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Abstract

We introduce an architecture to learn joint
multilingual sentence representations for 93
languages, belonging to more than 30 different
families and written in 28 different scripts. Our
system uses a single BiLSTM encoder with a
shared byte-pair encoding vocabulary for all
languages, which is coupled with an auxiliary
decoder and trained on publicly available
parallel corpora. This enables us to learn a
classifier on top of the resulting embeddings
using English annotated data only, and trans-
fer it to any of the 93 languages without any
modification. Our experiments in cross-lingual
natural language inference (XNLI data set),
cross-lingual document classification (MLDoc
data set), and parallel corpus mining (BUCC
data set) show the effectiveness of ourapproach.
We also introduce a new test set of aligned
sentences in 112 languages, and show that our
sentence embeddings obtain strong results in
multilingual similarity search even for low-
resource languages. Our implementation, the
pre-trained encoder, and the multilingual test
set are available athttps://github.com/
facebookresearch/LASER.

1 Introduction

While the recent advent of deep learning has led
to impressive progress in natural language pro-
cessing (NLP), these techniques are known to be
particularly data-hungry, limiting their applicabil-
ity in many practical scenarios. An increasingly
popular approach to alleviate this issue is to
first learn general language representations on
unlabeled data, which are then integrated in task-
specific downstream systems. This approach was
first popularized by word embeddings (Mikolov

∗This work was performed during an internship at Facebook
AI Research.

et al., 2013b; Pennington et al., 2014), but has
recently been superseded by sentence-level rep-
resentations (Peters et al., 2018; Devlin et al.,
2019). Nevertheless, all these works learn a sepa-
rate model for each language and are thus unable to
leverage information across different languages,
greatly limiting their potential performance for
low-resource languages.

In this work, we are interested in universal
language agnostic sentence embeddings, that
is, vector representations of sentences that are
general with respect to two dimensions: the input
language and the NLP task. The motivations for
such representations are multiple: the hope that
languages with limited resources benefit from
joint training over many languages, the desire to
perform zero-shot transfer of an NLP model from
one language (typically English) to another, and
the possibility to handle code-switching. To that
end, we train a single encoder to handle multiple
languages, so that semantically similar sentences
in different languages are close in the embedding
space.

Whereas previous work in multilingual NLP has
been limited to either a few languages (Schwenk
and Douze, 2017; Yu et al., 2018) or specific
applications like typology prediction (Malaviya
et al., 2017) or machine translation (Neubig and
Hu, 2018), we learn general purpose sentence
representations for 93 languages (see Table 1).
Using a single pre-trained BiLSTM encoder for
all 93 languages, we obtain very strong results
in various scenarios without any fine-tuning, in-
cluding cross-lingual natural language inference
(XNLI data set), cross-lingual classification (MLDoc
data set), bitext mining (BUCC data set), and a
new multilingual similarity search data set we
introduce covering 112 languages. To the best
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af am ar ay az be ber bg bn br bs ca cbk cs da de
train sent. 67k 88k 8.2M 14k 254k 5k 62k 4.9M 913k 29k 4.2M 813k 1k 5.5M 7.9M 8.7M
en→xx err. 11.20 60.71 8.30 n/a 44.10 31.20 29.80 4.50 10.80 83.50 3.95 4.00 24.20 3.10 3.90 0.90
xx→en err. 9.90 55.36 7.80 n/a 23.90 36.50 33.70 5.40 10.00 84.90 3.11 4.20 21.70 3.80 4.00 1.00
test sent. 1000 168 1000 – 1000 1000 1000 1000 1000 1000 354 1000 1000 1000 1000 1000

dtp dv el en eo es et eu fi fr ga gl ha he hi hr
train sent. 1k 90k 6.5M 2.6M 397k 4.8M 5.3M 1.2M 7.9M 8.8M 732 349k 127k 4.1M 288k 4.0M
en→xx err. 92.10 n/a 5.30 n/a 2.70 1.90 3.20 5.70 3.70 4.40 93.80 4.60 n/a 8.10 5.80 2.80
xx→en err. 93.50 n/a 4.80 n/a 2.80 2.10 3.40 5.00 3.70 4.30 95.80 4.40 n/a 7.60 4.80 2.70
test sent. 1000 – 1000 – 1000 1000 1000 1000 1000 1000 1000 1000 – 1000 1000 1000

hu hy ia id ie io is it ja ka kab kk km ko ku kw
train sent. 5.3M 6k 9k 4.3M 3k 3k 2.0M 8.3M 3.2M 296k 15k 4k 625 1.4M 50k 2k
en→xx err. 3.90 59.97 5.40 5.20 14.70 17.40 4.40 4.60 3.90 60.32 39.10 80.17 77.01 10.60 80.24 91.90
xx→en err. 4.00 67.79 4.10 5.80 12.80 15.20 4.40 4.80 5.40 67.83 44.70 82.61 81.72 11.50 85.37 93.20
test sent. 1000 742 1000 1000 1000 1000 1000 1000 1000 746 1000 575 722 1000 410 1000

kzj la lfn lt lv mg mhr mk ml mr ms my nb nds nl oc
train sent. 560 19k 2k 3.2M 2.0M 355k 1k 4.2M 373k 31k 2.9M 2k 4.1M 12k 8.4M 3k
en→xx err. 91.60 41.60 35.90 4.10 4.50 n/a 87.70 5.20 3.35 9.00 3.40 n/a 1.30 18.60 3.10 39.20
xx→en err. 94.10 41.50 35.10 3.40 4.70 n/a 91.50 5.40 2.91 8.00 3.80 n/a 1.10 15.60 4.30 38.40
test sent. 1000 1000 1000 1000 1000 – 1000 1000 687 1000 1000 – 1000 1000 1000 1000

pl ps pt ro ru sd si sk sl so sq sr sv sw ta te
train sent. 5.5M 4.9M 8.3M 4.9M 9.3M 91k 796k 5.2M 5.2M 85k 3.2M 4.0M 7.8M 173k 42k 33k
en→xx err. 2.00 7.20 4.70 2.50 4.90 n/a n/a 3.10 4.50 n/a 1.80 4.30 3.60 45.64 31.60 18.38
xx→en err. 2.40 6.00 4.90 2.70 5.90 n/a n/a 3.70 3.77 n/a 2.30 5.00 3.20 39.23 29.64 22.22
test sent. 1000 1000 1000 1000 1000 – – 1000 823 – 1000 1000 1000 390 307 234

tg th tl tr tt ug uk ur uz vi wuu yue zh
train sent. 124k 4.1M 36k 5.7M 119k 88k 1.4M 746k 118k 4.0M 2k 4k 8.3M
en→xx err. n/a 4.93 47.40 2.30 72.00 59.90 5.80 20.00 82.24 3.40 25.80 37.00 4.10
xx→en err. n/a 4.20 51.50 2.60 65.70 49.60 5.10 16.20 80.37 3.00 25.20 38.90 5.00
test sent. – 548 1000 1000 1000 1000 1000 1000 428 1000 1000 1000 1000

Table 1: List of the 93 languages along with their training size, the resulting similarity error rate on
Tatoeba, and the number of sentences in it. Dashes denote language pairs excluded for containing fewer
than 100 test sentences.

of our knowledge, this is the first exploration of
general purpose massively multilingual sentence
representations across a large variety of tasks.

2 Related Work

Following the success of word embeddings (Mikolov
et al., 2013b; Pennington et al., 2014), there has
been an increasing interest in learning continuous
vector representations of longer linguistic units
like sentences (Le and Mikolov, 2014; Kiros
et al., 2015). These sentence embeddings are
commonly obtained using a recurrent neural net-
work (RNN) encoder, which is typically trained
in an unsupervised way over large collections of
unlabeled corpora. For instance, the skip-thought
model of Kiros et al. (2015) couples the encoder
with an auxiliary decoder, and trains the entire
system to predict the surrounding sentences over
a collection of books. It was later shown that
more competitive results could be obtained by
training the encoder over labeled natural language
inference (NLI) data (Conneau et al., 2017).
This was later extended to multitask learning,
combining different training objectives like that

of skip-thought, NLI, and machine translation (Cer
et al., 2018; Subramanian et al., 2018).

While the previous methods consider a single
language at a time, multilingual representations
have recently attracted a large attention. Most
of this research focuses on cross-lingual word
embeddings (Ruder et al., 2017), which are
commonly learned jointly from parallel corpora
(Gouws et al., 2015; Luong et al., 2015). An
alternative approach that is becoming increasingly
popular is to separately train word embeddings
for each language, and map them to a shared
space based on a bilingual dictionary (Mikolov
et al., 2013a; Artetxe et al., 2018a) or even in
a fully unsupervised manner (Conneau et al.,
2018a; Artetxe et al., 2018b). Cross-lingual word
embeddings are often used to build bag-of-word
representations of longer linguistic units by taking
their respective (IDF-weighted) average (Klementiev
et al., 2012; Dufter et al., 2018). Although this
approach has the advantage of requiring weak or
no cross-lingual signal, it has been shown that
the resulting sentence embeddings work poorly in
practical cross-lingual transfer settings (Conneau
et al., 2018b).
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Figure 1: Architecture of our system to learn multilingual sentence embeddings.

A more competitive approach that we follow
here is to use a sequence-to-sequence encoder-
decoder architecture (Schwenk and Douze, 2017;
Hassan et al., 2018). The full system is trained
end-to-end on parallel corpora akin to multilingual
neural machine translation (Johnson et al., 2017):
The encoder maps the source sequence into a
fixed-length vector representation, which is used
by the decoder to create the target sequence. This
decoder is then discarded, and the encoder is
kept to embed sentences in any of the training
languages. While some proposals use a separate
encoder for each language (Schwenk and Douze,
2017), sharing a single encoder for all languages
also gives strong results (Schwenk, 2018).

Nevertheless, most existing work is either lim-
ited to a few, rather close languages (Schwenk and
Douze, 2017; Yu et al., 2018) or, more commonly,
consider pairwise joint embeddings with English
and one foreign language (España-Bonet et al.,
2017; Guo et al., 2018). To the best of our knowl-
edge, existing work on learning multilingual rep-
resentations for a large number of languages is
limited to word embeddings (Ammar et al., 2016;
Dufter et al., 2018) specific applications like
typology prediction (Malaviya et al., 2017) or
machine translation (Neubig and Hu, 2018)—ours
being the first paper exploring general purpose
massively multilingual sentence representations.

All the previous approaches learn a fixed-
length representation for each sentence. A recent
research line has obtained very strong results using
variable-length representations instead, consisting
of contextualized embeddings of the words in
the sentence (Dai and Le, 2015; Peters et al.,
2018; Howard and Ruder, 2018; Devlin et al.,
2019). For that purpose, these methods train
either an RNN or self-attentional encoder over
unnanotated corpora using some form of language
modeling. A classifier can then be learned on

top of the resulting encoder, which is commonly
further fine-tuned during this supervised training.
Concurrent to our work, Lample and Conneau
(2019) propose a cross-lingual extension of these
models, and report strong results in cross-lingual
NLI, machine translation, and language modeling.
In contrast, our focus is on scaling to a large
number of languages, for which we argue that
fixed-length approaches provide a more versatile
and compatible representation form.1 Also, our
approach achieves strong results without task-
specific fine-tuning, which makes it interesting
for tasks with limited resources.

3 Proposed Method

We use a single, language-agnostic BiLSTM
encoder to build our sentence embeddings, which
is coupled with an auxiliary decoder and trained
on parallel corpora. In Sections 3.1 to 3.3, we
describe its architecture, our training strategy to
scale to 93 languages, and the training data used
for that purpose.

3.1 Architecture

Figure 1 illustrates the architecture of the proposed
system, which is based on Schwenk (2018). As
it can be seen, sentence embeddings are obtained
by applying a max-pooling operation over the
output of a BiLSTM encoder. These sentence
embeddings are used to initialize the decoder
LSTM through a linear transformation, and are
also concatenated to its input embeddings at every
time step. Note that there is no other connection

1For instance, there is not always a one-to-one
correspondence among words in different languages (e.g.,
a single word of a morphologically complex language might
correspond to several words of a morphologically simple
language), so having a separate vector for each word might
not transfer as well across languages.
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between the encoder and the decoder, as we want
all relevant information of the input sequence to
be captured by the sentence embedding.

We use a single encoder and decoder in our
system, which are shared by all languages in-
volved. For that purpose, we build a joint byte-pair
encoding (BPE) vocabulary with 50k operations,
which is learned on the concatenation of all train-
ing corpora. This way, the encoder has no explicit
signal on what the input language is, encouraging
it to learn language independent representations.
In contrast, the decoder takes a language ID em-
bedding that specifies the language to generate,
which is concatenated to the input and sentence
embeddings at every time step.

Scaling up to almost one hundred languages
calls for an encoder with sufficient capacity. In
this paper, we limit our study to a stacked BiLSTM
with 1 to 5 layers, each 512-dimensional. The
resulting sentence representations (after concate-
nating both directions) are 1024-dimensional. The
decoder has always one layer of dimension 2048.
The input embedding size is set to 320, and the
language ID embedding has 32 dimensions.

3.2 Training Strategy
In preceding work (Schwenk and Douze, 2017;
Schwenk, 2018), each input sentence was jointly
translated into all other languages. However, this
approach has two obvious drawbacks when trying
to scale to a large number of languages. First,
it requires an N-way parallel corpus, which is
difficult to obtain for all languages. Second, it
has a quadratic cost with respect to the number
of languages, making training prohibitively slow
as the number of languages is increased. In our
preliminary experiments, we observed that similar
results can be obtained using only two target
languages.2 At the same time, we relax the re-
quirement for N-way parallel corpora by con-
sidering separate alignments for each language
combination.

Training minimizes the cross-entropy loss on
the training corpus, alternating over all combi-
nations of the languages involved. For that pur-
pose, we use Adam with a constant learning rate

2Note that, if we had a single target language, the only
way to train the encoder for that language would be auto-
encoding, which we observe to work poorly. Having two
target languages avoids this problem.

of 0.001 and dropout set to 0.1, and train for a
fixed number of epochs. Our implementation is
based on fairseq,3 and we make use of its
multi-GPU support to train on 16 NVIDIA V100
GPUs with a total batch size of 128,000 tokens.
Unless otherwise specified, we train our model
for 17 epochs, which takes about 5 days. Stopping
training earlier decreases the overall performance
only slightly.

3.3 Training Data and Pre-processing
As described in Section 3.2, training requires
bitexts aligned with two target languages. We
choose English and Spanish for that purpose, as
most of the data are aligned with these languages.4

We collect training corpora for 93 input languages
by combining the Europarl, United Nations,
OpenSubtitles2018, Global Voices, Tanzil, and
Tatoeba corpuses, which are all publicly available
on the OPUS Web site5 (Tiedemann, 2012).
Appendix A provides a more detailed description
of this training data, and Table 1 summarizes
the list of all languages covered and the size
of the bitexts. Our training data comprises a
total of 223 million parallel sentences. All pre-
processing is done with Moses tools:6 punctuation
normalization, removing non-printing characters,
and tokenization. As the only exception, Chinese
and Japanese were segmented with Jieba7 and
Mecab,8 respectively. All the languages are kept
in their original script with the exception of Greek,
which we romanize into the Latin alphabet. It is
important to note that the joint encoder itself has
no information on the language or writing script
of the tokenized input texts. It is even possible to
mix multiple languages in one sentence.

4 Experimental Evaluation

In contrast with the well-established evaluation
frameworks for English sentence representations
(Conneau et al., 2017; Wang et al., 2018), there

3https://github.com/pytorch/fairseq
4Note that it is not necessary that all input languages

are systematically aligned with both target languages. Once
we have several languages with both alignments, the joint
embedding is well conditioned, and we can add more
languages with one alignment only, usually English.

5http://opus.nlpl.eu
6http://www.statmt.org/moses
7https://github.com/fxsjy/jieba
8https://github.com/taku910/mecab
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EN EN → XX
fr es de el bg ru tr ar vi th zh hi sw ur

Zero-Shot Transfer, one NLI system for all languages:
Conneau et al.
(2018b)

X-BiLSTM 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4
X-CBOW 64.5 60.3 60.7 61.0 60.5 60.4 57.8 58.7 57.5 58.8 56.9 58.8 56.3 50.4 52.2

BERT uncased∗ Transformer 81.4 – 74.3 70.5 – – – – 62.1 – – 63.8 – – 58.3

Proposed method BiLSTM 73.9 71.9 72.9 72.6 72.8 74.2 72.1 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0

Translate test, one English NLI system:
Conneau et al. (2018b) BiLSTM 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3
BERT uncased∗ Transformer 81.4 – 74.9 74.4 – – – – 70.4 – – 70.1 – – 62.1

Translate train, separate NLI systems for each language:
Conneau et al. (2018b) BiLSTM 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6
BERT cased∗ Transformer 81.9 – 77.8 75.9 – – – – 70.7 – 68.9† 76.6 – – 61.6

Table 2: Test accuracies on the XNLI cross-lingual natural language inference data set. All results from
Conneau et al. (2018b) correspond to max-pooling, which outperforms the last-state variant in all cases.
Results involving machine translation do not use a multilingual model and are not directly comparable
with zero-shot transfer. Overall best results are in bold, the best ones in each group are underlined.
∗ Results for BERT (Devlin et al., 2019) are extracted from its GitHub README.9
† Monolingual BERT model for Thai from https://github.com/ThAIKeras/bert.

is not yet a commonly accepted standard to
evaluate multilingual sentence embeddings. The
most notable effort in this regard is arguably the
XNLI data set (Conneau et al., 2018b), which
evaluates the transfer performance of an NLI
model trained on English data over 14 additional
test languages (Section 4.1). So as to obtain a
more complete picture, we also evaluate our em-
beddings in cross-lingual document classification
(MLDoc, Section 4.2), and bitext mining (BUCC,
Section 4.3). However, all these data sets only
cover a subset of our 93 languages, so we also
introduce a new test set for multilingual sim-
ilarity search in 112 languages, including several
languages for which we have no training data but
whose language family is covered (Section 4.4).
We remark that we use the same pre-trained
BiLSTM encoder for all tasks and languages with-
out any fine-tuning.

4.1 XNLI: Cross-lingual NLI

NLI has become a widely used task to evaluate
sentence representations (Bowman et al., 2015;
Williams et al., 2018). Given two sentences, a
premise and a hypothesis, the task consists in
deciding whether there is an entailment, con-
tradiction, or neutral relationship between them.
XNLI is a recent effort to create a data set
similar to the English MultiNLI for several
languages (Conneau et al., 2018b). It consists
of 2,500 development and 5,000 test instances

translated from English into 14 languages by
professional translators, making results across
different languages directly comparable.

We train a classifier on top of our multilingual
encoder using the usual combination of the two
sentence embeddings: (p, h, p · h, |p− h|), where
p and h are the premise and hypothesis. For that
purpose, we use a feed-forward neural network
with two hidden layers of size 512 and 384, trained
with Adam. All hyperparameters were optimized
on the English XNLI development corpus only,
and then the same classifier was applied to all
languages of the XNLI test set. As such, we did
not use any training or development data in any
of the foreign languages. Note, moreover, that the
multilingual sentence embeddings are fixed and
not fine-tuned on the task or the language.

We report our results in Table 2, along with
several baselines from Conneau et al. (2018b)
and the multilingual BERT model (Devlin et al.,
2019).9 Our proposed method obtains the best
results in zero-shot cross-lingual transfer for all
languages but Spanish. Moreover, our transfer
results are strong and homogeneous across all lan-
guages: For 11 of them, the zero-short performance

9Note that the multilingual variant of BERT is not dis-
cussed in its paper (Devlin et al., 2019). Instead, the reported
results were extracted from the README of the official
GitHub project at https://github.com/google-
research/bert/blob/master/multilingual.md
on July 5, 2019.
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EN EN → XX
de es fr it ja ru zh

Schwenk
and Li
(2018)

MultiCCA + CNN 92.20 81.20 72.50 72.38 69.38 67.63 60.80 74.73
BiLSTM (Europarl) 88.40 71.83 66.65 72.83 60.73 - - -
BiLSTM (UN) 88.83 - 69.50 74.52 - - 61.42 71.97

Proposed method 89.93 84.78 77.33 77.95 69.43 60.30 67.78 71.93

Table 3: Accuracies on the MLDoc zero-shot cross-lingual document classification task (test set).

is (at most) 5% lower than the one on English,
including distant languages like Arabic, Chinese,
and Vietnamese, and we also achieve remarkable
good results on low-resource languages likeSwahili.
In contrast, BERT achieves excellent results on
English, outperforming our system by 7.5 points,
but its transfer performance is much weaker. For
instance, the loss in accuracy for both Arabic and
Chinese is 2.5 points for our system, compared
with 19.3 and 17.6 points for BERT.10 Finally,
we also outperform all baselines of Conneau
et al. (2018b) by a substantial margin, with the
additional advantage that we use a single pre-
trained encoder, whereas X-BiLSTM learns a
separate encoder for each language.

We also provide results involving Machine
Translation (MT) from Conneau et al. (2018b).
This can be done in two ways: 1) translate the
test data into English and apply the English NLI
classifier, or 2) translate the English training data
and train a separate NLI classifier for each
language. Note that we are not evaluating multi-
lingual sentence embeddings anymore, but rather
the quality of the MT system and a monolin-
gual model. Moreover, the use of MT incurs an
important overhead with either strategy: Trans-
lating test makes inference substantially more
expensive, whereas translating train results in a
separate model for each language. As shown in
Table 2, our approach outperforms all translation
baselines of Conneau et al. (2018b). We also
outperform MT BERT for Arabic and Thai, and
are very close for Urdu. Thanks to its multilingual

10Concurrent to our work, Lample and Conneau (2019)
report superior results using another variant of BERT,
outperforming our method by 4.5 points in average. However,
note that these results are not fully comparable because 1)
their system uses development data in the foreign languages,
whereas our approach is fully zero-shot, 2) their approach
requires fine-tuning on the task, 3) our system handles a much
larger number of languages, and 4) our transfer performance
is substantially better (an average loss of 4 vs 10.6 points
with respect to the respective English system).

nature, our system can also handle premises and
hypothesis in different languages. As reported in
Appendix B, the proposed method obtains very
strong results in these settings, even for distant
language combinations like French–Chinese.

4.2 MLDoc: Cross-lingual Classification

Cross-lingual document classification is a typical
application of multilingual representations. In
order to evaluate our sentence embeddings in
this task, we use the MLDoc data set of Schwenk
and Li (2018), which is an improved version
of the Reuters benchmark (Lewis et al., 2004;
Klementiev et al., 2012) with uniform class priors
and a wider language coverage. There are 1,000
training and development documents and 4,000
test documents for each language, divided in 4
different genres. Just as with the XNLI evaluation,
we consider the zero-shot transfer scenario: We
train a classifier on top of our multilingual encoder
using the English training data, optimizing hyper-
parameters on the English development set, and
evaluating the resulting system in the remaining
languages. We use a feed-forward neural network
with one hidden layer of 10 units.

As shown in Table 3, our system obtains the best
published results for 5 of the 7 transfer languages.
We believe that our weaker performance on
Japanese can be attributed to the domain and
sentence length mismatch between MLDoc and
the parallel corpus we use for this language.

4.3 BUCC: Bitext Mining

Bitext mining is another natural application for
multilingual sentence embeddings. Given two com-
parable corpora in different languages, the task
consists of identifying sentence pairs that are
translations of each other. For that purpose, one
would commonly score sentence pairs by taking
the cosine similarity of their respective embed-
dings, so parallel sentences can be extracted
through nearest neighbor retrieval and filtered by
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TRAIN TEST
de-en fr-en ru-en zh-en de-en fr-en ru-en zh-en

Azpeitia et al. (2017) 83.33 78.83 - - 83.74 79.46 - -
Grégoire and Langlais (2017) - 20.67 - - - 20 - -
Zhang and Zweigenbaum (2017) - - - 43.48 - - - 45.13
Azpeitia et al. (2018) 84.27 80.63 80.89 76.45 85.52 81.47 81.30 77.45
Bouamor and Sajjad (2018) - 75.2 - - - 76.0 - -
Chongman Leong and Chao (2018) - - - 58.54 - - - 56
Schwenk (2018) 76.1 74.9 73.3 71.6 76.9 75.8 73.8 71.6
Artetxe and Schwenk (2018) 94.84 91.85 90.92 91.04 95.58 92.89 92.03 92.57

Proposed method 95.43 92.40 92.29 91.20 96.19 93.91 93.30 92.27

Table 4: F1 scores on the BUCC mining task.

setting a fixed threshold over this score (Schwenk,
2018). However, it was recently shown that this
approach suffers from scale inconsistency issues
(Guo et al., 2018), and Artetxe and Schwenk
(2018) proposed the following alternative score
addressing it:

score(x, y) = margin(cos(x, y),
∑

z∈NNk(x)

cos(x, z)

2k
+

∑

z∈NNk(y)

cos(y, z)

2k
)

where x and y are the source and target sen-
tences, and NNk(x) denotes the k nearest neigh-
bors of x in the other language. The paper
explores different margin functions, with ratio
(margin(a, b) = a

b ) yielding the best results. This
notion of margin is related to CSLS (Conneau
et al., 2018a).

We use this method to evaluate our sen-
tence embeddings on the BUCC mining task
(Zweigenbaum et al., 2017, 2018), using exact
same hyper-parameters as Artetxe and Schwenk
(2018). The task consists in extracting parallel
sentences from a comparable corpus between
English and four foreign languages: German,
French, Russian, and Chinese. The data set con-
sists of 150 K to 1.2 M sentences for each
language, split into a sample, training and test set,
with about 2–3% of the sentences being parallel.
As shown in Table 4, our system establishes a
new state-of-the-art for all language pairs with
the exception of English-Chinese test. We also
outperform Artetxe and Schwenk (2018) them-
selves, who use two separate models covering 4
languages each. Not only are our results better,
but our model also covers many more languages,
so it can potentially be used to mine bitext for any
combination of the 93 languages supported.

4.4 Tatoeba: Similarity Search
Although XNLI, MLDoc, and BUCC are well-
established benchmarks with comparative results
available, they only cover a small subset of our 93
languages. So as to better assess the performance
of our model in all these languages, we introduce a
new test set of similarity search for 112 languages
based on the Tatoeba corpus. The data set consists
of up to 1,000 English-aligned sentence pairs for
each language. Appendix C describes how the data
set was constructed in more details. Evaluation is
done by finding the nearest neighbor for each
sentence in the other language according to cosine
similarity and computing the error rate.

We report our results in Table 1. Contrasting
these results with those of XNLI, one would
assume that similarity error rates below 5% are
indicative of strong downstream performance.11

This is the case for 37 languages, there are 48
languages with an error rate below 10% and 55
with less than 20%. There are only 15 languages
with error rates above 50%. Additional result
analysis is given in Appendix D.

We believe that our competitive results for
many low-resource languages are indicative of the
benefits of joint training, which is also supported
by our ablation results in Section 5.3. In relation to
that, Appendix E reports similarity search results
for 29 additional languages without any training
data, showing that our encoder can also generalize
to unseen languages to some extent as long as it
was trained on related languages.

5 Ablation Experiments

In this section, we explore different variants of our
approach and study the impact on the performance

11We consider the average of en→xx and xx→en
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Depth Tatoeba BUCC MLDoc XNLI-en XNLI-xx
Err [%] F1 Acc [%] Acc [%] Acc [%]

1 37.96 89.95 69.42 70.94 64.54
3 28.95 92.28 71.64 72.83 68.43
5 26.31 92.83 72.79 73.67 69.92

Table 5: Impact of the depth of the BiLSTM encoder.

NLI Tatoeba BUCC MLDoc XNLI-en XNLI-xx
obj. Err [%] F1 Acc [%] Acc [%] Acc [%]

− 26.31 92.83 72.79 73.67 69.92
×1 26.89 93.01 74.51 73.71 69.10
×2 28.52 93.06 71.90 74.65 67.75
×3 27.83 92.98 73.11 75.23 61.86

Table 6: Multitask training with an NLI objective and
different weightings.

for all our evaluation tasks. We report average
results across all languages. For XNLI, we also
report the accuracy on English.

5.1 Encoder Depth
Table 5 reports the performance on the different
tasks for encoders with 1, 3, or 5 layers. We were
not able to achieve good convergence with deeper
models. It can be seen that all tasks benefit from
deeper models, in particular XNLI and Tatoeba,
suggesting that a single-layer BiLSTM has not
enough capacity to encode so many languages.

5.2 Multitask Learning
Multitask learning has been shown to be helpful to
learn English sentence embeddings (Subramanian
et al., 2018; Cer et al., 2018). The most important
task in this approach is arguably NLI, so we
explored adding an additional NLI objective to
our system with different weighting schemes. As
shown in Table 6, the NLI objective leads to a
better performance on the English NLI test set,
but this comes at the cost of a worse cross-lingual
transfer performance in XNLI and Tatoeba. The
effect in BUCC is negligible.

5.3 Number of Training Languages
So as to better understand how our architecture
scales to a large amount of languages, we train
a separate model on a subset of 18 evaluation
languages, and compare it to our main model
trained on 93 languages. We replaced the Tatoeba
corpus with the WMT 2014 test set to evaluate
the multilingual similarity error rate. This covers

#langs WMT BUCC MLDoc XNLI-en XNLI-xx
Err [%] F1 Acc [%] Acc [%] Acc [%]

All (93) 0.54 92.83 72.79 73.67 69.92
Eval (18) 0.59 92.91 75.63 72.99 68.84

Table 7: Comparison between training on 93 lan-
guages and training on the 18 evaluation languages
only.

English, Czech, French, German, and Spanish, so
results between both models are directly com-
parable. As shown in Table 7, the full model equals
or outperforms the one covering the evaluation
languages only for all tasks but MLDoc. This
suggests that the joint training also yields to overall
better representations.

6 Conclusions

In this paper, we propose an architecture to learn
multilingual fixed-length sentence embeddings for
93 languages. We use a single language-agnostic
BiLSTM encoder for all languages, which is
trained on publicly available parallel corpora and
applied to different downstream tasks without
any fine-tuning. Our experiments on cross-lingual
natural language inference (XNLI), cross-lingual
document classification (MLDoc),andbitext mining
(BUCC) confirm the effectiveness of our approach.
We also introduce a new test set of multilingual
similarity search in 112 languages, and show that
our approach is competitive even for low-resource
languages. To the best of our knowledge, this is
the first successful exploration of general purpose
massively multilingual sentence representations.

In the future, we would like to explore alter-
native encoder architectures like self-attention
(Vaswani et al., 2017). We would also like to ex-
plore strategies to exploit monolingual data, such
as using pre-trained word embeddings, back-
translation (Sennrich et al., 2016; Edunov et al.,
2018), or other ideas from unsupervised MT (Artetxe
et al., 2018c; Lample et al., 2018). Finally, we
would like to replace our language-dependant pre-
processing with a language-agnostic approach like
SentencePiece.12

Our implementation, the pre-trained encoder,
and the multilingual test set are freely available at
https://github.com/facebookresearch/
LASER.

12https://github.com/google/sentencepiece
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A Training Data

Our training data consists of the combination of
the following publicly available parallel corpora:

• Europarl: 21 European languages. The size
varies from 400k to 2 M sentences depending
on the language pair.

• United Nations: We use the first 2 million
sentences in Arabic, Russian, and Chinese.

• OpenSubtitles2018: A parallel corpus of
movie subtitles in 57 languages. The corpus
size varies from a few thousand sentences
to more than 50 million. We keep at most 2
million entries for each language pair.

• Global Voices: News stories from the Global
Voices Web site (38 languages). This is a
rather small corpus with fewer than 100k
sentence in most of the languages.

• Tanzil: Quran translations in 42 languages,
average size of 135k sentences. The style and
vocabulary is very different from news texts.

• Tatoeba: A community-supported collection
of English sentences and translations into
more than 300 languages. We use this corpus
to extract a separate test set of up to 1,000
sentences (see Appendix C). For languages
with more than 1,000 entries, we use the
remaining ones for training.

Using all these corpora would provide parallel
data for more languages, but we decided to keep
93 languages after discarding several constructed
languages with little practical use (Klingon,
Kotava, Lojban, Toki Pona, and Volapük). In
our preliminary experiments, we observed that
the domain of the training data played a key role
in the performance of our sentence embeddings.
Some tasks (BUCC, MLDoc) tend to perform
better when the encoder is trained on long and
formal sentences, whereas other tasks (XNLI,
Tatoeba) benefit from training on shorter and
more informal sentences. So as to obtain a good
balance, we used at most 2 million sentences from
OpenSubtitles, although more data are available
for some languages. The size of the available
training data varies largely for the considered
languages (see Table 1). This favors high-resource
languages when the joint BPE vocabulary is
created and the training of the joint encoder. In

this work, we did not try to counter this effect by
over-sampling low-resource languages.

B XNLI Results for All Language
Combinations

Table 8 reports the accuracies of our system on
the XNLI test set when the premises and hypoth-
esis are in a different language. The numbers in the
diagonal correspond to the main results reported
in Table 2. Our approach obtains strong results
when combining different languages. We do not
have evidence that distant languages perform con-
siderably worse. Instead, the combined perfor-
mance seems mostly bounded by the accuracy
of the language that performs worst when used
alone. For instance, Greek–Russian achieves very
similar results to Bulgarian–Russian, two Slavic
languages. Similarly, combing French with Chinese,
two totally different languages, is only 1.5 points
worse than French–Spanish, two very close
languages.

C Tatoeba: Data Set

Tatoeba13 is an open collection of English sen-
tences and high-quality translations into more than
300 languages. The number of available transla-
tions is updated every Saturday. We downloaded
the snapshot on November 19, 2018, and per-
formed the following processing: 1) removal of
sentences containing ‘‘@’’ or ‘‘http’’, as emails
and web addresses are not language-specific; 2)
removal of sentences with fewer than three words,
as they usually have little semantic information; 3)
removal of sentences that appear multiple times,
either in the source or the target.

After filtering, we created test sets of up to 1,000
aligned sentences with English. This amount is
available for 72 languages. Limiting the number
of sentences to 500, we increase the coverage to
86 languages, and 112 languages with 100 parallel
sentences. It should be stressed that, in general,
the English sentences are not the same for dif-
ferent languages, so error rates are not directly
comparable across languages.

D Tatoeba: Result Analysis

In this section, we provide some analysis on the
results given in Table 1. We have 48 languages
with an error rate below 10% and 55 with less

13https://tatoeba.org/eng/
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Hypothesis
en ar bg de el es fr hi ru sw th tr ur vi zh avg

Pr
em

is
e

en 73.9 70.0 72.0 72.8 71.6 72.2 72.2 65.9 71.4 61.5 67.6 69.7 61.0 70.7 70.3 69.5
ar 70.5 71.4 71.1 70.1 69.6 70.6 70.0 64.9 69.9 60.1 67.1 68.2 60.6 69.5 70.1 68.2
bg 72.7 71.1 74.2 72.3 71.7 72.1 72.7 65.5 71.7 60.8 69.0 69.8 61.2 70.5 70.5 69.7
de 72.0 69.6 71.8 72.6 70.9 71.7 71.5 65.2 70.8 60.5 68.1 69.1 60.5 70.0 70.7 69.0
el 73.0 70.1 72.0 72.4 72.8 71.5 71.9 65.2 71.7 61.0 68.1 69.5 61.0 70.2 70.4 69.4
es 73.3 70.4 72.4 72.7 71.5 72.9 72.2 65.0 71.2 61.5 68.1 69.8 60.5 70.4 70.4 69.5
fr 73.2 70.4 72.2 72.5 71.1 72.1 71.9 65.9 71.3 61.4 68.1 70.0 60.9 70.9 70.4 69.5
hi 66.7 66.0 66.7 67.2 65.4 66.1 65.6 65.5 66.5 58.9 63.8 65.9 59.5 65.6 66.0 65.0
ru 71.3 70.0 72.3 71.4 70.5 71.2 71.3 64.4 72.1 60.8 67.9 68.7 60.5 69.9 70.1 68.8
sw 65.7 64.5 65.7 65.0 65.1 65.2 64.5 61.5 64.9 62.2 63.3 64.5 58.2 65.0 65.1 64.0
th 70.5 69.2 71.4 70.1 69.6 70.2 69.6 65.2 70.2 62.1 69.2 67.7 60.9 70.0 69.6 68.4
tr 70.6 69.1 70.4 70.3 69.6 70.6 69.8 64.0 69.1 61.3 67.3 69.7 60.6 69.8 69.0 68.1
ur 65.5 64.8 65.3 65.9 65.3 65.7 64.8 62.1 65.3 58.2 63.2 64.1 61.0 64.3 65.0 64.0
vi 71.7 69.7 72.2 71.1 70.7 71.3 70.5 65.4 71.0 61.3 69.0 69.3 60.6 72.0 70.3 69.1
zh 71.6 69.9 71.7 71.1 70.1 71.2 70.8 64.1 70.9 60.5 68.6 68.9 60.3 69.8 71.4 68.7
avg 70.8 69.1 70.8 70.5 69.7 70.3 70.0 64.7 69.8 60.8 67.2 68.3 60.5 69.2 69.3 68.1

Table 8: XNLI test accuracies for our approach when the premise and hypothesis are in different languages.

ang arq arz ast awa ceb ch csb cy dsb fo fy gd gsw hsb
en→xx err. 58.96 58.62 31.24 12.60 63.20 81.67 64.23 54.55 89.74 48.64 28.24 46.24 95.66 52.99 42.44
xx→en err. 65.67 62.46 31.03 14.96 64.50 87.00 77.37 58.89 93.04 55.32 28.63 50.29 96.98 58.12 48.65
test sent. 134 911 477 127 231 600 137 253 575 479 262 173 829 117 483

jv max mn nn nov orv pam pms swg tk tzl war xh yi
en→xx err. 73.66 48.24 89.55 13.40 33.07 68.26 93.10 50.86 50.00 75.37 54.81 84.20 90.85 93.28
xx→en err. 80.49 50.00 94.09 10.00 35.02 75.45 95.00 49.90 58.04 83.25 55.77 88.60 92.25 95.40
test sent. 205 284 440 1000 257 835 1000 525 112 203 104 1000 142 848

Table 9: Performance on the Tatoeba test set for languages for which we have no training data.

than 20%, respectively (English included). The
languages with less than 20% error belong to
20 different families and use 12 different scripts,
and include 6 languages for which we have only
small amounts of bitexts (less than 400k), namely,
Esperanto, Galician, Hindi, Interlingua, Malayam,
and Marathi, which presumably benefit from the
joint training with other related languages.

Overall, we observe low similarity error rates on
the Indo-Aryan languages, namely, Hindi, Bengali,
Marathi, and Urdu. The performance on Berber
languages (‘‘ber’’ and ‘‘kab’’) is remarkable,
although we have fewer than 100k sentences to
train them. This is a typical example of languages
that are spoken by several millions of people, but
for which the amount of written resources is very
limited. It is quite unlikely that we would be able
to train a good sentence embedding with language
specific corpora only, showing the benefit of joint
training on many languages.

Only 15 languages have similarity error rates
above 50%. Four of them are low-resource lan-
guages with their own script and which are alone

in their family (Amharic, Armenian, Khmer, and
Georgian), making it difficult to benefit from joint
training. In any case, it is still remarkable that a
language like Khmer performs much better than
random with only 625 training examples. There
are also several Turkic languages (Kazakh, Tatar,
Uighur, and Uzbek) and Celtic languages (Breton
and Cornish) with high error rates. We plan to
further investigate its cause and possible solutions
in the future.

E Tatoeba: Results for Unseen Languages

We extend our experiments to 29 languages
without any training data (see Table 9). Many of
them are recognized minority languages spoken in
specific regions (e.g., Asturian, Faroese, Frisian,
Kashubian, North Moluccan Malay, Piemontese,
Swabian, or Sorbian). All share some similarities,
at various degrees, with other major languages that
we cover, but also differ by their own grammar
or specific vocabulary. This enables our encoder
to perform reasonably well, even if it did not see
these languages during training.
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