.

1 Introduction

Taxonomies and, in general, networks of words con-
nected with transitive relations are extremely impor-
tant knowledge repositories for a variety of applica-
tions in natural language processing (NLP) and knowl-
edge representation (KR). In NLP, taxonomies such
as WordNet [17] are widely used in intermediate tasks
such as word sense disambiguation (e.g. [1]) and se-
lectional preference induction (e.g., [25]) as well as in
final applications such as question answering (e.g., [4])
and textual entailment recognition (e.g. [5]). In KR,
taxonomies as well as other word networks are the bulk
of domain ontologies.

To be effectively used in NLP and KR applica-
tions, taxonomies and knowledge repositories have to
be large or, at least, adapted to specific domains. Yet,
even huge knowledge repositories such as WordNet [17]
are extremely poor when used in specific domains such
as the medical domain (see [29]). Automatically creat-
ing, adapting, or extending existing knowledge repos-
itories using domain texts is, then, a very important
and active area. A large variety of methods have been
proposed: ontology learning methods [16, 3, 19] in KR
as well as knowledge harvesting methods in NLP such
as [13, 21]. These learning methods use variants of the
distributional hypothesis [12] or exploit some induced
lexical-syntactic patterns (originally used in [26]). The
task is generally seen as a classification (e.g., [22, 27])
or a clustering (e.g., [3]) problem. This allows the use
of machine learning models.

Yet, as any other machine learning problem, knowl-
edge harvesting and ontology learning models exploit
the above hypothesis to build feature spaces where
instances, i.e., words as in [22] or word pairs as in
[27], are represented. These feature spaces are used
to determine whether or not new word pairs coming
from the text collection have to be included in exist-
ing knowledge repositories. Decision models are learnt
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using existing knowledge repositories and then applied
to new words or word pairs. Generally, these models
use as features all the possible and relevant generalized
contexts where words or word pairs can appear. For
example, possible features in the word pair classifica-
tion problem are ”is a” and ”as well as”. Given the
nature of the problem, these feature spaces can then be
huge as they include all potential relevant features for
a particular relation among words. Relevant features
are not known in advance. Yet, large feature spaces
can have negative effects on machine learning models
such as increasing the computational load and intro-
ducing redundant or noisy features. Feature selection
is the solution (see [11]).

In this paper, we want to study how to improve
performances of taxonomy learning methods by using
feature selection. We focus on the probabilistic taxon-
omy learning model introduced by [27] as it uses ex-
isting taxonomies exploiting the transitivity of the isa
relation. Leveraging on the particular model, we pro-
pose a novel way of using singular value decomposition
(SVD) as unsupervised model for feature selection. In
a nutshell, given the probabilistic model for taxonomy
learning, we use SVD as a way to compute the pseudo-
inverse matrix needed in logistic regression. We will
analyze if our method for using unsupervised feature
selection positively affect performances.

Before staring, in Sec. 2 we will shortly review
methods for taxonomy learning and for feature selec-
tion. We motivate our choice of working within the
probabilistic setting. In Sec. 3, as SVD is the core
of our method, we will then introduce SVD as unsu-
pervised feature selection model. In Sec. 4 we then
describe how we introduced SVD as natural feature
selector in the probabilistic taxonomy learning model
introduced by [27]. To describe how we use SVD as
natural feature selector, we will shortly review the lo-
gistic regression used to compute the taxonomy learn-
ing model. We will describe our experiments in Sec.
5. Finally, in Sec. 6, we will draw some conclusions
and describe our future work.

2 Related work

Extracting knowledge bases from texts is one of the
major goal of NLP and KR. These methods can give an
important boost to knowledge-based systems. In this
section we want to shortly analyze some of these meth-
ods in order to motivate our choice to work within an
existing probabilistic model for learning taxonomies.
We also review the more traditional models for super-
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vised and unsupervised feature selection.

The models for automatically extracting struc-
tured knowledge, such as taxonomies, from texts
use variants of the distributional hypothesis [12] ex-
ploit some induced lexical-syntactic patterns (origi-
nally used in [26]).

The distributional hypothesis is widely used in
many approaches for taxonomy induction from texts.
For example, it is used in [3] for populating lattices,
i.e. graphs of a particular class, of formal concepts.

Lexical syntactic patterns are also a source of rele-
vant information for deciding whether or not a partic-
ular relation holds between two words. This approach
has been widely used for detecting hypernymy rela-
tions such as in [13, 18], for other ontological relations
such as in [21], or for more generic relations such as
in [24, 28]. These learning models generally use the
hypothesis that two words are related according to a
particular relation if these often appear in specific text
fragments.

Despite the wide range of models for taxonomy
learning, only very few exploit the structure of existing
taxonomies. The task is seen as building taxonomies
from scratch. In [3], for example, lattices and the re-
lated taxonomies are the target. Yet, existing tax-
onomies may be used to drive the process of building
new taxonomies. In [19], WordNet [17] and WordNet
glosses are used to drive the construction of domain
specific ontologies. In [22], taxonomies are augmented
exploiting their structure. Inserting a new word in
the network is seen as a classification problem. The
target classes are the nodes of the existing hierarchy.
The distributional description of the word as well as
the existing taxonomy structure is used to make the
decision. This model is purely distributional. In [27],
a probabilistic model exploiting existing taxonomies
is introduced. This model is purely based on lexical-
syntactical patterns. Also in this case, the insertion of
a new word in the hierarchy is seen as a binary clas-
sification problem. Yet, the classification decision is
taken over a pair of words, i.e., a word and its possi-
ble generalization. The probabilistic classifier should
decide if this pair belongs or not to the taxonomy.

The probabilistic taxonomy learning models has at
least two advantages with respect to the other models.
The first advantage is that it coherently uses existing
taxonomies in the expansion phase. Both existing and
new information is modeled in the same probabilistic
way. The second advantage is that classification prob-
lem is binary, i.e., a word pair belongs or not to the
taxonomy. This allows to build a unique binary clas-
sifier. This is not the case for models such as the one
of [22], where we need a multi-class classifier or a set
of binary classifiers. For these two reasons, we are us-
ing the probabilistic taxonomy learning setting for our
study.

Yet, in applications involving texts such as taxon-
omy learning, machine learning models are exposed
to huge feature spaces. This has not always positive
effects. A first important problem is that huge fea-
ture spaces require large computational and storage
resources for applying machine learning models. A
second problem is that more features not always re-
sult in better accuracies of learnt classification mod-
els. Many features can be noise. Feature selection, i.e.,
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the reduction of the feature space offered to machine
learners, is seen as a solution (see [11]).

There is a wide range of feature selection models
that can be classified in two main families: supervised
and unsupervised. Supervised models directly exploit
the class of the instances for determining if a feature is
relevant or not. The idea is to select features that are
highly correlated with final target classes. Information
theoretic ranking criteria such as mutual information
and information gain are often used (see [8]). Unsuper-
vised models are instead used when the information on
classes of instances is not available at the training time
or it is inapplicable such as in information retrieval.
Straightforward and simple models for unsupervised
feature selection can be derived from information re-
trieval weighting schemes, e.g., term frequency times
inverse document frequency (¢f *idf). In this case, rel-
evant features are respectively those appearing more
often or those more selective, i.e., appearing in fewer
instances.

Feature selection models are also widely used in
taxonomy learning. For example, attribute selection
for building lattices of concepts in [3] is done applying
specific thresholds on specific information measures on
the attributes extracted from corpora. This models
uses conditional probabilities, point-wise mutual in-
formation, and a selectional-preference-like measure as
the one introduced in [25].

3 Unsupervised Feature Selec-
tion with SVD

A very important way of unsupervised feature selec-
tion is the application of the SVD. As this is the bulk
of our methodology we will review how SVD can be
used for this purpose. SVD has been largely used in
information retrieval for reducing the dimension of the
document vector space [7].

SVD, originally, is a decomposition of a rectangular
matrix. Given a generic rectangular n x m matrix A,
its singular value decomposition is A = ULV where
Uis amatrix n x 7, VT is a 7 x m and ¥ is a diago-
nal matrix r x r. The diagonal elements of the ¥ are
the singular values such as 6; > 6 > ... > 6, > 0
where 7 is the rank of the matrix A. For the decom-
position, SVD exploits the linear combination of rows
and columns of A.

There are different ways of using SVD as unsu-
pervised feature reduction. An interesting way is to
exploit its approximated computations, i.e. :

A~ Ak = UnLXkaXkV]g;n (1)

where k is smaller than the rank r. The computation
algorithm [10] allows to stop at a given k different from
the real rank r. The property of the singular values,
ie., 61 > 6y > ... > §, > 0, guarantees that the first k
are bigger than the discarded ones. There is a direct
relation between the informativeness of the i-th new
dimension and the singular value §;. High singular val-
ues correspond to dimensions of the new space where
examples have more variability whereas low singular
values determine dimensions where examples have a
smaller variability (see [15]). These latter dimensions



can be then hardly used as efficient features in learn-
ing. The possibility of computing approximated ver-
sions of matrices gives a powerful method for feature
selection and filtering as we can decide in advance how
many features or, better, linear combination of original
features we want to use.

4 Probabilistic
Learning and SVD

Taxonomy

In this section we will firstly introduce the probabilistic
model (Sec. 4.1) and, then, we will describe how SVD
is used as feature selector in the logistic regression that
estimates the probabilities of the model (Sec. 4.2).
To describe this part we need to go in depth into the
definition of the logistic regression and some ways of
computing it.

4.1 Probabilistic model

In the probabilistic formulation [27], the task of learn-
ing taxonomies from a corpus is seen as a maximum
likelihood problem. The taxonomy is seen as a set T'
of assertions R over pairs R; ;. If R;; isin T, ¢ is
a concept and j is one of its generalization (i.e., the
direct or the indirect generalization). For example,
Riog,animai € T describes that dog is an animal ac-
cording to the taxonomy 7.

The main probabilities are then: (1) the prior prob-
ability P(R;; € T) of an assertion R;; to belong
to the taxonomy T and (2) the posterior probability
P(R;; € T|€; ;) of an assertion R; ; to belong to the
taxonomy T given a set of evidences ¢ ; ; derived from
the corpus. These evidences are derived from the con-
texts where the pair (4, j) is found in the corpus. The
vector € ; is a feature vector associated with a pair
(,7). For example, a feature may describe how many
times ¢ and j are seen in patterns like ”i as j” or ”i is
a j”. These among many other features are indicators
of an is-a relation between ¢ and j (see [13]).

Given a set of evidences E over all the relevant
word pairs, the probabilistic taxonomy learlling task
is defined as the problem of finding a taxonomy 7" that
maximizes the probability of having the evidences F,
ie.:

~

T = arg max P(E|T)

In [27], this maximization problem is solved with a lo-
cal search. What is maximized at each step is the
ratio between the likelihood P(E|T”) and the like-
lihood P(E|T) where 77 = T U N and N are the
relations added at each step. This ratio is called
multiplicative change A(NN) and is defined as follows
A(N) = P(E|T")/P(E|T).

The main innovation of the model in [27] is the pos-
sibility of adding at each step the best relation N =
{R;;} as well as R;; with all the relations induced
from R;;, ie., N ={R;;} UI(R; ;) where I(R; ;) are
the relations induced using the existing taxonomy and
R; ;. Given the taxonomy T" and the relation R; ;, the
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set I(R; ;) contains R, if Ry is in T and contains
Rkyj if Rk,i isin 7. 1

We will experiment with our feature selection
methodology in two different models:

flat: at each iteration step, a single relation is
added, i.e. R;; = argmaxp, ; A(R; ;)

inductive: at each iteration step, a set of re-
lations is added, ie. I(R;;) where R;;
argmaxp, ; A(I(R; ;).

The last important fact is that it is possible to
demonstrate that
P(RZ‘J' S T|?i’j)
1-— P(R,}j € T|?1J)
= k- OddS(RiJ‘) (2)

A(R; ;) = k-

where k is a constant (see [27]) that will be neglected in
the maximization process. This last equation gives the
possibility of using the logistic regression as it is. In
the next sections we will see how SVD and the related
feature selection can be used to compute the odds.

4.2 Exploiting SVD in Logistic Regres-
sion

We here show that the odds(R; ;) in eq. 2 can be com-
puted with logistic regression (Sec. 4.2.1). We then de-
scribe how we can compute logistic regression using a
particular pseudo-inverse matrix (Sec. 4.2.2). Finally,
we show that approximated pseudo-inverse matrices
can be computed using SVD (Sec. 4.2.3).

4.2.1 Logistic Regression

Logistic Regression [6] is a particular type of statistical
model for relating responses Y to linear combinations
of predictor variables X. It is a specific kind of Gen-
eralized Linear Model (see [20]) where its function is
the logit function and the dependent variable Y is a
binary or dichotomic variable which has a Bernoulli
distribution. The dependent variable Y takes value 0
or 1. The probability that Y has value 1 is function of
the regressors = (1, z1, ..., Tg).

The probabilistic taxonomy learner model intro-
duced in the previous section falls in the category of
probabilistic models where the logistic regression can
be applied as R;; € T is the binary dependent vari-
able and ?i,j is the vector of its regressors. In the
rest of the section we will see how the odds, i.e., the
multiplicative change, can be computed.

We start from formally describing the Logistic Re-
gression Model. Given the two stochastic variables Y
and X, we can define as p the probability of Y to be 1
given that X=x, i.e.p = P(Y = 1|X = x) The distribu-
tion of the variable Y is a Bernoulli distribution. Given
the definition of the logit(p) as logit(p) = In (ﬁ)
and given the fact that Y is a Bernoulli distribution,

I For example: given T and Riog,animal if Ranimal,organism €
T then I(Rfiog,animal) contains Rd.og,organism~
Moreover given T and Rpird,beast if Riurkey,beast € 1 then
I(Rbird,beast) contains Rturkey,bird~
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the logistic regression foresees that the logit is a linear
combination of the values of the regressors, i.e.,

logit(p) = Bo + Brz1 + ... + Bk 3)

where (g, (1, ..., Bk are called regression coefficients of
the variables 1, ..., x) respectively.

It is obviously trivial to determine the odds(R; ;)
related to the multiplicative change of the probabilistic
taxonomy model. The odds, the ratio between the
positive and the negative event, can be determined as
follows:

inductive
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cuts with SVD of the feature space

The set of equations in Eq. 5 are a particular case
multiple linear regression [2]. As @ is a rectangular
and singular matrix, the system (Eq.5) has no solution.
This problem can be solved by the Moore-Penrose
pseudoinverse Q* [23]. Then, we determine the re-

~ —_—
gressors as 8 = QT logit(p).

4.2.3 Computing Pseudoinverse with SVD

We finally reached the point where it is possible to
explain our idea that is naturally using singular value
decomposition (SVD) as feature selection in a proba-

odds(R; ) P(R; ;€T| € ;) ;= exp(Bo + ?z’jﬁ) (4) bilistic taxonomy learner. In previous sections we de-

i) = 1=P(R; ;€T e,

4.2.2 Estimating Coefficients with Pseudoin-
verse

The remaining problem is how to estimate the regres-
sion coefficients. This estimation is done using the
maximal likelihood estimation to prepare a set of lin-
ear equations using the above logit definition and,
then, solving a linear problem. This will give us the
possibility of introducing the necessity of determining
a pseudo-inverse matrix where we will use the singu-
lar value decomposition and its natural possibility of
performing feature selection. Once we have the regres-
sion coefficients, we have the possibility of estimating
a probability P(R; ; € T|€; ;) given any configuration
of the values of the regressors ?m-, i.e., the observed
values of the features. Let assume we have a mul-
tiset O of observations extracted from Y x E where
Y € {0,1} and we know that some of them are posi-
tive observations (i.e., ¥ = 1) and some of them are
negative observations (i.e., Y = 0). For each pair, the
relative configuration €; € E appears at least once in
O and can be determined using the maximal likelihood
estimation P(Y = 1|%€;). Then, from the equation of
the logit (Eq. 3), we have a linear equation system,
ie.

logit(p) = QB (5)

where @ is a matrix that includes a constant column
of 1, necessary for the By of the linear combination of
the values of the regression. Moreover it includes the
set of evidences, i.e. Q= (1,€1...¢m).
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scribed how the probabilities of the taxonomy learner
can be estimated using logistic regressions and we con-
cluded that a way to determine the regression coef-
ficients 3 is computing the Moore-Penrose pseu-
doinverse Q7. It is possible to compute the Moore-
Penrose pseudoinverse using the SVD in the fol-
lowing way [23]. Given an SVD decomposition of the
matrix Q = UXVT the pseudo-inverse matrix is:

QT =vxtuT (6)

The diagonal matrix ¥ is a matrix » x r obtained
calculating the reciprocals of the singular value of X.
‘We have now our opportunity of using SVD as nat-
ural feature selector as we can compute different ap-
proximations of the pseudo-inverse matrix. The algo-
rithm for computing SVD is iterative (Sec. 3). The
firstly derived dimensions are those with higher singu-
lar value. We can then decide how many dimensions
we want to use. The first k dimensions are more in-
formative than the k 4+ 1. We can consider different k
in order to obtain different SVD as approximations of
the original matrix (Eq. 1). We can define different
approximations of the inverse matrix Q* as Q;, i.e.:

+_ + T
Qk = V”XkaXkUka

5 Experimental Evaluation

In this section, we want to empirically explore whether
our use of SVD feature selection positively affects per-
formances of the probabilistic taxonomy learner. The
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best way of determining how a taxonomy learner is
performing is to see if it can replicate an existing ”tax-
onomy “. We will experiment with the attempt of repli-
cating a portion of WordNet [17]. In the experiments,
we will address two issues: determining to what extent
SVD feature selection affect performances of the tax-
onomy learner and determining if, for the probabilistic
taxonomy learner, SVD is better than other simpler
models for supervised and unsupervised feature selec-
tion. We will explore the effects on both the flat and
the inductive probabilistic taxonomy learner.

In the rest of the section we will describe: the ex-
perimental set-up (Sec. 5.1) and the results of the
experiments in term of performance (Sec. 5.2).

5.1 Experimental Set-up

To completely define the experiments we need to de-
scribe some issues: how we defined the taxonomy to
replicate, which corpus we have used to extract evi-
dences for pairs of words, which feature space we used,
and, finally, the feature selection models we compared
against. As target taxonomy we selected a portion of
WordNet? [17]. Namely, we started from the 44 con-
crete nouns divided in 3 classes: animal, artifact, and
vegetable. For each word w, we selected the synset
Sy that is compliant with the class it belongs to. We
then obtained a set S of synsets. We then expanded
the set to S” adding the siblings (i.e., the coordinate
terms) for each synset in S. The set S’ contains 265
coordinate terms plus the 44 original concrete nouns.
For each element in S we collected its hypernyms, ob-
taining the set H. We then removed from the set H
the 4 topmosts: entity, unit, object, and whole. The
set H contains 77 hypernyms. For the purpose of the
experiments we both derived from the previous sets
a taxonomy 7' and produced a set of negative exam-
ples T. The two sets have been obtained as follows.
The taxonomy 7T is the portion of WordNet implied by
O =HUSY’, ie. T contains all the (s,h) € O x O that
are in WordNet and T contains all the (s,h) € O x O
that are not in WordNet. We have 5108 positive pairs
in T" and 52892 negative pairs in 7.

2 We used the version 3.0
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We then produced two experimental settings: a
natural and an artificial one. In the natural setting
we used only positive pairs in the training set. This
is the natural situation when augmenting existing tax-
onomies. Only positive word pairs can be derived from
existing taxonomies. Yet, negative pairs cannot. In
the artificial setting we used both positive and nega-
tive examples.

To obtain the training and the testing sets, we ran-
domly divided the set T'U T in two parts T}, and Ti,
respectively, of 70% and 30% of the original TUT.

As corpus we used ukWaC [9]. This is a web ex-
tracted corpus of about 2700000 web pages containing
more than 2 billion words. The corpus contains docu-
ments of different topics such as web, computers, edu-
cation, public sphere, etc.. It has been largely demon-
strated that the web documents are good models for
natural language [14].

As the focus of the paper is the analysis of the effect
of the SVD feature selection, we used as feature spaces
both n-grams and bag-of-words. Out of the TUT, we
selected only those pairs that appeared at a distance
of at most 3 tokens. Using this 3 tokens, we generated
two spaces: (1) bag-of-word and (2) the bigram space
that contains bigrams and monograms. For the pur-
pose of this experiment, we used a reduced stop list as
classical stop words as punctuation, parenthesis, the
verb to be are very relevant in the context of features
for learning a taxonomy.

Finally, we want define the feature selection models
we compared against. As unsupervised feature selec-
tion models we used the term frequency times the in-
verse document frequency (#f*idf). Instances € have
the role of the documents. As supervised feature selec-
tion models we used the mutual information (mi). For
all the feature selection models, we selected the first
k features. Finally, we used a manual feature selec-
tion model based on the Heart’s patterns [13]. In this
model that we call manual, we used as features only
the classical Hearst’s patterns.

5.2 Results

In the first set of experiments we want to focus on
the issue whether or not performances of the proba-



bilistic taxonomy learner is positively affected by the
proposed feature selection model based on the singu-
lar value decomposition. We then determined the per-
formance with respect to different values of k. This
latter represents the number of surviving dimensions
where the pseudo-inverse is computed. The features of
this experiment are unigrams derived from a 3-sized-
window. Punctuation has been considered. Figures
1 plots the accuracy of the probabilistic learner with
respect to the size of the feature set, i.e. the number &
of single values considered for computing the pseudo-
inverse matrix. To determine if the effect of the feature
selection is preserved during the iteration of the local
search algorithm, we report curves at different sizes of
the set of added pairs. Curves are reported for both
the flat model and the inductive model. The flat al-
gorithm adds one pair at each iteration. Then, we
reported curves for 40 and 80 added pairs. The curves
show that accuracy doesn’t increase after a dimension
of k=400. For the inductive model we report the accu-
racies for around 40, 80, 130 added pairs. The optimal
dimension of the feature space seems to be around 500
as after that value performances decrease or stay sta-
ble. SVD feature selection has then a positive effect
for both the flat and the inductive probabilistic taxon-
omy learners. This has beneficial effects both on the
performances and on the computation time.

In the second set of experiments we want to determine
whether or not SVD feature selection for the prob-
abilistic taxonomy learner behaves better than other
feature selection models. We then fixed k to 600 both
for the SVD selection model and for the other feature
selection models. In this experiments, the original fea-
ture space is the bigram space. Figure 2 shows results.
Curves report accuracies of the different models after
n added pairs. In the natural setting, we compared our
model against the tf % idf and the manual feature se-
lection. Our SVD model outperforms both models of
feature selection. The same happened against mutual
information (M) in the artificial setting. Our SVD
way of selecting features seems to be very effective.

6 Conclusions and Future Work

We presented a model to naturally introduce SVD fea-
ture selection in a probabilistic taxonomy learner. The
method is effective as allows the designing of better
probabilistic taxonomy learners. We still need to ex-
plore whether or not the positive effect of SVD feature
selection is preserved in more complex feature spaces
such as syntactic feature spaces as those used in [27].
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