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Abstract

Building meaningful phrase representations is
challenging because phrase meanings are not
simply the sum of their constituent meanings.
Lexical composition can shift the meanings
of the constituent words and introduce im-
plicit information. We tested a broad range
of textual representations for their capacity to
address these issues. We found that, as ex-
pected, contextualized word representations
perform better than static word embeddings,
more so on detecting meaning shift than in
recovering implicit information, in which their
performance is still far from that of hu-
mans. Our evaluation suite, consisting of six
tasks related to lexical composition effects,
can serve future research aiming to improve
representations.

1 Introduction

Modeling the meaning of phrases involves ad-
dressing semantic phenomena that pose non-
trivial challenges for common text representations,
which derive a phrase representation from those
of its constituent words. One such phenomenon is
meaning shift, which happens when the meaning
of the phrase departs from the meanings of its
constituent words. This is especially common
among verb-particle constructions (carry on), idi-
omatic noun compounds (guilt trip), and other
multi-word expressions (MWE, lexical units that
form a distinct concept), making them ‘‘a pain in
the neck’’ for NLP applications (Sag et al., 2002).

A second phenomenon is common for both
MWEs and free word combinations such as noun
compounds and adjective-noun compositions.
It happens when the composition introduces
an implicit meaning that often requires world
knowledge to uncover. For example, that hot
refers to the remperature of tea but to the manner
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of debate (Hartung, 2015), or that olive oil is
made of olives while baby oil is made for babies
(Shwartz and Waterson, 2018).

There has been a line of attempts to learn com-
positional phrase representations (e.g., Mitchell
and Lapata, 2010; Baroni and Zamparelli, 2010;
Wieting et al., 2017; Poliak et al., 2017), but many
of these are tailored to a specific type of phrase or
to a fixed number of constituent words, and they
all disregard the surrounding context. Recently,
contextualized word representations boasted dra-
matic performance improvements on a range of
NLP tasks (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019). Such models serve as
a function for computing word representations in
a given context, making them potentially more
capable to address meaning shift. These models
were shown to capture some world knowledge
(e.g., Zellers et al., 2018), which may potentially
help with uncovering implicit information.

In this paper we test how well various text
representations address these composition-related
phenomena. Methodologically, we follow recent
work that applied ‘‘black-box’’ testing to assess
various capacities of distributed representations
(e.g., Adi et al., 2017; Conneau et al., 2018).
We construct an evaluation suite with six tasks
related to the above two phenomena, as shown
in Figure 1, and develop generic models that
rely on pre-trained representations. We test six
representations, including static word embeddings
(Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017) and contextualized word
embeddings (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019). Our contributions are
as follows:

1. We created a unified framework that tests the
capacity of representations to address lexical
composition via classification tasks, focusing
on detecting meaning shift and recovering
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Figure 1: A map of our tasks according to type of phrase
(MWE/free word combination) and the phenomenon
they test (meaning shift/implicit meaning).

implicit meaning. We test six representations
and provide an in depth analysis of the results.

2. Werelied on existing annotated data sets used
in various tasks, and recast them to fit our
classification framework. We additionally
annotated a sample from each test set to
confirm the data validity and estimate the
human performance on each task.

3. We provide the classification framework, in-
cluding data and code (available at https://
github.com/veredl1986/lexcomp),
which would allow testing future models for
their capacity to address lexical composition.

Our results confirm that the contextualized word
embeddings perform better than the static ones. In
particular, we show that modeling context indeed
contributes to recognizing meaning shift: On such
tasks, contextualized models performed on par
with humans.

Conversely, despite hopes of filling missing
information with world knowledge provided by
the contextualized representations, the signal they
yield for recovering implicit information is much
weaker, and the gap between the best performing
model and the human performance on such tasks
remains substantial. We expect that improving the
ability of such representations to reveal implicit
meaning would require more than a language
model training objective. In particular, one future
direction is a richer training objective that
simultaneously models multiple co-occurrences of
the constituent words across different texts, as is
commonly done in noun compound interpretation
(e.g., o) Séaghdha and Copestake, 2009; Shwartz
and Waterson, 2018; Shwartz and Dagan, 2018).
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2  Composition Tasks

We experimented with six tasks that address the
meaning shift and implicit meaning phenomena,
summarized in Table 1 and detailed below.

We rely on existing tasks and data sets, but
make substantial changes and augmentations in
order to create a uniform framework. First, we
cast all tasks as classification tasks. Second, we
add sentential contexts where the original data sets
annotate the phrases out-of-context, by extracting
average-length sentences (15-20 words) from
English Wikipedia (January 2018 dump) in which
the target phrase appears. We assume that the
annotation does not depend on the context, an
assumption that holds in most cases, judging
by the human performance scores (Section 6).
Finally, we split each data set to roughly 80%
train and 10% for each of the validation and test
sets, under lexical constraints as detailed for each
task.

2.1 Recognizing Verb-Particle Constructions

A verb-particle construction (VPC) consists of a
head verb and a particle, typically in the form
of an intransitive preposition, which changes the
verb’s meaning (e.g., carry on vs. carry).

Task Definition. Given a sentence s that in-
cludes a verb V followed by a preposition P, the
goal is to determine whether it is a VPC or not.

Data. We use the data set of Tu and Roth (2012),
which consists of 1,348 sentences from the British
National Corpus (BNC), each containing a verb
V and a preposition P annotated to whether it
is a VPC or not. The data set is focused on 23
different phrasal verbs derived from six of the
most frequently used verbs (take, make, have, get,
do, give), and their combination with common
prepositions or particles. To reduce label bias,
we split the data set lexically by verb—that is,
the train, test, and validation sets contain distinct
verbs in their V and P combinations.

2.2 Recognizing Light Verb Constructions

The meaning of a light verb construction (LVC,
e.g., make a decision) is mainly derived from its
noun object (decision), whereas the meaning of
its main verb (make) is *‘light’’ (Jespersen, 1965).
As a rule of thumb, an LVC can be replaced by
the verb usage of its direct object noun (decide)
without changing the meaning of the sentence.


https://github.com/vered1986/lexcomp

Task Data Source Train/val/test Size Input Output Context
VPC Classification Tu and Roth (2012) 919/209/220 sentence s is VP a VPC? 0
VP = W1 Wo
LVC Classification Tu and Roth (2011) 1521/258/383 sentence s is the span 0
span = wj ... W an LVC?
NC Literality Reddy et al. (2011) 2529/323/138 sentence s isw A
Tratz (2011) NC = w; wy literal in NC?
target w € {wy, wa }
NC Relations SemEval 2013 Task 4 1274/162/130 sentence s does p A
(Hendrickx et al., 2013) NC = w; wy explicate NC?
paraphrase p
AN Attributes HeiPLAS (Hartung, 2015) 837/108/106 sentence s does p describe A
AN = w; wy the attribute in AN?
paraphrase p
Phrase Type STREUSLE 3017/372/376 sentence s label per token 0

(Schneider and Smith, 2015)

Table 1: A summary of the composition tasks included in our evaluation suite. In the context column,
O means the context is part of the original data set, and A is used for data sets in which the context was

added in this work.

Task Definition. Given a sentence s that in-
cludes a potential light verb construction (make
an easy decision), the goal is to determine whether
itis an LVC or not.

Data. We use the data set of Tu and Roth (2011),
which contains 2,162 sentences from BNC in
which a potential LVC was found (with the same
six common verbs as in Section 2.1), annotated to
whether it is an LVC in a given context or not. We
split the data set lexically by the verb.

2.3 Noun Compound Literality

Task Definition. Given anouncompound NC =
W1 W9 in a sentence s, and a target word w € {wy,
ws }, the goal is to determine whether the meaning
of w in NC is literal. For instance, market has a
literal meaning in flea market but flea does not.

Data. We use the data set of Reddy et al. (2011),
which consists of 90 noun compounds along with
human judgments about the literality of each
constituent word. Scores are given in a scale of 0
to 5, 0 being non-literal and 5 being literal. For
each noun compound and each of its constituents
we consider examples with a score > 4 as literal,
and < 2 as non-literal, ignoring the middle range.
We obtain 72 literal and 72 non-literal examples.
To increase the data set size we augment it with
literal examples from the Tratz (2011) data set of
noun compound classification. Compounds in this
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data set are annotated to the semantic relation that
holds between w; and ws. Most relations (except
for lexicalized, which we ignore), define the
meaning of NC as some trivial combination of
wy and wo, allowing us to regard both words
as literal. This method produces additional 3,061
literal examples.

Task Adaptation. We add sentential contexts
from Wikipedia, keeping up to 10 sentences per
example. We downsample from the literal ex-
amples to balance the data set, allowing for a ratio
of up to four literal to non-literal examples. We
split the data set lexically by head (i.e., if w; wo
is in one set, there are no w} wo NCs in the other
sets).!

2.4 Noun Compound Relations

Task Definition. Given anoun compound NC =
W1 Wo in a sentential context s, and a paraphrase
p, the goal is to determine whether p describes
the semantic relation between w; and ws or not.
For example, part that makes up body is a valid
paraphrase for body part, but replacement part
bought for body is not.

Data. We use the data from SemEval 2013
Task 4 (Hendrickx et al., 2013). The data set

'"We chose to split by head rather than by modifier based
on the majority baseline that achieved better performance.



consists of 356 noun compounds annotated with
12,446 human-proposed free text paraphrases.

Task Adaptation. The goal of the SemEval task
was to generate a list of free-form paraphrases
for a given noun compound, which explicate the
implicit semantic relation between its constituent.
To match with our other tasks, we cast the task as
a binary classification problem where the input is
a noun compound NC and a paraphrase p, and the
goal is to predict whether p is a correct description
of NC.

The positive examples for an NC w; wqy are
trivially derived from the original data by sampling
up to five of its paraphrases and creating a (NC, p,
TRUE) example for each paraphrase p. The same
number of negative examples is then created using
negative sampling from the paraphrase templates
of other noun compounds w) wy and w; W5 in
the data set that share a constituent word with
NC. For example, replacement part bought for
body is a negative example constructed from the
paraphrase template replacement [wo] bought for
[wi] which appeared for car part. We require
one shared constituent in order to form more
fluent paraphrases (which would otherwise be
easily classifiable as negative). To reduce the
chances of creating negative examples that are in
fact valid paraphrases, we only consider negative
paraphrases whose verbs never occurred in the
positive paraphrase set for the given NC.

We add sentential contexts from Wikipedia,
randomly selecting one sentence per example, and
split the data set lexically by head.

2.5 Adjective-Noun Attributes

Task Definition. Given an adjective-noun com-
position AN in a sentence s, and an attribute AT,
the goal is to determine whether AT is implicitly
conveyed in AN. For example, the attribute
temperature is conveyed in hot water, but
not in hot argument (emotionality).

Data. We use the HeiPLAS data set (Hartung,
2015), which contains 1,598 adjective-noun com-
positions annotated with their implicit attribute
meaning. The data were extracted from WordNet
and manually filtered. The label set consists of
attribute synsets in WordNet that are linked to
adjective synsets.

Task Adaptation. Because the data set is small
and the number of labels is large (254), we recast
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the task as a binary classification task. The input
to the task is an AN and a paraphrase created from
the template ‘‘[A] refers to the [AT] of [N]”* (e.g.,
loud refers to the volume of thunder). The goal is
to predict whether the paraphrase is correct or not
with respect to the given AN.

We create up to three negative instances for
each positive instance by replacing AT in another
attribute that appeared with either A or N. For
example, (hot argument, temperature, False).
To reduce the chance that the negative attribute
is in fact a valid attribute for AN, we compute
the Wu-Palmer similarity (Wu and Palmer, 1994)
between the original and negative attribute, taking
only attributes whose similarity to the original
attribute is below a threshold (0.4).

Similarly to the previous task, we attach a
context sentence from Wikipedia to each example.
Finally, we split the data set lexically by adjective
(i.e.,if A Nisinone set, there are no A N’ examples
in the other sets).

2.6 Identifying Phrase Type

The last task consists of multiple phrase types
and addresses detecting both meaning shift and
implicit meaning.

Task Definition. The task is defined as se-
quence labeling to BIO tags. Given a sentence,
each word is classified to whether it is part of a
phrase, and the specific type of the phrase.

Data. Weusethe STREUSLE corpus (Supersense-
Tagged Repository of English with a Unified
Semantics for Lexical Expressions; Schneider and
Smith, 2015). The corpus contains texts from the
Web reviews portion of the English Web Treebank,
along with various semantic annotations, from
which we use the BIO annotations. Each token is
labeled with a tag; a B—X tag marks the beginning
of a span of type X, I occurs inside a span, and
O outside of it. B labels mark specific types of
phrase.’

Task Adaptation. We are interested in a simpler
version of the annotations. Specifically, we ex-
clude the discontinuous spans (e.g., a span like

2Sorted by frequency: noun phrase, weak (composi-
tional) MWE, verb-particle construction, verbal idioms,
prepositional phrase, auxiliary, adposition, discourse / prag-
matic expression, inherently adpositional verb, adjective,
determiner, adverb, light verb construction, non-possessive
pronoun, full verb or copula, conjunction.



training objective corpus (#words) output basic unit
dimension
word embeddings
WORD2VEC Predicting surrounding words Google News (100B) 300 word
GLOVE Predicting co-occurrence probability Wikipedia + Gigaword 5 (6B) 300 word
FASTTEXT Predicting surrounding words Wikipedia + UMBC + statmt.org (16B) 300 subword
contextualized word embeddings

ELMo Language model 1B Word Benchmark (1B) 1024 character
OpeNAI GPT Language model BooksCorpus (800M) 768 subword
BERT Masked language model (Cloze) BooksCorpus + Wikipedia (3.3B) 768 subword

Table 2: Architectural differences of the specific pre-trained representations used in this paper.

turn the [TV] off would not be considered as part
of a phrase). The corpus distinguishes between
“‘strong’” MWEs (fixed or idiomatic phrases) and
““weak’” MWEs (ad hoc compositional phrases).
The weak MWEs are untyped, hence we label
them as COMP (compositional).

3 Representations

We experimented with six common word rep-
resentations from two different families detailed
below. Table 2 summarizes the differences be-
tween the pretrained models used in this paper.

Word Embeddings. Word embedding models
provide a fixed d-dimensional vector for each
word in the vocabulary. Their training is based
on the distributional hypothesis, according to
which semantically similar words tend to appear
in the same contexts (Harris, 1954). word2vec
(Mikolov et al., 2013) can be trained with
one of two objectives. We use the embeddings
trained with the Skip-Gram objective, which
predicts the context words given the target word.
GloVe (Pennington et al., 2014) learns word
vectors with the objective of estimating the log-
probability of a word pair co-occurrence. fastText
(Bojanowski et al., 2017) extends word2vec
by adding information about subwords (bag of
character n-grams). This is especially helpful in
morphologically rich languages, but can also help
handling rare or misspelled words in English.

Contextualized Word Embeddings are func-
tions computing dynamic word embeddings for
words given their context sentence, largely ad-
dressing polysemy. They are pre-trained as gen-
eral purpose language models using a large-scale
unannotated corpus, and can later be used as a

representation layer in downstream tasks (either
fine-tuned to the task with the other model param-
eters or fixed). The representations used in this
paper have multiple output layers. We either use
only the last layer, which was shown to cap-
ture semantic information (Peters et al., 2018), or
learn a task-specific scalar mix of the layers (see
Section 6).

ELMo (Embeddings from Language Models;
Peters et al., 2018) are obtained by learning a
character-based language model using a deep
biLSTM (Graves and Schmidhuber, 2005). Work-
ing at the character-level allows using morpho-
logical clues to form robust representations for
out-of-vocabulary words, unseen in training. The
OpenAI GPT (Generative Pre-Training; Radford
et al., 2018) has a similar training objective,
but the underlying encoder is a transformer
(Vaswani et al., 2017). It uses subwords as the
basic unit, utilizing bytepair encoding. Finally,
BERT (Bidirectional Encoder Representations
from Transformers; Devlin et al., 2019) is also
based on the transformer, but it is bidirectional
as opposed to left-to-right as in the OpenAl GPT,
and the directions are dependent as opposed to
ELMo’s independently trained left-to-right and
right-to-left LSTMs. It also introduces a some-
what different objective called ‘‘masked language
model’’: during training, some tokens are ran-
domly masked, and the objective is to restore
them from the context.

4 Classification Models

We implemented minimal ‘‘Embed-Encode-
Predict’” models that use the representations from
Section 3 as inputs, keeping them fixed during
training. The rationale behind the model design
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was to keep them uniform for easy comparison be-
tween the representations, and make them simple
so that the model’s success can be attributed
directly to the input representations.

Embed. We use the embedding model to embed
each word in the sentence s W1 ... Wn,
obtaining

—

U1, ..., 0, = Embed(s) (1)

where ¥; stands for the word embedding of word
w;, which may be computed as a function of the
entire sentence (in the case of contextualized word
embeddings).

Depending on the specific task, we may have
another input wi, . . ., w; to embed separately from
the sentence: the paraphrases in the NC Relations
and AN Attributes tasks, and the target word in
the NC Literality task (to obtain an out-of-context
representation of the target word). We embed this
extra input as follows:

v_”l,...,vq’l:Embed(w/l,...,w;) 2
Encode. We encode the embedded sequences
U,...,U, and v'y,...,v'; using one of the
following three encode variants. As opposed to the
pre-trained embeddings, the encoder parameters

are updated during training to fit the specific task.

e biIM: Encoding the embedded sequence
using a biLSTM with a hidden dimension d,
where d is the input embedding dimension:

IE)

e Att:Encoding the embedded sequence using
self-attention. Each word is represented as
the concatenation of its embedding and a
weighted average over other words in the
sentence:

—

y Un

i, ..., i, = biLSTM(%, . ..

n
i = [0 ) ai - ) “)
=1

The weights a; are computed by applying
dot-product between #; and every other word,
and normalizing the scores using softmax:

L) (5)

a; = softmax(v; - v

e None: In which we don’t encode the em-
bedded text, but simply define:

(6)
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For all encoder variants, #; stands for the vector
representing w;, which is used as input to the
classifier.

Predict. We represent a span by concatenating
its end-point vectors, for example, u; ;ix =
[W;; U; 41 is the target span vector of w;, . . . , Wi .
In tasks which require a second span, we similarly
compute u'y_;, representing the encoded span
wiy, ..., w] (e.g., the paraphrase in NC relations).
The input to the classifier is the concatenation of
i;.. i+k, and, when applicable, the additional span
vector u'1. ;. In the general case, the input to the
classifier is:

T = [t Uy p; u'1; 0] (7)
where each of ;, 'y, and v/, can be empty
vectors in the cases of single word spans or no
additional inputs.

The classifier output is defined as:
o = softmax(W - ReLU(Dropout(h(Z)))) (8)
where h is a 300-dimensional hidden layer, the

dropout probability is 0.2, W € R**3%, and k is
the number of class labels for the specific task.

Implementation Details. We implemented the
models using the AllenNLP library (Gardner et al.,
2018), which is based on the PyTorch framework
(Paszke et al., 2017). We train them for up
to 500 epochs, stopping early if the validation
performance doesn’t improve in 20 epochs.

The phrase type model is a sequence tagging
model that predicts a label for each embedded
(potentially encoded) word w;. During decoding,
we enforce a single constraint that requires that a
B-X tag must precede I tag(s).

5 Baselines

5.1 Human Performance

The human performance on each task can be
used as a performance upper bound that shows
both the inherent ambiguity in the task and the
limitations of the particular data set. We estimated
the human performance on each task by sampling
and re-annotating 100 examples from each test
set.

The annotation was carried out in Amazon
Mechanical Turk. We asked three workers to



Task Agreement Example Question

VPC Classification 84.17%

I feel there are others far more suited to take on the responsibility.

What is the verb in the highlighted span? (take/take on)

LVC Classification 83.78%

Jamie made a decision to drop out of college.

Mark all that apply to the highlighted span in the given context:

1. It describes an action of ‘‘making something’’, in the common meaning of ‘‘make’’.

>

2. The essence of the action is described by ‘‘decision’’.
3. The span could be rephrased without ‘‘make’’ but with a verb like ‘‘decide’’,
without changing the meaning of the sentence.

NC Literality 80.81%

He is driving down memory lane and reminiscing about his first love.

Is ““lane’’ used literally or non-literally? (literal/non literal)

NC Relations 86.21%

Strawberry shortcakes were held as celebrations of the summer fruit harvest.

Can ‘‘summer fruit’’ be described by ‘‘fruit that is ripe in the summer’’? (yes/no)

AN Attributes 86.42%

Send my warm regards to your parents.

Does ‘“‘warm’’ refer to temperature? (yes/no)

Table 3: The worker agreement (%) and the question(s) displayed to the workers in each annotation

task.

annotate each example, taking the majority label
as the final prediction. To control the quality of
the annotations, we required that workers must
have an acceptance rate of at least 98% on at least
500 prior human intelligence tasks, and had them
pass a qualification test.

In each annotation task, we showed the
workers the context sentence with the target span
highlighted, and asked them questions regarding
the target span, as exemplified in Table 3. In
addition to the possible answers given in the
table, annotators were always given the choice of
“I can’t tell” or ‘‘the sentence does not make
sense’’.

Of all the annotation tasks, the LVC classi-
fication task was more challenging and required
careful examination of the different criteria for
LVCs. In the example given in Table 3 with the
candidate LVC make a decision, we considered
a worker’s answer as positive (LVC) either if: 1)
the worker indicated that make a decision does
not describe an action of making something AND
that the essence of make a decision is in the word
decision; or 2) if the worker indicated that make
a decision can be replaced in the given sentence
with decide without changing the meaning of
the sentence. The second criterion was given in
the original guidelines of Tu and Roth (2011).
The replacement verb decide was selected as it is
linked to decision in WordNet in the derivationally
related relation.

We didn’t compute the estimated human
performance on the phrase type task, which is
more complicated and requires expert annotation.
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5.2 Majority Baselines

We implemented three majority baselines:

e Majority 41,7, is computed by assigning the
most common label in the training set to all
the test items. Note that the label distribution
may be different between the train and test
sets, resulting in accuracy < 50% even for
binary classification tasks.

e Majority; assigns for each test item the most
common label in the training set for items
with the same first constituent. For example,
in the VPC classification task, it classifies get
through as positive in all its contexts because
the verb get appears in more positive than
negative examples.

e Majoritys symmetrically assigns the label
according to the last (typically second)
constituent.

6 Results

Table 4 displays the best performance of each
model family on the various tasks.

Representations. The general trend across tasks
is that the performance improves from the major-
ity baselines through word embeddings and to the
contextualized word representations, with a large
gap in some of the tasks. Among the contextual-
ized word embeddings, BERT performed best on
four out of six tasks, with no consistent preference
between ELMo and the OpenAl GPT. The best



Model Family VPC LvC NC NC AN Phrase

Classification Classification Literality Relations Attributes Type

Acc Acc Acc Acc Acc F

Majority Baselines 23.6 43.7 72.5 50.0 50.0 26.6
Word Embeddings 60.5 74.6 80.4 51.2 53.8 44.0
Contextualized 90.0 82.5 91.3 54.3 65.1 64.8
Human 93.8 83.8 91.0 77.8 86.4 -

Table 4: Summary of the best performance of each family of representations on the various tasks. The
evaluation metric is accuracy except for the phrase type task in which we report span-based F} score,
excluding O tags.

Model VPC LvC NC NC AN Phrase
Classification Classification Literality Relations Attributes Type
Layer Encoding Layer Encoding Layer  Encoding Layer Encoding Layer Encoding Layer Encoding
ELMo All Att All bilM All Att/None Top bilM All None All biLM
OpenAI GPT A1l None Top Att/None Top None All biLM Top None All DbiLM
BERT All Att All biLM All Att All None All None All bilM

Table 5: The best setting (layer and encoding) for each contextualized word embedding model on the
various tasks. Bold entries are the best performers on each task.

Model VPC LvVC NC NC AN Phrase
Classification Classification Literality Relations Attributes Type
word2vec bilLM Att biLM/Att None - None/biLM
GloVe bilM Att Att biLM - bilM
fastText Att biLM biLM bilM Att biLM

Table 6: The best encoding for each word embedding model on the various tasks. Bold entries are the

best performers on each task. Dash marks no preference.

word embedding representations were GloVe (4
of 6) followed by fastText (2 of 6).

Phenomena. The gap between the best model
performance (achieved by the contextualized
representations) and the estimated human perfor-
mance varies considerably across tasks. The best
performance in NC Literality is on par with human
performance, and only a few points short of that in
VPC Classification and LVC Classification. This
is evidence for the utility of contextualized word
embeddings in detecting meaning shift, which has
positive implications for the yet unsolved problem
of detecting MWE:s.

Conversely, the gap between the best model
and the human performance is as high as 23.5 and
21.3 points in NC Relations and AN Attributes,
respectively, suggesting that tasks requiring re-
vealing implicit meaning are more challenging to
the existing representations.

Layer. Table 5 elaborates on the best setting for
each representation on the various tasks. In most

cases, there was a preference to learning a scalar
mix of the layers rather than using only the top
layer. We extracted the learned layer weights for
each of the A11 models, and found that the model
usually learned a balanced mix of the top and
bottom layers.

Encoding. We did not find one encoding setting
that performed best across tasks and contextual-
ized word embedding models. Instead, it seems
that tasks related to meaning shift typically prefer
Att or no encoding, whereas tasks related to
implicit meaning performed better with either
biLM or no encoding.

When it comes to word embedding models,
Table 6 shows that biLM was preferred more
often. This is not surprising. A contextualized
word embedding of a certain word is, by definition,
already aware of the surrounding words, obviating
the need for a second layer of order-aware
encoding. A word embedding based model, on
the other hand, must rely on a biLSTM to learn
the same.
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Finally, the best settings on the Phrase Type task
use biLM across representations. It may suggest
that predicting a label for each word can benefit
from a more structured modelling of word order.
Looking into the errors made by the best model
(BERT+AIll+biLLM) reveals that most of the errors
were predicting O, that is, missing the occurrence
of a phrase. With respect to specific phrase types,
near perfect performance was achieved among the
more syntactic categories. Specifically, auxiliary
(Did they think we were [going to] feel lucky
to get any reservation at all?), adverbs (any
longer), and determiners (a bit). In accordance
to the VPC Classification task, the VPC label
achieved 85% accuracy. Ten percent were missed
(classified as 0) and 5% were confused with a
““weak’> MWE. Two of the more difficult types
were ‘‘weak’> MWEs (which are judged as more
compositional and less idiomatic) and idiomatic
verbs. The former achieved accuracy of 22% (68%
were classified as O) and the latter only 8% (62%
were classified as 0). Overall, it seems that the
model relied mostly on syntactic cues, failing to
recognize semantic subtleties such as idiomatic
meaning and level of compositionality.

7 Analysis

We focus on the contextualized word embeddings,
and look into the representations they provide.

7.1 Meaning Shift

Does the representation capture VPCs? The
best performer on the VPC Classification task was
the BERT+AIll+Att. To get a better idea of the
signal that BERT contains for VPCs, we chose
several ambiguous verb-preposition pairs in the
data set. We define a verb-preposition pair as
ambiguous if it appeared in at least eight examples
as a VPC and at least eight examples as a non-
VPC. For a given pair we computed the BERT
representations of the sentences in which it appears
in the data set, and, similarly to the model, we
represented the pair as the concatenation of its
word vectors. In each vector we averaged the
layers using the weights learned by the model.
Finally, we projected the computed vectors into
2D space using t-SNE (Maaten and Hinton, 2008).
Figure 2 demonstrates four example pairs. The
other pairs we plotted had similar t-SNE plots,
confirming that the signal for separating different
verb usages comes directly from BERT.
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Figure 2: t-SNE projection of BERT representations
of verb-preposition candidates for VPC. Blue (dark)
points are positive examples and orange (light) points
are negative.

Non-literality as a rare sense. Nunberg et al.
(1994) considered some non-literal compounds as
“‘idiosyncratically decomposable’’, that is, which
can be decomposed to possibly rare senses of their
constituents, as in considering bee to have a sense
of ‘‘competition’ in spelling bee and crocodile
to stand for ‘‘manipulative’’ in crocodile tears.
Using this definition, we could possibly use the
NC literality data for word sense induction, in
which recent work has shown that contextualized
word representations are successful (Stanovsky
and Hopkins, 2018; Amrami and Goldberg, 2018).
We are interested in testing not only whether the
contextualized models are capable of detecting
rare senses induced by non-literal usage, which
we have confirmed in Section 6, but whether they
can also model these senses. To that end, we
sample target words that appear in both literal and
non-literal examples, and use each contextualized
word embedding model as a language model to
predict the best substitutes of the target word in
each context. Table 7 exemplifies some of these
predictions.

Bold words are words judged reasonable in the
given context, even if they don’t have the exact
same meaning as the target word. It is apparent
that there are more reasonable substitutes for the
literal examples, across models (left part of the
table), but BERT performs better than the others.
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The Queen and her husband were on a train [trip] 7, from
Sydney to Orange.

Creating a guilt [trip] ;v in another person may be considered to
be psychological manipulation in the form of punishment for a
perceived transgression.

ride 1.24%to 0.02% travelling 19.51% tolerance 0.44% that 0.03% reaction 8.32%
carriage 1.02%headed 0.01% running 8.20% fest 0.23%s0 0.02% feeling 8.17%
journey 0.73%heading 0.01% journey 7.57% avoidance 0.16%trip  0.01% attachment 8.12%
heading 0.72%that 0.009% going 6.56% onus 0.15%he 0.01% sensation 4.73%
carrying 0.39%and 0.005%headed 5.75%  association 0.14%she 0.01% note 331%
Richard Cromwell so impressed the king with his valour, that She became the first British monarch to celebrate a [diamond] 5
he was given a [diamond] , ring from the king’s own finger. wedding anniversary in November 2007.

diamond 0.23%and 0.01% silver 15.99%  customary 0.20%new  0.11% royal 1.58%
wedding 0.19% of 0.01% gold 14.93% royal 0.17%british  0.02% 1912 1.23%
pearl 0.18%to 0.01% diamond 13.18% sacrifice 0.15%victory 0.01% recent 1.10%
knighthood 0.16%ring 0.01% golden 12.79% 400th 0.13%french 0.01% 1937 1.08%
hollow 0.15%in 0.01% new 4.61% 10th 0.13%royal  0.01% 1902 1.08%

China is attempting to secure its future [oil];, share and establish
deals with other countries.

Put bluntly, I believe you are a snake [oil] 5 salesman, a
narcissist that would say anything to draw attention to himself.

beyond 0.44%in 0.01% market  98.60%
engagement 0.44% and 0.01% export 0.45%
market 0.34% for 0.01% trade 0.14%
nuclear 0.33%government 0.01% trading 0.09%
majority 0.29% supply 0.01% production 0.04%

auto 0.52%in 0.05% oil 32.5%
egg 0.42%and 0.01% pit 2.94%
hunter 0.42%that 0.01% bite 2.65%
consummate 0.39% of 0.01% skin 2.36%
rogue 0.37% charmer0.008% jar 2.23%

Table 7: Top substitutes for a target word in literal (left) and non-literal (right) contexts, along with
model scores. Bold words are words judged reasonable (not necessarily meaning preserving) in the
given context, and underlined words are suitable substitutes for the entire noun compound, but not for

a single constituent.

The OpenAl GPT shows a clear disadvantage of
being uni-directional, often choosing a substitute
that doesn’t go well with the next word (a train to
Jfrom).

The success is only partial among non-literal
examples. Although some correct substitutes are
predicted for (guilt) trip, the predictions are much
worse for the other examples. The meaning of
diamond in diamond wedding is ‘‘60th’’, and
ELMo makes the closest prediction, /0th (which
would make it tin wedding). 400th is a borderline
prediction, because it is also an ordinal number,
but an unreasonable one in the context of years

of marriage.
Finally, the last example snake oil is un-

surprisingly a difficult one, possibly ‘‘non-
decomposable’” (Nunberg et al., 1994), as
both constituents are non-literal. Some predicted
substitutes, rogue and charmer, are valid
replacements for the entire noun compound (e.g.,
you are a rogue salesman). Others go well with the
literal meaning of snake creating phrases denoting
concepts which can indeed be sold (snake egg,

snake skin).
Overall, although contextualized representa-

tions excel at detecting shifts from the common
meanings of words, their ability to obtain mean-
ingful representations for such rare senses is much
more limited.

7.2 Implicit Meaning

The performance of the various models on the
tasks that involve revealing implicit meaning are
substantially worse than on the other tasks. In NC
Relations, ELMo performs best with the biLM-
encoded model using only the top layer of the
representation, surpassing the majority baseline
by only 4.3 points in accuracy. The best performer
in AN Attributes is BERT, with no encoding and
using all the layers, achieving accuracy of 65.1%,
well above the majority baseline (50%).

We are interested in finding out where the
knowledge of the implicit meaning originates. Is
it encoded in the phrase representation itself, or
does it appear explicitly in the context sentences?
Finally, could it be that the performance gap from
the majority baseline is due to the models learning
to recognize which paraphrases are more probable
than others, regardless of the phrase itself?

To try to answer this question, we performed
ablation tests for each of the tasks, using the best
performing setting for each (ELMo+Top+biLM
for NC Relations and BERT+All+None for AN
Attributes). We trained the following models (-X
signifies the ablation of the X feature):

1. -Phrase: where we mask the phrase in its
context sentence, for example, replacing
Today, the house has become a wine bar
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NC Relations AN Attributes

Majority 50.0 50.0
—-Phrase 50.0 55.66
—Context 45.06 63.21
—(Context+Phrase) 45.06 59.43
Full Model 54.3 65.1

Table 8: Accuracy scores of ablations of the
phrase, context sentence, and both features
from the best models in the NC Relations
and AN Attributes tasks (ELMo+Top+biLM and
BERT+All+None, respectively).

or bistro called Barokk with Today, the
house has become a something or bistro
called Barokk. Success in this setting may
indicate that the implicit information is given
explicitly in some of the context sentences.’

2. -Context: the out-of-context version of the
original task, in which we replace the context
sentence by the phrase itself, as in setting it to
wine bar. Success in this setting may indicate
that the phrase representation contains this
implicit information.

3. -(Context+Phrase): in which we omit the
context sentence altogether, and provide only
the paraphrase, as in bar where people buy
and drink wine. Success in this setting may
indicate that negative sampled paraphrases
form sentences which are less probable in
English.

Table 8 shows the results of this experiment. A
first observation is that the full model performs
best on both tasks, suggesting that the model
captures implicit meaning from various sources.
In the NC Relations, all variants perform on par
or worse than the majority baseline, achieving a
few points less than the full model. In the AN
Attributes task it is easier to see that the phrase
(AN) is important for the classification, whereas
the context is secondary.

8 Related Work

Probing Tasks. One way to test whether
dense representations capture a certain linguistic

3 A somewhat similar phenomenon was recently reported
by Senaldi et al. (2019). Their model managed to distinguish
idioms from non-idioms, but their ablation study showed the
model was in fact learning to distinguish between abstract
contexts (in which idioms tend to appear) and concrete ones.
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property is to design a probing task for this
property, and build a model that takes the tested
representation as an input. This kind of ‘black
box’’ testing has become popular recently. Adi
etal. (2017) studied whether sentence embeddings
capture properties such as sentence length and
word order. Conneau et al. (2018) extended their
work with a large number of sentence embeddings,
and tested various properties at the surface,
syntactic, and semantic levels. Others focused
on intermediate representations in neural machine
translation systems (e.g., Shi et al., 2016; Belinkov
etal., 2017; Dalvi et al., 2017; Sennrich, 2017), or
on specific linguistic properties such as agreement
(Giulianelli et al., 2018), and tense (Bacon and
Regier, 2018).

More recently, Tenney et al. (2019) and Liu
et al. (2019) each designed a suite of tasks to
test contextualized word embeddings on a broad
range of sub-sentence tasks, including part-of-
speech tagging, syntactic constituent labeling,
dependency parsing, named entity recognition,
semantic role labeling, coreference resolution,
semantic proto-role, and relation classification.
Tenney et al. (2019) found that all the models
produced strong representations for syntactic
phenomena, but gained smaller performance
improvements upon the baselines in the more
semantic tasks. Liu et al. (2019) found that some
tasks (e.g., identifying the tokens that comprise
the conjuncts in a coordination construction)
required fine-grained linguistic knowledge which
was not available in the representations unless
they were fine-tuned for the task. To the best
of our knowledge, we are the first to provide
an evaluation suite consisting of tasks related to
lexical composition.

Lexical Composition. There is a vast literature
on multi-word expressions in general (e.g., Sag
et al., 2002; Vincze et al., 2011), and research
focusing on noun compounds (e.g., Nakov, 2013;
Nastase et al., 2013), adjective-noun compositions
(e.g., Baroni and Zamparelli, 2010; Boleda et al.,
2013), verb-particle constructions (e.g., Baldwin,
2005; Pichotta and DeNero, 2013), and light verb
constructions (e.g., Tu and Roth, 2011; Chen et al.,
2015).

In recent years, word embeddings have been
used to predict the compositionality of phrases
(Salehi et al., 2015; Cordeiro et al., 2016), and
to identify the implicit relation in adjective-noun



compositions (Hartung et al., 2017) and in noun
compounds (Surtani and Paul, 2015; Dima, 2016;
Shwartz and Waterson, 2018; Shwartz and Dagan,
2018).

Pavlick and Callison-Burch (2016) created a
simpler variant of the recognizing textual entail-
ment task (RTE, Dagan et al., 2013) that tests
whether an adjective-noun composition entails the
noun alone and vice versa in a given context. They
tested various standard models for RTE and found
that the models performed poorly with respect to
this phenomenon. To the best of our knowledge,
contextualized word embeddings haven’t yet been
used for tasks related to lexical composition.

Phrase Representations. With respect to obtain-
ing meaningful phrase representations, there is a
prominent line of work in learning a composition
function over pairs of words. Mitchell and Lapata
(2010) suggested simple composition via vector
arithmetics. Baroni and Zamparelli (2010) and
later Maillard and Clark (2015) treated adjectival
modifiers as functions that operate on nouns and
change their meanings, and represented them as
matrices. Zanzotto et al. (2010) and Dinu et al.
(2013) extended this approach and composed
any two words by multiplying each word vec-
tor by a composition matrix. These models start
by computing the phrases’ distributional repre-
sentation (i.e., treating it as a single token) and
then learning a composition function that approx-
imates it.

The main drawbacks of this approach are
that it assumes compositionality and that it
operates on phrases with a predefined number
of words. Moreover, we can expect the resulting
compositional vectors to capture properties
inherited from the constituent words, but it is
unclear whether they also capture new properties
introduced by the phrase. For example, the
compositional representation of olive o0il may
capture properties like green (from olive) and
fat (from oil), but would it also capture properties
like expensive (a result of the extraction process)?

Alternatively, other approaches were suggested
for learning general phrase embeddings, either
using direct supervision for paraphrase similarity
(Wieting et al., 2016), indirectly from an ex-
trinsic task (Socher et al., 2012), or in an un-
supervised manner by extending the word2vec
objective (Poliak et al., 2017). Although they
don’t have constraints on the phrase length,
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these methods still suffer from the two other
drawbacks above: They assume that the meaning
of the phrase can always be composed from its
constituent meanings, and it is unclear whether
they can incorporate implicit information and
new properties of the phrase. We expected that
contextualized word embeddings, which assign
a different vector for a word in each given
context, would address at least the first issue by
producing completely different vectors to literal
vs. non-literal word occurrences.

9 Discussion and Conclusion

We have shown that contextualized word
representations perform generally better than
static word embeddings on tasks related to lexical
composition. However, although they are on par
with human performance in recognizing meaning
shift, they are still far from that in revealing
implicit meaning. This gap may suggest a limit
on the information that distributional models
currently provide about the meanings of phrases.

Going beyond the distributional models, an
approach to build meaningful phrase repre-
sentations can get some inspiration from the way
that humans process phrases. A study on how
L2 learners process idioms found that the most
common and successful strategies were inferring
from the context (57% success) and relying on
the literal meanings of the constituent words
(22% success) (Cooper, 1999). As opposed to
distributional models that aim to learn from a large
number of (possibly noisy and uninformative)
contexts, the sentential contexts in this experiment
were manually selected, and a follow-up study
found that extended contexts (stories) help the
interpretation further (Asl, 2013). The participants
didn’t simply rely on adjacent words or phrases,
but also used reasoning. For example, in the sen-
tence Robert knew that he was robbing the cradle
by dating a sixteen-year-old girl, the participants
inferred that 16 is too young to date, combined it
with the knowledge that cradle is where a baby
sleeps, and concluded that rob the cradle means
dating a very young person. This level of context
modeling seems to be beyond the scope of current
text representations.

We expect that improving the ability of repre-
sentations to reveal implicit meaning will require
training them to handle this specific phenomenon.
Our evaluation suite, the data, and code will be



made available. It is easily extensible, and may be
used in the future to evaluate new representations
for their ability to address lexical composition.
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