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Abstract

Contextual representationmodels have achieved

great success in improving various downstream

natural language processing tasks. However,

these language-model-based encoders are dif-

ficult to train due to their large parameter

size and high computational complexity. By

carefully examining the training procedure,

we observe that the softmax layer, which pre-

dicts a distribution of the target word, often in-

duces significant overhead, especially when

the vocabulary size is large. Therefore, we re-

visit the design of the output layer and consider

directly predicting the pre-trained embedding

of the target word for a given context. When

applied toELMo, theproposedapproach achieves

a 4-fold speedup and eliminates 80% trainable

parameters while achieving competitive per-

formance on downstream tasks. Further anal-

ysis shows that the approach maintains the

speed advantage under various settings, even

when the sentence encoder is scaled up.

1 Introduction

In recent years, text representation learning ap-

proaches, such as ELMo (Peters et al., 2018a),

GPT (Radford et al., 2018), BERT (Devlin et al.,

2019), and GPT-2 (Radford et al., 2019), have

been developed to represent generic contextual

information in natural languages by training an

encoder with a language model objective on

a large unlabelled corpus. During the training

process, the encoder is given part of the text

and asked to predict the missing pieces. Prior

studies show that the encoders trained in this way

can capture generic contextual information of the

input text and improve a variety of downstream

tasks significantly.

However, training contextual representations

is known to be a resource-hungry process. For

example, ELMo is reported to take about 2

weeks to train on a one-billion-token corpus

with a vocabulary of 800,000 words using three

GPUs.1 This slow training procedure hinders the

development cycle, prevents fine-grained param-

eter tuning, and makes training contextual repre-

sentations inaccessible to the broader community.

Recent work also raises concerns about the envi-

ronmental implications of training such large

models (Strubell et al., 2019). In addition, the suc-

cess of these models stems from a large amount of

data they used. It is challenging, if not impossible,

to train a contextual representation model on a

larger corpus with tens or hundreds of billions of

tokens.

In this work, we explore how to accelerate

contextual representation learning. We identify the

softmax layer as the primary cause of inefficiency.

This component takes up a considerable portion

of all trainable parameters (80% for ELMo)

and consumes a huge amount of training time.

However, it is often not needed in the final model

as the goal of contextual representation learning

is to build a generic encoder. Therefore, it is

rather a waste to allocate extensive computational

resources to the softmax layer.

Inspired by Kumar and Tsvetkov (2019), we con-

sider learning contextual representation models

with continuous outputs. In the training process,

the contextual encoder is learned by minimizing

the distance between its output and a pre-trained

target word embedding. The constant time com-

plexity and small memory footprint of the output

layer perfectly serve our desire to decouple learn-

ing contexts and words and devote most com-

putational resources to the contextual encoder. In

addition, we combine the approach with open-

vocabulary word embeddings such that the model

can be trained without the need to pre-define a

1https://github.com/allenai/bilm-tf/

issues/55.

611

Transactions of the Association for Computational Linguistics, vol. 7, pp. 611–624, 2019. https://doi.org/10.1162/tacl a 00289
Action Editor: Luke Zettlemoyer. Submission batch: 1/2019; Revision batch: 6/2019; Published 9/2019.

c© 2019 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://github.com/allenai/bilm-tf/issues/55
https://github.com/allenai/bilm-tf/issues/55
https://doi.org/10.1162/tacl_a_00289


closed word set as the vocabulary. We also provide

an alternative interpretation of learning contextual

encoders with continuous outputs that sheds light

on how the pre-trained embedding could affect the

performance of the model.

We conduct a comprehensive empirical study

to analyze the proposed approach and several

existing methods that are originally proposed to

reduce the complexity of the output layer in lan-

guage models, such as the adaptive softmax, and

the sub-word methods. We incorporate these ap-

proaches with ELMo and conduct a comprehen-

sive study to compare them in terms of training

speed and performance on five downstream tasks.

We demonstrate that the proposed approach ef-

fectively reduces the training time and trainable

parameters while maintaining competitive perfor-

mance compared with the baselines. Our approach

also exhibits consistent computational advanxtage

under different conditions (e.g., with different vo-

cabulary sizes, with different sentence encoders,

and with different number of GPUs).

Source code is available athttps://github.

com/uclanlp/ELMO-C.

2 Background and Related Work

Contextual representation We review contex-

tual representation models from two aspects:

how they are trained and how they are used in

downstream tasks.

CoVe (McCann et al., 2017) uses the source lan-

guage encoder from a machine translation model

as a contextual representation model. Peters et al.

(2018a) advocate for the use of larger unlabelled

corpora and proposes ELMo, a forward and a back-

ward LSTM-based (Hochreiter and Schmidhuber,

1997) language model, whereas GPT (Radford

et al., 2018) and GPT-2 (Radford et al., 2019) build

a language model with the Transformer (Vaswani

et al., 2017). BERT (Devlin et al., 2019) intro-

duces the masked language model and provides

deep bidirectional representation.

There are two existing strategies for applying

pre-trained contextual representations to down-

stream tasks: 1) feature-based and 2) fine-tuning.

In the feature-based approach, fixed features

are extracted from the contextual encoder (e.g.,

ELMo, CoVe) and inserted as an input into a

task-specific model. In the fine-tuning approach,

the contextual encoder is designed as a part of

the network architecture for downstream tasks,

and its parameters are fine-tuned with the down-

stream task. BERT is designed for the fine-tuning

approach but it is also evaluated with the feature-

based approach. GPT-2 is a scaled-up version

of GPT and exhibits strong performance under

zero-shot settings.

Speeding up language models training Con-

siderable efforts have been devoted to accelerat-

ing the training process of language models. One

line of research focuses on developing faster

sequence encoder architectures such as CNN

(Kim et al., 2016; Dauphin et al., 2017), QRNN

(Bradbury et al., 2016), SRU (Lei et al., 2018),

and the Transformer (Vaswani et al., 2017).

These architectures have been extensively used

for learning language representations (Radford

et al., 2018; Devlin et al., 2019; Tang et al.,

2018). Another line of work focuses on the large-

vocabulary issue, as a large and ever-growing vo-

cabulary results in an intractable softmax layer.

Our work falls into the second line and we review

existing solutions in detail.

Several studies for language modeling focus

on directly reducing the complexity of the soft-

max layer. Following Kumar and Tsvetkov (2019),

we group them into two categories: sampling-

based approximations and structural approxima-

tions. Sampling-based approximations include the

sampled softmax (Bengio et al., 2003) and NCE

(Mnih and Teh, 2012). The sampled softmax ap-

proximates the normalization term of softmax by

sampling a subset of negative targets, and NCE

replaces the softmax with a binary classifier. On

the other hand, structural approximations such as

the hierarchical softmax (Morin and Bengio, 2005)

and the adaptive softmax (Grave et al., 2016), form

a structural hierarchy to avoid expensive nor-

malization. The adaptive softmax, in particular,

groups words in the vocabulary into either a short-

list or clusters of rare words. For frequent words,

a softmax over the short-list would suffice, which

reduces computation and memory usage signifi-

cantly. The adaptive softmax has been shown to

achieve results close to those of the full softmax

while maintaining high GPU efficiency (Merity

et al., 2018).

Regarding contextual representation models,

ELMo used the sampled softmax and GPT and

BERT resorted to a subword method. Specifi-

cally, they used WordPiece (Wu et al., 2016) or

BPE (Sennrich et al., 2016) to split the words into
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subwords and the language models were trained

to take subwords as input and also predict sub-

words. This method is efficient and scalable, as

the subword vocabulary can be kept small. One

potential drawback of these subword-level lan-

guage models, however, is that they produce rep-

resentations for fragments of words. Therefore,

it takes extra effort to generate word-level repre-

sentations (see the discussion in Section 4.2).

The high cost of the softmax layer has also

been noted in the sentence representation learning

literature. Following the success of Word2Vec

(Mikolov et al., 2013), methodssuchasSkipThought

(Kiros et al., 2015) have been developed to learn

distributed sentence representations by predicting

the context sentences of a given sentence, which

involves sequentially decoding words of the target

sentences. Jernite et al. (2017) and Logeswaran

and Lee (2018) notice the inefficiency of the

softmax layer during decoding and propose to use

discriminative instead of generative objectives,

eliminating the need for decoding. However, these

approaches are not directly applicable to contex-

tual representation learning.

3 Approach

A contextual representation model, at its core, is

a language model pre-trained on a large unlabeled

corpus. In the following, we review the objective

of language models and the architectures of exist-

ing contextual representation models. We then

introduce the proposed model.

Language model objective Given a set of text

sequences as the training corpus, we can construct

a collection of word-context pairs (w, c), and the

goal of a language model is to predict the word

w based on the context c. In a forward language

model, the context c is defined as the previous

words in the sequence, whereas for a backward

language model, the context of a word is defined

as the following words. For a masked language

model, some words in the input sentence are

masked (e.g., replaced by a [MASK] token) and

the objective is to predict the masked words from

the remainder. Different contextual representa-

tion models optimize different objectives. For

example, ELMo trains a forward and backward

language model and BERT trains a masked-

language model.

Model architecture A typical neural language

model consists of three parts: 1) an input layer, 2)

a sequence encoder, and 3) a softmax layer. Given

a word-context pair (w, c), the input layer uses a

word embedding or a character-CNN model (Kim

et al., 2016) to convert the input words in c into

word vectors. Then the sequence encoder embeds

the context into a context vector c ∈ Rm using a

multi-layer LSTM (Hochreiter and Schmidhuber,

1997), a Gated CNN (Dauphin et al., 2017), or a

Transformer (Vaswani et al., 2017). The softmax

layer then multiplies the context vector c with

an output word embedding2
W ∈ RV×m and

uses a softmax function to produce a conditional

distribution p(w|c) over the vocabulary of size V .

In a language model, the learning objective

l(w, c) for (w, c) is then expressed as:

l(w, c) = − log p(w|c)

= − log softmax(cW T )

= −c ·w + log
∑

w′
exp(c ·w′), (1)

where w ∈ Rm is a row from W corresponding

to the target word w and the second term sums

over the vocabulary. After the model is trained, the

contextual representations are generated from the

latent states of the sequence encoder. For example,

ELMo combines the hidden states of the LSTMs

to generate contextualized word embedding for

each word in a sentence. We refer the reader to

Peters et al. (2018a) for details.

Note that the size of W and the computational

complexity of the second term in Eq. (1) scale

linearly to the vocabulary size, V . Therefore,

when V is large, the softmax layer becomes the

speed bottleneck.

Our approach The scaling issue of softmax also

occurs in other language generation and sequence-

to-sequence models. In the literature, several ap-

proaches have been proposed to approximate the

softmax layer or bypass it with a subword method

(see Section 2). Recently, Kumar and Tsvetkov

(2019) propose to treat the context vector as con-

tinuous outputs and directly minimize the distance

2The dimension of the original output from the sequence

encoder may not match the dimension of the output word

embedding. In that case, a projection layer is added after the

original sequence encoder to ensure that the two dimensions

match.
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between the context vector and the pre-trained

word embedding associated with the target word,

l(w, c) = d(c,w) (2)

The distance function l could be the L2 distance

‖c − w‖2, the cosine distance c·w
‖c‖‖w‖ or a prob-

abilistic distance metric.

We argue that the idea of learning with con-

tinuous outputs particularly suits contextual rep-

resentation learning. As the goal is to obtain a

strong contextual encoder, it makes sense to use a

pre-trained output word embedding and decouple

learning the contextual encoder and the output

embedding. In the remainder of this section, we

discuss the computational efficiency of the pro-

posed approach and its combination with the open-

vocabulary word embedding. We also provide an

alternative way to interpret training contextual en-

coders with continuous outputs.

3.1 Computational Efficiency

The continuous output layer has a reduced arith-

metic complexity and trainable parameter size.

We illustrate these improvements and how they

contribute to reducing the overall training time of a

contextual representation model in the following.

For comparison, we include the sampled softmax,

the adaptive softmax, and the subword method in

the discussion.

3.1.1 Learning with Continue Outputs

Arithmetic complexity The arithmetic com-

plexity (i.e., FLOPs) of evaluating loss with con-

tinue outputs (i.e., Eq. 2) takes O(m), as we

only need to calculate the distance between two

m-dimensional vectors. The complexity of the

sampled softmax is proportional to the number of

negative samples per batch. When the vocabulary

is huge, a large number of negative samples are

needed (Jozefowicz et al., 2016). For the adaptive

softmax, the time complexity is determined by the

capacities of the short-list and the rare-word clus-

ters, which grows sub-linearly to the vocabulary

size. The complexity of the subword method is

determined by the subword vocabulary size. In

contrast, the time spent on the continuous output

layer and loss evaluation remains constant with

respect to the vocabulary size and is negligible.

Trainable parameter size The output word

embedding usually takes up a huge part of the

parameters of a language model. For example, the

softmax layer in ELMo trained on the One Billion

Word Benchmark (Chelba et al., 2013) takes up

more than 80% of the trainable parameters of

the entire model. Even if an approximation such

as the sampled softmax is used, the number of

trainable parameters is not reduced. Approaches

like the adaptive softmax reduce the dimension of

softmax embedding for rare words, the trainable

parameter size of which is effectively reduced but

still remains sizable. For a model trained on the

same corpus (Grave et al., 2016), the adaptive

softmax still amounts to 240 million parameters

whereas the sequence encoder has only around

50 million parameters. On the contrary, we learn

a contextual encoder with Eq. (2) using a pre-

trained word embedding, reducing the trainable

parameters besides the encoder from tens or hun-

dreds of millions to zero.

3.1.2 Overall Training Time

We now discuss how the efficiency improvements

to the output layer contribute to the reduction

of the overall training time, in the context of

synchronous stochastic gradient descent training

on multiple GPUs. In general, the following three

factors determine the training time.

Arithmetic complexity The arithmetic com-

plexity of a model includes the complexity of the

forward and backward propagation on the in-

put layer, the sequence encoder, and the output

layer. It also includes the overhead of the opti-

mization algorithm such as gradient clipping and

model updates. The complexity of this optimiza-

tion overhead is often proportional to the number

of parameters that need updating. With the con-

tinuous output layer, not only the arithmetic com-

plexity but also the optimization overhead are

reduced.

GPU memory consumption The training time

is also affected by GPU memory consumption,

as less GPU memory consumption leads to larger

batch size. For the same amount of data and hard-

ware resource, larger batch size means better

parallelism and less training time. Our approach

exhibits small GPU memory footprints, due to

reductions of the arithmetic complexity (with

fewer intermediate results to keep) and trainable

parameter size (with fewer parameters to store).

As a result, training with continuous outputs is 2

to 4 times more memory-efficient than with the

softmax layer (see Section 5.2).
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Note that as the output word embedding is

fixed, we can keep that embedding in the main

memory and only load the required part to the

GPU memory. Despite the fact that this comes

with an overhead of moving part of the output

word embedding from CPU to GPU memory at

each iteration, the benefit of parallelism often

dominates over the communication overhead on

mainstream hardware, where the GPU memory

is often comparatively limited. We also note that

larger batch size may lead to difficulty in opti-

mization. Several methods have been developed

to ease the large-batch training issue (Goyal et al.,

2017; You et al., 2018). We show that these meth-

ods are sufficient for resolving the optimization

difficulty in our experiment (Section 4).

Communication cost To train large neural net-

work models, using multiple GPUs almost becomes

a necessity. In addition, one way to scale up

current systems is to increase the number of GPUs

used. In such cases, the communication cost across

GPUs needs to be taken into consideration. The

cost occurs from synchronizing the parameters and

their gradients across GPUs, which is proportional

to the size of parameters that need to be updated.

For the sampled softmax, due to the use of the

sparse gradient, the communication cost is pro-

portional to the number of the sampled words. For

the adaptive softmax and the subword language

model, the communication cost is proportional

to the trainable parameter size. The continuous

output layer, on the other hand, incurs little com-

munication cost across GPUs.

3.2 Open-Vocabulary Training

We utilize the open-vocabulary word embedding

as both the input and output layer embedding. Open-

vocabulary word embeddings, such as the FastText

embedding and the MIMICK model (Pinter et al.,

2017), utilize character or subword information to

provide word embeddings. They could represent

an unlimited number of words with a fixed number

of parameters. As a result, we can train contextual

encoders with an open vocabulary, which means

we do not need to pre-define a closed word set as

the vocabulary and the model can be trained on

any sequences of words.

Open-vocabulary input layer To be easily ap-

plied in various tasks, the contextual encoder usu-

ally has an open-vocabulary input layer. ELMo

uses a character-CNN but it is relatively slow.

Thus we use a pre-trained open-vocabulary word

embedding as the input layer of the contextual

encoder, reducing the time complexity of the input

layer to a negligible level. This also aligns with

the main spirit of our approach, which is to spend

computational resources on the most important

part, the sequence encoder.

Open-vocabulary output layer For the soft-

max layer, including efficient variants such as the

adaptive softmax, the output vocabulary has to

be pre-defined so that the normalization term can

be calculated. As the softmax layer’s arithmetic

complexity and parameter size grow when the vo-

cabulary size grows, the vocabulary is often trun-

cated to avoid expensive computation.

With the continuous output layer, we can con-

duct training on an arbitrary sequence of words, as

long as the output embedding for those words can

be derived. This can be achieved by using the

open-vocabulary embedding. This feature is espe-

cially attractive if we are training on domains or

languages with a long-tail word distribution such

as the biomedical domain, where truncating the

vocabulary may not be acceptable.

3.3 Interpretation of Learning Contextual

Encoders with Continuous Outputs

In the following, we justify the intuition behind

learning with continue outputs and discuss how

the pre-trained word embedding affects the per-

formance of the model.

Language models are essentially modeling the

word-context conditional probability matrix, that

is, A ∈ RN×V where Ac,w = p(w|c), N is the

number of all possible contexts, and V is the

vocabulary size (Levy and Goldberg, 2014; Yang

et al., 2017). The continuous output layer can

be viewed as modeling A after using the word

embedding as a projection matrix.

To illustrate this, consider the global objective

of the layer with the cosine distance:3

L =
∑

(w,c)
#(w, c)l(w, c)

= −
∑

(w,c)
#(w, c)c ·w

= −
∑

c
#(c)c·

∑

w

p(w|c)w,

= −
∑

c
#(c)c·

∑

w

Ac,ww,

3For simplicity, we take the cosine distance as a running

example but the conclusions hold for other distance functions.
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Model Input Sequence Encoder Output

ELMO CNN LSTM Sampled Softmax

ELMO-C (OURS) FASTTEXTCC LSTM w/ LN CONT w/ FASTTEXTCC

ELMO-A FASTTEXTCC LSTM w/ LN Adaptive Softmax

ELMO-Sub Subword LSTM w/ LN Softmax

ELMO-CONEB FASTTEXTONEB LSTM w/ LN CONT w/ FASTTEXTONEB

ELMO-CRND FASTTEXTCC LSTM w/ LN CONT w/ Random Embedding

ELMO-CCNN Trained CNN LSTM w/ LN CONT w/ Trained CNN

ELMO-CCNN-CC Trained CNN LSTM w/ LN CONT w/ FASTTEXTCC

ELMO-CCC-CNN FASTTEXTCC LSTM w/ LN CONT w/ Trained CNN

Table 1: Specifications of variants of ELMo models compared in Sections 4 and 5. CONT

means the model has continuous outputs. LN means layer normalization.

where #(w, c) is the number of occurrences of the

pair (w, c) in the corpus. We assume all vectors

(c and w) are normalized.

To optimize the inner product between c and∑
w p(w|c)w, we essentially align the direction

of context vector c with the expected word vector

under context c,
∑

w p(w|c)w = Ew∼p(w|c)w. In

other words, given a word embedding matrix

W ∈ RV×d, our approach aligns c with the cor-

responding row (AW )c,: inAW . Therefore, the ob-

jective can be viewed as conducting multivariate

regression to approximate (AW )c,: given the context.

Based on this view, the performance of the

contextual representation model depends on how

much information of the original matrix A is

preserved after projection with W . In the spirit

of PCA (Jolliffe, 2011), to keep the variance of

A, we would like to have (AW )c,: and (AW )c′,:
distant from each other if c and c′ are very different.

Therefore, a pre-trained word embedding, which

projects words with different meanings into

different positions in space, is a natural choice

for the projection matrix W and can help preserve

much of the variance of A.

4 Experiment

We accelerate ELMo with the proposed approach

and show that the resulting model ELMO-C is

computationally efficient and maintains competi-

tive performance, compared to the original ELMo

model (ELMO), an ELMo variant with the adap-

tive softmax (ELMO-A4), and another variant with

the subword method (ELMO-Sub).

4We include ELMO-A instead of a model with sampled

softmax because the adaptive softmax has been shown to

have superior performance (Grave et al., 2016).

4.1 Setup

Models In the following, we introduce the mod-

els in detail. Table 1 provides a summary. The

original ELMo consists of a character-CNN as

the input layer, a forward and backward LSTM

with projection as the sequence encoder, and a

sampled softmax as the output layer. Adagrad

(Duchi et al., 2011) is used as the optimizer. We

conduct experiments using the reimplementation

of ELMO in AllenNLP (Gardner et al., 2018) and

build the others upon it.

The key difference between ELMO-C and ELMO

is that ELMO-C produces continuous outputs and

we train it with the cosine distance loss. A FastText

embedding trained on Common Crawl (Mikolov

et al., 2017) (FASTTEXTCC) is used as the output

embedding. Based on preliminary experiments,

we also make three minor changes: 1) we use

FASTTEXTCC as the input layer as it is more efficient

than the character-CNN model; 2) we add a layer

norm (Ba et al., 2016) after the projection layer of

the LSTM to improve the convergence speed; 3)

we use Adam with the learning rate schedule from

Chen et al. (2018) to help training with a large

batch size.

Our main goal is to study how different output

layers affect the training speed and performance,

which cannot be achieved by just comparing

ELMO-C and ELMO, due to the aforementioned

minor changes to ELMO-C. Therefore, we intro-

duce two additional baseline models (ELMO-A

and ELMO-Sub), which differ from ELMO-C in a

minimal way. Specifically, their sequence en-

coders and training recipes are kept the same as

ELMO-C. Thus ELMO-C, ELMO-A, and ELMO-Sub

can be directly compared.
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ELMOORG BASE FASTTEXTCC ELMO ELMO-A ELMO-Sub ELMO-C

Time − − − 14 x 3 5.7 x 4 3.9 x 4 2.5 x 4

Batch − − − 128 256 320 768

Params − − − 499M 196M 92M 76M

SNLI 88.7 88.0 87.7 88.5 88.9 87.1 88.8

Coref NA NA 68.90 72.9 72.9 72.4 72.9

SST-5 54.7 51.4 51.30 ± 0.77 52.96 ± 2.26 53.58 ± 0.77 53.02 ± 2.08 53.80 ± 0.73

NER 92.22 90.15 90.97 ± 0.43 92.51 ± 0.28 92.28 ± 0.20 92.17 ± 0.56 92.24 ± 0.10

SRL 84.6 81.4 80.2 83.4 82.7 82.4 82.4

Table 2: Computational efficiency of the main competing models and their performance on five NLP

benchmarks. Time is the overall training time in Days x Cards format. Batch is the maximal batch size

per card. Params is the number of trainable parameters in millions. Due to the small test sizes for NER

and SST-5, we report mean and standard deviation across three runs. Our approach (ELMO-C) exhibits

better computational efficiency and shows comparable performance compared with ELMO, ELMO-A,

and ELMO-Sub.

ELMO-A uses the adaptive softmax as its output

layer. We carefully choose the hyper-parameters

of the adaptive softmax to obtain an efficient yet

strong baseline. It has only half of the parameters

of the one reported in Grave et al. (2016) but

achieves a perplexity of 35.8, lower than ELMO’s

39.7.

ELMO-Sub takes subwords as input and also

predicts subwords. Thus, unlike other models, its

vocabulary consists of around 30,000 subwords

created using BPE (Sennrich et al., 2016). For

this reason, a lookup-table-style embedding rather

than FASTTEXTCC is used as its input layer and a

vanilla softmax is used as its output layer. Its input

and output word embedding are tied and trained

from scratch.

For reference, we also list the results of ELMo

and the baseline reported in Peters et al. (2018a)

as ELMOORG and BASE. However, these models are

evaluated using different configurations. Finally,

we also include FASTTEXTCC a (non-contextual)

word embedding model, as another baseline.

All contextual representation models are trained

on the One Billion Word Benchmark for 10

epochs and the experiments are conducted on a

workstation with 8 GeForce GTX 1080Ti GPUs,

40 Intel Xeon E5 CPUs, and 128G main memory.

Downstream benchmarks We follow Peters

et al. (2018a) and use the feature-based approach

to evaluate contextual representations on down-

stream benchmarks. ELMo was evaluated on six

benchmarks and we conduct evaluations on five

of them. SQuAD (Rajpurkar et al., 2016) is not

available for implementation reasons.5 In the

following, we briefly review the benchmarks and

task-specific models. For details please refer to

Peters et al. (2018a).

• SNLI (Bowman et al., 2015): The textual

entailment task seeks to determine whether

a ‘‘hypothesis’’ can be entailed from a

‘‘premise’’. The task-specific model is ESIM

(Chen et al., 2017).

• Coref: Coreference resolution is the task

of clustering mentions in text that refer to

the same underlying entities. The data set

is from CoNLL 2012 shared task (Pradhan

et al., 2012) and the model is from Lee et al.

(2018). Note that we use an improved version

of the Coref system (Lee et al., 2017) used in

Peters et al. (2018a).

• SST-5 (Socher et al., 2013): The task in-

volves selecting one of five labels to describe

a sentence from a movie review. We use the

BCN model from McCann et al. (2017).

• NER: The CoNLL 2003 NER task (Sang

and De Meulder, 2003) consists of newswire

from the Reuters RCV1 corpus tagged with

four different entity types. The model is a

biLSTM-CRF from Peters et al. (2018a),

similar to Collobert et al. (2011).

• SRL: Semantic role labeling models the

predicate-argument structure of a sentence. It

5The SQuAD experiment in Peters et al. (2018a) was

conducted with an implementation in TensorFlow. The

experiment setting is not currently available in AllenNLP

(https://github.com/allenai/allennlp/

pull/1626), nor can it be easily replicated in PyTorch.
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seeks to answer ‘‘Who did what to whom’’.

The model is from He et al. (2017) and the

data set is from Pradhan et al. (2013).

For SNLI, SST-5, NER, and SRL, we use

the same downstream models as in Peters et al.

(2018a) re-implemented in AllenNLP.6 For Coref,

Peters et al. (2018a) uses the model from Lee et al.

(2017) and we use an improved model (Lee et al.,

2018) from the same authors. For all the tasks,

the hyper-parameters are tuned to maximize the

performance for the original ELMo and all models

are tested under the same configurations.

4.2 Main Results

We report the main results in Table 2. Our ap-

proach (ELMO-C) enjoys a substantial compu-

tational advantage while maintaining competitive

or even superior performance, compared to ELMO,

ELMO-A, and ELMO-Sub.

Model efficiency For model efficiency, the

statistics of ELMO is reported by the original

authors and they use three GTX 1080 Tis. We

train ELMO-A, ELMO-Sub, and ELMO-C using

four GTX 1080 Tis. Roughly speaking, compared

with ELMO, ELMO-C is 4.2x faster and 6x more

memory-efficient. To give a clear view of the

speedup the CONT layer brings, we compare

ELMO-C with ELMO-A. ELMO-A differs from

ELMO-C only in the output layer. Still, ELMO-

C has a 2.28x speed advantage and is 3x more

memory-efficient. Compared with ELMO-Sub, our

approach holds a 1.56x speed advantage and is

2x more memory-efficient. The results here only

show the overall efficiency of our approach under

the setting of ELMo and a detailed analysis of

the efficiency is desirable, which we provide in

Section 5.2.

Performance on downstream tasks ELMO-C

works especially well on semantic-centric tasks,

such as SNLI, Coref, and SST-5. However, for

tasks that required a certain level of syntactic

information, such as NER and SRL (He et al.,

2018), ELMO-C suffers from slight performance

degradation compared with ELMO, but it remains

competitive with ELMO-A and ELMO-Sub. We

suspect that the performance degradation is related

to the pre-trained embedding and conduct further

analysis in Section 5.1.

6For SRL, the score reported by AllenNLP is lower than

the score reported by CoNLL official script.

In addition, we notice that the performance of

ELMO-Sub is unstable. It shows satisfying per-

formance on SST-5, NER, and SRL. However,

it lags behind on Coref and even fails to outper-

form FASTTEXTcc on SNLI. ELMO-Sub provides

subword-level contextual representations, which

we suspect could be the cause of unstable perfor-

mance. Specifically, to get the representation for a

word in evaluation on word-level tasks, we follow

Devlin et al. (2019) to use the representation of its

first subword. This could be sub-optimal if precise

word-level representation is desired (e.g., the suf-

fix of a word is an important feature). These results

are consistent with the observation in Kitaev and

Klein (2018). They find that special design has to

be made to apply BERT to constituency parsing

because of the subword segmentation. However,

we notice that the scope of our experiment is lim-

ited. It is likely that when ELMO-Sub is scaled

up or used with the fine-tuning method, the afore-

mentioned issue is alleviated—we leave that to

future work.

5 Analysis

We conduct analysis regarding the effect of the

pre-trained word embedding on the performance

of the contextual encoder. We also investigate the

contributions of different factors to the overall

training time and study the speedup of our ap-

proach under various conditions.

5.1 Effect of the Pre-trained Embedding

We show the effect of the pre-trained embedding

by introducing several variants of ELMO-C (sum-

marized in Table 1) and list their performance in

Table 3.

Quality of the pre-trained embedding We

aim to understand how the quality of the pre-

trained output word embedding W affects the

performance of the contextual encoder. To study

this, we train a FastText word embedding on the

One Billion Word Benchmark, a much smaller

corpus than Common Crawl. We then train an

ELMO-C variant, ELMO-CONEB, by using this em-

bedding in the input and output layers. Com-

paring it to ELMO-C, ELMO-CONEB holds up

surprisingly well and it is competitive on SNLI,

Coref, and SST-5 while being inferior on NER

and SRL.

This motivates us to take a step further and

use a completely random output word embedding.
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Task ELMO-C ELMO-CONEB ELMO-CRND ELMO-CCNN ELMO-CCNN-CC ELMO-CCC-CNN

SNLI 88.8 88.4 88.4 88.2 88.0 88.4

Coref 72.9 73.0 72.4 72.9 72.8 72.6

SST-5 53.80 ± 0.73 52.70 ± 0.90 53.01 ± 1.67 53.38 ± 0.68 54.33 ± 1.26 54.16 ± 0.96

NER 92.24 ± 0.10 92.03 ± 0.47 91.99 ± 0.35 92.24 ± 0.36 92.04 ± 0.33 91.93 ± 0.53

SRL 82.4 82.2 82.9 82.8 83.4 83.3

Table 3: Performance of ablation models on five NLP benchmarks. ELMO-C is included for reference.

We replace the output embedding of ELMO-C

with a random embedding matrix, of which each

element is randomly drawn from a standard normal

distribution. We denote this model as ELMO-CRND.

We find that this model performs well (Table 3),

with only a mild performance drop compared to

ELMO-C. The performance of ELMO-CRND shows

the robustness of the proposed approach and

demonstrates that the deep LSTM is expressive

enough to fit a complex output space. However,

we find that the pre-trained input word embedding

is still indispensable because using a randomly

initialized input embedding would lead to brittle

performance (e.g., 85.8 on SNLI).

Pre-trained CNN layer as word embedding

In Section 4, we observed that models using Fast-

Text embedding (ELMO-C and ELMO-A) as input

performed worse than ELMo on SRL, a task

relying heavily on syntactic information. We

suspect that the FastText embedding is weaker

on capturing syntactic information than the

character-CNN trained in ELMo (Peters et al.,

2018b). To verify this, we train ELMO-C using

the trained CNN layer from ELMo as the input

layer (ELMO-CCNN-CC) or the output embedding

(ELMO-CCC-CNN). We observe that the two models

exhibit notably better performance on SRL (see

Table 3). We also consider a ELMO-CCNN model,

which uses the CNN layer as both the input and

output embedding. On SRL, ELMO-CCNN per-

forms favorably compared to ELMO-C but slightly

worse than ELMO-CCNN-CC or ELMO-CCC-CNN.

We suspect that this is because ELMO-CCNN-CC

and ELMO-CCC-CNN benefit from different kinds

of embeddings in the input layer and the output

layer.

5.2 Computational Efficiency

Next, we study the computational efficiency of the

continuous output layer against several baselines

from two aspects. First, in Section 3.1, we dis-

cussed three factors governing the overall training

time of the model: 1) arithmetic complexity, 2)

GPU memory consumption, and 3) communica-

tion cost. We aim to study how each factor affects

the overall training time of each model. Second,

in the above experiments, we focus on ELMo

with the LSTM as the sequence encoder. We

wonder whether the continuous output layer can

deliver attractive speedup for sequence encoders

of different types and sizes.

We investigate the continuous output layer

(CONT) and three common baseline output layers:

1) the subword-level language model (SUBWORD),

2) the adaptive softmax layer (ADAPTIVE), and 3)

the sampled softmax layer (SAMPLED). Addition-

ally, we include a variant of the sampled softmax

denoted as FIXED where the output word embed-

ding is initialized by the FastText embedding and

fixed during the training. This output layer is

similar to a special case of CONT with a ranking

loss, where the model encourages its output to be

close to the target word embedding but far from a

negative sample.

In total, we study five different output layers.

For several output layers, the trade-off between

computational efficiency and model performance

is controlled by their hyper-parameters. We

choose hyper-parameters close to those reported

in the literature to strike a balance between speed

and performance.

5.2.1 Speedup Breakdown

We pair the five different output layers with the

same input layer (fixed word embedding) and

sequence encoder (ELMo’s LSTM with projec-

tion). We then test the training speed of these

models under three scenarios, which are designed

to reflect the individual effect of the arithmetic

complexity, the GPU memory consumption, and

the communication cost:

• S1 (small batch): We use one GPU card and

set the batch size to be 1. The asynchronous

execution feature of the GPU is disabled. The

time needed to finish one batch is reported.
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Vocab Params Batch S1 (small batch) S2 (large batch) S3 (multiple GPUs)

CONT ∞ 76M 640 0.47s 115.28s 34.58s

FIXED ∞ 76M 512 1.17x 1.24x 1.24x

SUBWORD ∞ 92M 320 1.09x 1.53x 1.55x

ADAPTIVE

40K 97M 384 1.08x 1.30x 1.34x

800K 196M 256 1.16x 1.47x 1.89x

2000K 213M 192 1.25x 1.82x 2.49x

SAMPLED

40K 96M 512 1.07x 1.18x 1.30x

800K 483M 256 1.15x 1.35x 1.91x

2000K 1102M 64 1.16x 2.35x 16.09x

Table 4: Statistics on the computation efficiency of different models. For CONT, we report the actual

training time in seconds. For other models, we report the relative training time compared to CONT.

Params: Number of trainable parameters of the whole model in millions. Batch: Maximal batch size per

card.

• S2 (large batch): We use one GPU card and

the maximal batch size. The time needed to

finish training on one million words for each

model is reported.

• S3 (multiple GPUs): We use 4 GPU cards

and the maximal batch size. The time needed

to finish training on one million words for

each model is reported.

In Table 4, we report the training speed of

the models under each scenario.7 In addition, we

report the parameter size and the maximal batch

size on one GPU card. For ADAPTIVE and SAMPLED,

the vocabulary size also affects the training speed

so we test them under three different vocabulary

sizes:8 40K, 800K, and 2,000K.

Arithmetic complexity The arithmetic com-

plexity of the models is reflected by the speed

under S1, where the GPU memory is always

abundant and the arithmetic complexity is the

dominating factor. CONT holds a mild advan-

tage (1.07x-1.25x) over baseline models, which

is expected because the LSTM layers in ELMo

7CONT under S3 is slightly slower than the ELMO-C model

reported in Section 4.2. This is because when training the

ELMO-C model reported in 4.2, we actually train a forward

ELMO-C on two cards and train a backward ELMO-C on

two other cards, which reduces the communication cost by

half. This optimization is only applicable to our approach in

the setting of ELMo and does not work for other baseline

methods. In this experiment, we disable this optimization for

generosity.
8The 2,000K vocabulary is created on the tokenized 250-

billion-word Common Crawl corpus (Panchenko et al., 2017),

which covers words that appear more than 397 times.

are quite slow and that undermines the advantage

of the continuous output layer. For ELMO-Sub,

the small yet non-negligible softmax layer adds

overhead to the arithmetic complexity. FIXED,

ADAPTIVE, and SAMPLED have similar arithmetic

complexity but ADAPTIVE has the highest com-

plexity when the vocabulary size is large (e.g.,

2,000K).

GPU memory consumption The effect of

GPU memory consumption can be observed by

comparing the statistics under S1 and S2. The

difference between S2 and S1 is that the parallel

computing of the GPU is fully utilized. For

CONT, its great GPU memory efficiency helps

it gain larger speedup under S2, especially against

common baselines such as SUBWORD, ADAPTIVE,

and SAMPLED. For ELMO-Sub, in addition to the

overhead from the softmax layer, breaking words

into subwords leads to longer sequences, which

increases the training time by 1.1x. Thus it is

1.53x slower than CONT under S2. SAMPLED suffers

from its huge parameter size and exhibits poor

scalability with respect to the vocabulary size

(2.35x slower when the vocabulary size reaches

2,000K).

Communication cost The effect of the com-

munication cost across GPUs can be observed

by comparing the statistics under S2 and S3.

As the communication cost and GPU memory

consumption both are highly dependent on the

parameter size, the observations are similar.
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LSTM LSTMX2 TRANS BASE ELMO TRANS LARGE GPT

CONT 3.97s 10.42s 15.87s 34.58s 48.55s 43.53s

FIXED 1.93x 1.32x 1.52x 1.24x 1.37x 1.14x

SUBWORD 2.32x 1.49x 1.78x 1.55x 1.72x 1.44x

ADAPTIVE 4.58x 2.20x 2.62x 1.89x 3.28x 2.33x

SAMPLED 2.50x 1.60x 2.91x 1.91x OOM 8.31x

Table 5: Time needed to finish training on one million words for each model using

4 GPU cards and the maximal batch size. For CONT, we report the actual training

time in seconds. For other models, we report the relative training time compared to

CONT. OOM means that the GPU memory is not sufficient. CONT shows substantial

speedup over common baselines under all scenarios.

5.2.2 The Continuous Output Layer with

Different Sequence Encoders

For this experiment, we pair the output layers

with different sequence encoders and investigate

their training time. We start from a single-layer

LSTM with a hidden size of 2048 (LSTM) and

a two-layer version (LSTMX2), both reported in

Grave et al. (2016). They are all smaller than the

sequence encoder used in ELMO. We then scale

up to the forward and backward Transformer

reported in Peters et al. (2018b) (TRANS BASE)

and the multi-layer LSTM with projection in

ELMO(ELMO). Finally, we test two larger Trans-

former, TRANS LARGE, a scaled-up version of TRANS

BASE, and a uni-directional Transformer (denoted

as GPT) with the same size as BERTBASE (Devlin

et al., 2019) and GPT (Radford et al., 2018),

respectively. For all models but GPT, the lengths

of the input sequences are fixed at 20. For GPT,

we use input sequences of length 512, following

its original setting. For ADAPTIVE and SAMPLED, we

fix the vocabulary size at 800K.

We report the training time of each model

using four GPU cards and the maximal batch

size (S3) in Table 5. We find that the continuous

output layer remains attractive, even when the

sequence encoder is as large as GPT. In that case,

the speedup of CONT over SUBWORD, ADAPTIVE,

and SAMPLED is still substantial (1.44x - 8.31x). In

addition, we observe that for sequence encoders

of the same type, more complex they get, less

speedup CONT enjoys, which is expected. For

instance, from LSTM to LSTMX2, the speedup of

CONT decreases noticeably. However, the speedup

the continuous output brings also depends on

the architecture of the sequence encoder. For

instance, though TRANS BASE and TRANS LARGE are

more complex than LSTMX2, CONT enjoys larger

speedup with those transformers. Profiling the

training process of sequence decoders such as

LSTM and the Transformer on GPU devices is an

interesting research topic but out of the scope of

this study.

6 Conclusion

We introduced an efficient framework to learn

contextual representation without the softmax

layer. The experiments with ELMo showed that

we significantly accelerate the training of the

current models while maintaining competitive

performance on various downstream tasks.
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