
Syntax-aware Semantic Role Labeling without Parsing

Rui Cai and Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

Rui.Cai@ed.ac.uk mlap@inf.ed.ac.uk

Abstract
In this paper we focus on learning dependency
aware representations for semantic role label-
ing without recourse to an external parser.
The backbone of our model is an LSTM-
based semantic role labeler jointly trained with
two auxiliary tasks: predicting the dependency
label of a word and whether there exists an arc
linking it to the predicate. The auxiliary tasks
provide syntactic information that is specific
to semantic role labeling and are learned from
training data (dependency annotations) with-
out relying on existing dependency parsers,
which can be noisy (e.g., on out-of-domain
data or infrequent constructions). Experimen-
tal results on the CoNLL-2009 benchmark
dataset show that our model outperforms the
state of the art in English, and consistently
improves performance in other languages,
including Chinese, German, and Spanish.

1 Introduction

Semantic role labeling (SRL) aims to identify
the arguments of semantic predicates in a sen-
tence and label them with a set of predefined
relations (e.g., ‘‘who’’ did ‘‘what’’ to ‘‘whom,’’
‘‘when,’’ and ‘‘where’’). Semantic roles capture
basic predicate-argument structure while abstract-
ing over surface syntactic configurations and
have been shown to benefit a wide spectrum of
applications ranging from machine translation
(Aziz et al., 2011; Marcheggiani et al., 2018) to
information extraction (Christensen et al., 2011)
and summarization (Khan et al., 2015).

The successful application of neural networks
to a variety of NLP tasks (Bahdanau et al., 2015;
Vinyals et al., 2015) has provided strong impetus
to develop deep end-to-end models for SRL that
forego the need for extensive feature engineering.
Recently proposed models (Zhou and Xu, 2015;

He et al., 2017; Marcheggiani et al., 2017) largely
rely on bi-directional recurrent neural networks
(Hochreiter and Schmidhuber, 1997) and predict
semantic roles from textual input. They achieve
competitive results while being syntax agnostic,
thereby challenging conventional wisdom that
parse trees provide a better form of representation
for assigning semantic role labels (Johansson and
Nugues, 2008).

There are, however, good reasons why syntax
ought to help semantic role labeling. First and
foremost, SRL systems are trained on datasets
whose semantic role annotations have been pro-
duced on top of treebanked corpora, and as a re-
sult are closely tied to syntactic information. An
example sentence with roles labeled in the style
of PropBank (Palmer et al., 2005) is shown in
Figure 1. Here, many arcs in the syntactic depen-
dencygrapharemirrored in thesemanticdependency
graph, suggesting that syntactic dependencies
could provide useful information to the SRL
task. Secondly, predicates are typically associated
with a standard linking, that is, a deterministic
mapping from syntactic roles to semantic ones
(Lang and Lapata, 2010; Surdeanu et al., 2008).
For example, subject (SBJ) is commonly mapped
onto A0, whereas A1 is often realized as object
(OBJ). Even in cases where there is no canoni-
cal mapping, dependency labels are still closely
related to certain semantic roles, like the syntactic
function TMP and the semantic role AM-TMP.

The question of how to effectively incorporate
syntactic information into sequential neural net-
work models has met with different answers in the
literature. Marcheggiani and Titov (2017) make
use of graph convolutional networks (GCNs;
Duvenaud et al., 2015; Kearnes et al., 2016; Kipf
and Welling, 2017) as a means to represent syn-
tax in neural models. GCNs are used to encode
syntactic dependency trees in combination with
encoders based on long short-term memory units

343

Transactions of the Association for Computational Linguistics, vol. 7, pp. 343–356, 2019. Action Editor: Alessandro Moschitti.
Submission batch: 10/2018; Revision batch: 1/2019; Published 6/2019.

c© 2019 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



Figure 1: Example sentence from the CoNLL-2009
English dataset annotated with syntactic dependencies
(bottom) and semantic roles (top).

(LSTMs). He et al. (2018) emphasize the role of
syntax in argument identification rather than role
labeling. Specifically, they develop an argument
pruning algorithm that operates over dependency
structures and selects argument candidates subject
to a parameter determining their distance from the
predicate. The predicate and its arguments are then
encoded with an LSTM similar to Marcheggiani
and Titov (2017). He et al. (2017) incorporate
syntax at decoding time, in the form of constraints
on the output structure (e.g., consistency with a
parse tree is enforced by rejecting or penalizing
arguments that are not constituents), whereas
Strubell et al. (2018) incorporate syntactic infor-
mation in a multi-task neural network model that
simultaneously performs part-of-speech tagging,
dependency parsing, predicate detection, and SRL.

In this paper we argue that syntactic information
is important for semantic role labeling and syn-
tactic parsing is not. Despite recent advances in
dependency parsing (Dozat and Manning, 2016;
Kiperwasser and Goldberg, 2016), the use of
an external parser often leads to pipeline-style
architectures where errors propagate to later
processing stages, affecting model performance.
To mitigate such errors, Marcheggiani and Titov
(2017) calculate a scalar gate for each edge in
the dependency tree. And perhaps unsurprisingly,
the performance of their system decreases when
more than one GCN layer is stacked, as the
effect of noisy information is amplified. Our
key insight is to focus on dependency labels,
which provide important information for semantic
roles without requiring access to a full-blown
syntactic representation of the sentence. Our
model concentrates on the dependency structures
pertaining to the predicate in a given sentence
rather than capturing information relating to every

arc in the dependency tree. The majority of
arguments (approximately 68%) in the CoNLL-
2009 English development set are directly linked
to the predicate or are predicates themselves.

Our work focuses on learning dependency-
aware representations without recourse to an ex-
ternal parser. The backbone of our model is a
semantic role labeler jointly trained with a de-
pendency information extractor with two aux-
iliary tasks: predicting the dependency label of
a word and whether there exists an arc linking
it to the predicate. The two auxiliary tasks pro-
vide dependency information that is specific to
the SRL task and is learned from training data
(dependency annotations) without ever utilizing
an external parser. Our model falls under the gen-
eral paradigm of multi-task learning (Caruana,
1993) which aims to improve a main task by
jointly learning one or more related auxiliary tasks.
Multi-task learning has been successfully applied
to various sequence-prediction tasks including
chunking, tagging (Collobert et al., 2011b; Bjerva
et al., 2016; Plank, 2016; Søgaard and Goldberg,
2016; Hashimoto et al., 2017), name error detec-
tion (Cheng et al., 2015), machine translation
(Luong et al., 2016), supersense tagging (Bingel
and Søgaard, 2017), entailment (Hashimoto et al.,
2017), and semantic role labeling (Collobert et al.,
2011b; Strubell et al., 2018).

Experimental results on the CoNLL-2009
benchmark dataset show that our model is able
to outperform the state of the art in English, and
to improve SRL performance in other languages,
including Chinese, German, and Spanish.

2 Model Description

Most supervised semantic role labeling systems
adopt an architecture consisting of the following
steps: (a) predicate identification and disambigua-
tion (e.g., crowds in Figure 1 is a predicate
with sense crowd.02); (b) argument identification
(e.g., the arguments of the predicate crowds in
Figure 1 are He and plate); and (c) argument
classification (e.g., the semantic roles for He and
plate are A0 and A1, respectively). In this paper
we focus solely on identifying arguments and
labeling them with semantic roles using an off-
the-shelf disambiguation model for the first step
(Björkelund et al., 2010; Roth and Lapata, 2016).

Our semantic role labeler is built on top of
the syntax-agnostic model of Marcheggiani et al.

344



(2017), which achieves good performance on the
CoNLL-2009 English dataset without making
use of a parser. Figure 2 provides a schematic
overview of our model, which has two main
components, namely, a dependency information
extractor, and a semantic role predictor. The aim
of the dependency extractor is to learn syntactic
information for each word which subsequently
serves as input (combined with word representa-
tions) to the semantic role labeler. The dependency
extractor consists of:

• a word representation component (which
boils down to a simple embedding look-up);

• a K-layer bidirectional LSTM (BiLSTM)
encoder that takes as input the repre-
sentation of each word in a sentence and
produces context-dependent embeddings;

• two multilayer perceptron (MLP) networks
that predict the dependency label and type of
arc between a word and a predicate.

The semantic role predictor consists of:

• a word representation component that en-
capsulates predicate-specific dependency
information;

• a J-layer BiLSTM encoder that takes as input
the representation of each word in a sentence;

• a classifier that takes as input the BiLSTM
representations of predicates and their
arguments and assigns semantic roles to the
latter.

In the following sections we describe these two
components more formally.

2.1 Dependency Information Extractor
The dependency information extractor (bottom
block in Figure 2) operates on sentences after
predicate identification (and disambiguation)
has taken place. It learns important syntactic
information (i.e., the dependency relation between
a predicate and its candidate arguments), which is
subsequently used by the semantic role labeler. In
the description below we assume that predicates
are known.

Sentence Encoder We represent words as the
concatenation of three vectors: a randomly initial-

ized word embedding x′re ∈ Rdw , a pre-trained
word embeddingx′pe ∈ Rdw estimated on an exter-
nal text collection, and a character embedding xcei
learned by convolutional neural network (CNN)
with bidirectional LSTM (BiLSTM). The final
word representation is given by x = x′re◦x′pe◦x′ce,
where ◦ represents the concatenation operator.

Following Marcheggiani et al. (2017), sen-
tences are represented using a bi-directional re-
current neural network with LSTMs (Hochreiter
and Schmidhuber, 1997). A bidirectional LSTM
receives at time step t a representation x for each
word and recursively computes two hidden states,
one for the forward pass (

−→
ht), and another one

for the backward pass (
←−
ht ). Each word is the

concatenation of its forward and backward LSTM
state vectors ht =

−→
ht ◦ ←−ht .

Dependency Label Prediction Our model
focuses on predicting the dependency labels of
predicates as opposed to all words in a dependency
tree. For each arc (w, p) consisting of predicate p
and modifierw, our model assigns the dependency
label l with the highest score according to a
multilayer perceptron (MLP):

label(w, p) = argmax
l∈labels

MLPLBL(hw ◦ hp)[l] (1)

where l are pre-defined dependency labels
(e.g., SUBJ, OBJ), and hw and hp are the hidden
states of the bidirectional sentence encoder repre-
senting word w and predicate p, respectively (see
the bottom BiLSTM in Figure 2).

The inner structure of the MLP is shown in
Figure 3. Dependency label scores for arc (w, p)
are calculated as follows:

MLPLBL = WLBL tanh(Wwhw +Wphp) (2)

whereWw,Wp, andWLBL are parameter matrices.
In our experiments we use a two-layered BiLSTM
encoder following Kiperwasser and Goldberg
(2016), who show that placing a dependency
classifier on top of two BiLSTM layers achieves
best results for labeled dependency parsing.

Link Type Prediction Our aim is to capture
how semantic predicates are linked to adjacent
words in a sentence. Specifically, we are interested
in predicting whether they are linked, and, if they
are, what type of link they have. Again, we only

345



Figure 2: Model overview: Dependency information extractor (bottom) and a semantic role labeler (top). Colored
lines are syntax-aware representations for the word He and are shared between the two components.

Figure 3: Dependency label prediction. Blue lines
denote dependency arcs between words in the sentence
and the predicate crowds.

focus on syntactic arcs pertaining to the semantic
predicate, rather than all arcs in the dependency
tree, and assign each word a label representing
its link type in relation to the predicate. Tag N
indicates there is no arc between a word and the

Figure 4: Predicting the link type of each word in a
sentence. Blue lines denote dependency arcs between
words in the sentence and the predicate crowds.

predicate, whereas tags C and P represent child
and parent nodes of the predicate, respectively.
Figure 4 shows an example of how these
labels are processed by our model. We extract
predicate linking information from dependency

346



tree annotations, and use a MLP predictor to
identify link type information for word wt :

MLPLNK = WLNK tanh(WLht) (3)

A key difference between the dependency label
classifier and the link type predictor is that the
latter does not explicitly usehp, namely, predicate-
specific information. By doing this, we force the
model to learn the linking between long-distance
word pair. For a sentence with more than one
predicates, the dependency information extractor
will produce different results for each predicate.

2.2 Syntax-aware Semantic Role Labeler
Our semantic role labeler (upper block in Figure 2)
estimates the probability of role r given the hidden
states of candidate argument word i and predicate
word p:

p(r|ti, tp, l) ∝ exp(Wl,r(ti ◦ tp)), (4)

where ti and tp are representations for word i and
predicate p, respectively, and l is the lemma of
predicate p; symbol ◦ denotes concatenation and∝
signifies proportionality. Following Marcheggiani
and Titov (2017), matrix Wl,r is the joint embed-
ding of role r and the predicate lemma l using a
non-linear transformation:

Wl,r = ReLU(U(el ◦ er)) (5)

where U is a parameter matrix, and el ∈ Rd
′
l and

er ∈ Rdr are randomly initialized embeddings
of predicate lemmas and roles. This way, each
role prediction is predicate-specific, and a good
representation for roles associated with infrequent
predicates can be learned.

The model’s training objectiveL is the weighted
sum of objectives for the SRL task and the two
auxiliary tasks. Formally,

L = LSRL + α(LLBL + LLNK), (6)

where LSRL, LLBL, and LLNK are the categor-
ical cross-entropy of SRL, dependency label
prediction, and link type prediction, respectively.
α is a scalar weight for the auxiliary tasks whose
value is tuned experimentally on the development
dataset.

We will next discuss how the hidden states ti
and tp are obtained taking into account the the
dependency extractor introduced earlier.

Input Layer Representations Given a sentence
with words (w1, . . . , wN ), we form a syntax-
agnostic word representation x for each word
using randomly initialized word embedding xre ∈
Rdw , pre-trained word embedding xpe ∈ Rdw

estimated on an external text collection, randomly
initialized part-of-speech tag embedding xpos ∈
Rdpos , and randomly initialized lemma embedding
xle ∈ Rdl (active only if the word is a predicate).
The word representation is thus given by x =
xre ◦ xpe ◦ xpos ◦ xle, where ◦ represents the
concatenation operator.

The parameters of the pre-trained word embed-
dings xpe are shared with the word embeddings
x
′
pe used for our dependency information extrac-

tor, and are updated during training. In order
to obtain more syntax-aware representations, we
utilize hidden-layer representations vhidden and
dependency embeddings (elabel and elink). The
final representation R, which serves as input to
the SRL, is the concatenation of three syntactically
informed representations:

R = x ◦ vhidden ◦ elabel ◦ elink (7)

Hidden-layer Representations In order to com-
pute vhidden, we draw inspiration from ELMo
(Peters et al., 2018), a recently proposed model
for generating word representations based on
bidirectional LSTMs trained with a coupled lan-
guage model objective. Unlike more traditional
word embeddings (Mikolov et al., 2013), ELMo
representations are deep, essentially a linear com-
bination of the representations learned at all layers
of the LSTM instead of just the final layer.

We also utilize the combination of the inter-
mediate layer representations in the dependency
information extractor. Given sentence (w1,
. . . , wN ), a BiLSTM encoder with L layers com-
putes for each word a set of 2L representations:

S = {�hj ,←−h j |j = 1, . . . , L}
= {hj |j = 1, . . . , L} (8)

where hj = [�hj ;
←−
h j ] for each hidden layer in the

BiLSTM encoder.
In order to make use of all layers in S for our

SRL task, we collapse them into a single vector.
Although we could simply concatenate these
representations or select the top layer, we compute

347



vector vhidden as a weighting of the BiLSTM
layers, followed by a non-linear projection:

vhidden = ReLU(Whidden(γ

j=L∑

j=1

βjhj)) (9)

where β are softmax-normalized weights for
hj , and the scalar parameter γ is of practical
importance for optimization, as it allows the model
to scale the weighted hidden-layer representations
(Peters et al., 2018); both β and γ are updated
during training.

Dependency Embeddings An obvious way to
take advantage of the dependency label predictions
(see Section 2.1) would be to use the embedding
el of the label l with the highest score. However,
this would place too much emphasis on high
confidence labels, which can be noisy. Instead, we
use the weighted composition of all dependency
label embeddings elabel, which is calculated as:

elabel =
∑

l∈labels
softmax(MLPLBL)[l] ∗ el (10)

where the weight of each label embedding is
the normalized probability given by the label
classifier. Analogously, we represent dependency
link information elink as:

elink =
∑

l∈{N,C,P }
softmax(MLPLNK)[l] ∗ el

(11)

3 Experiments

We implemented our model in PyTorch1 and
evaluated it on the English, Chinese, German,
and Spanish CoNLL-2009 benchmark datasets
following the standard training, testing, and
development set splits. The datasets contain gold-
standard dependency annotations, and also gold
lemmas, part-of-speech tags, and morphological
features. Data for the different languages was
generated by merging various language specific
treebanks such as the Penn Treebank (Parcus
et al., 1993) and Brown corpus (Francis and
Kucera, 1979) for English, the Prague Dependency
Treebank for Czech (Hajičová et al., 1999),
the Chinese Treebank (Xue et al., 2005), and
Proposition Bank (Xue and Palmer, 2009) for
Chinese, and so on (we refer the interested reader

1Our code is available at https://github.com/
RuiCaiNLP/SRL_DEP.

Hyperparameter value

dw (English word embeddings) 100
dw (other languages word embeddings) 300
dc (character embeddings) 300
dpos (POS embeddings) 16
dl (lemma embeddings) 100
dh (LSTM hidden states) 300
dhidden (hidden layer representation) 200
doutput (output label embeddings) 32
dr (role representation) 128
d
′
l (output lemma representation) 128

K (BiLSTM depth) 4
J (BiLSTM depth) 2
batch size 30
input layer dropout rate 0.3
hidden layer dropout rate 0.3
learning rate 0.001
auxiliary tasks loss weight α 0.5

Table 1: Hyperparameter values.

to Hajic et al. [2009] for details on individual
languages and their annotations).

For experiments on English, we used the
embeddings of Dyer et al. (2015), which were
learned using the structured skip n-gram approach
of Ling et al. (2015). In a few experiments we
also used English character embeddings following
He et al. (2018). These were pre-trained with
a CNN-BiLSTM model (Peters et al., 2018)
on the 1 Billion Word Benchmark,2 which is
publicly released as part of the AllenNLP toolkit.3

Embeddings4 for Chinese, Spanish, and German
were pre-trained on Wikipedia using fastText
(Bojanowski et al., 2017).

The dropout mechanism was applied to the input
layer and the top hidden layer of the BiLSTM
encoders. We used the Adam optimizer (Kingma
and Ba, 2014) to train our models. We performed
hyperparameter tuning and model selection on the
English development set; optimal hyperparameter
values (for all languages) are shown in Table 1.
The BiLSTM for the dependency extractor had
two layers, and the BiLSTM for the semantic role
labeler had four.

Predicted POS tags were provided by the
CoNLL-2009 shared-task organizers. For all lan-
guage, we used the same predicate disambiguator

2 http://www.statmt.org/lm-benchmark/
3https://allennlp.org/elmo
4Publicly available at https://github.com/

facebookresearch/fastText

348

https://github.com/RuiCaiNLP/SRL_DEP
https://github.com/RuiCaiNLP/SRL_DEP
http://www.statmt.org/lm-benchmark/
https://allennlp.org/elmo
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText


Single Models
(with external parser) P R F

Björkelund et al. (2010) 87.1 84.5 85.8
Lei et al. (2015) - - 86.6
FitzGerald et al. (2015) - - 86.7
Roth and Lapata (2016) 88.1 85.3 86.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
He et al. (2018) 89.7 89.3 89.5

Single Models
(w/o external parser) P R F

Marcheggiani et al. (2017) 88.7 86.8 87.7
He et al. (2018) 89.5 87.9 88.7
Ours (w/o ELMo) 90.5 88.6 89.6
Ours (with ELMo) 90.9 89.1 90.0

Ensemble Models P R F

FitzGerald et al. (2015) - - 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

Table 2: English results on the CoNLL-2009
in-domain (WSJ) test set.

as in Roth and Lapata (2016) which uses a pipeline
of mate-tools (Björkelund et al., 2010).

3.1 Results

Our results on the English (in-domain) test set are
summarized in Table 2. We compared our system
against previous models that use a dependency
parser (first block in the table) and those that
do not (second block). We also report the results
of various ensemble SRL models (third block).
For a fair comparison with He et al. (2018), we
present a variant of our model with character-
based ELMo embeddings. Most comparisons
involve neural systems that are based on BiLSTMs
(Marcheggiani et al., 2017; Marcheggiani and
Titov, 2017; He et al., 2018) or use neural
networks for learning SLR-specific embeddings
(FitzGerald et al., 2015; Roth and Lapata, 2016).
We also report the results of two strong symbolic
models based on tensor factorization (Lei et al.,
2015) and a pipeline of modules that carry out
the tokenization, lemmatization, part-of-speech
tagging, dependency parsing, and semantic role
labeling (Björkelund et al., 2010).

As can be seen in Table 2, our model outper-
forms previous single and ensemble models, irre-
spective of whether they make use of a dependency
parser or not. When taking into account ELMo
embeddings, our model achieves 90.0%F1, which

Single Models
(with external parser) P R F

Björkelund et al. (2010) 75.7 72.2 73.9
Lei et al. (2015) - - 75.6
FitzGerald et al. (2015) - - 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani and Titov (2017) 78.5 75.9 77.2
He et al. (2018) 81.9 76.9 79.3

Single Models
(w/o external parser) P R F

Marcheggiani et al. (2017) 79.4 76.2 77.7
He et al. (2018) 81.7 76.1 78.8
Ours (w/o ELMo) 80.5 78.2 79.4
Ours (with ELMo) 80.8 78.6 79.7

Ensemble Models P R F

FitzGerald et al. (2015) - - 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

Table 3: English results on the CoNLL-2009
out-of domain (Brown) test set.

is an absolute improvement of 0.5 percentage point
over the state of the art (He et al., 2018). It is also
interesting to note that the performance of He et al.
(2018) drops from 89.5% to 88.7% when a depen-
dency parser is not available, whereas our model
is able to extract dependency information on its
own, without relying on external syntactic parsers.

Results on the out-of-domain English test set
are presented in Table 3. We include comparisons
with the same models as in the in-domain case.
Again, our syntax-light model outperforms previ-
ously published single and ensemble models, even
when ELMo character embeddings are not taken
into account (F1 increases from 79.4% to 79.7%
with ELMo). It is perhaps not surprising that our
model outperforms by a wide margin semantic
role labelers that rely heavily on syntactic parsers
(Roth and Lapata, 2016; Marcheggiani and Titov,
2017). Their performance degrades considerably
on out-of-domain data and the syntactic trees they
produce are noisy, compromising the accuracy of
the SRL systems that rely on them. Our model
only makes use of features extracted from hidden
layers and the weighted sum of output embed-
dings, rather than the output of any parser, and as
a result is less brittle in this setting.

In Table 4 we report results from additional
experiments on Chinese, German, and Spanish.
Although we have not performed detailed

349



Chinese P R F

Björkelund et al. (2010) 82.4 75.1 78.6
Roth and Lapata (2016) 83.2 75.9 79.4
Marcheggiani and Titov (2017) 84.6 80.4 82.5
He et al. (2018) 84.2 81.5 82.8
Ours 85.5 81.8 83.6

German P R F

Björkelund et al. (2010) 81.2 78.3 79.7
Roth and Lapata (2016) 81.8 78.5 80.1
Ours 83.9 81.5 82.7

Spanish P R F

Björkelund et al. (2010) 78.9 74.3 76.5
Roth and Lapata (2016) 83.2 77.4 80.2
Marcheggiani et al. (2017) 81.4 79.3 80.3
Ours 83.1 80.5 81.8

Table 4: Results on the CoNLL-2009 test sets for
Chinese, German, and Spanish.

parameter selection in these languages (i.e., we
used the same parameters as in English), our model
achieves state-of-the-art performance across lan-
guages. Note that ELMo character embeddings
are not available in Chinese and as a result differ-
ences in performance between our model and He
et al. (2018) are more noticeable compared with
English (our system outperforms theirs by 0.5
percentage point F1). For German and Spanish,
our model also achieves the best overall F1-scores
of 82.7% and 81.8%, respectively.

3.2 Ablation Studies and Analysis
In order to evaluate the contribution of various
model components, we performed a series of
ablation studies on the English development set
without predicate disambiguation. We performed
ablation studies without ELMo embeddings,
as they could introduce external syntactic and
semantic information, potentially obscuring any
conclusions about the behavior of our own model.

Our ablation experiments are summarized in
Table 5. The first block shows the performance of
the full model. In the second block, we focus on
the effect of different kinds of syntactic represen-
tations. First, we examined whether it is advan-
tageous to share word embeddings between the
semantic role labeler and the dependency extrac-
tor. We observed that a version of the model that
updates pre-trained word embeddings separately
performs slightly worse. Second, we observe a
0.8% drop inF1 when not using the representations

System P R F

Ours 86.6 84.8 85.7

w/o sharing word embeddings 86.1 84.7 85.4
w/o hidden-layer representation 86.0 83.9 84.9
w/o output embeddings 86.6 84.4 85.5

w/o multi-task learning 85.8 84.2 84.9
with full parser 86.3 85.0 85.6
w/o joint training 85.9 84.8 85.3

Table 5: Ablation results on the CoNLL-2009
English development set.

of the hidden states in the dependency extractor.
The result indicates that features captured by hid-
den layers for the dependency prediction task are
also helpful in semantic role labeling. Third, we
see that not directly using the results of the depen-
dency extractor slightly hurts SRL performance
(we observe a 0.2 percentage point drop in F1).
This is not surprising as the semantic role labeler
and dependency information extractor are trained
simultaneously. At the beginning of the training
process the performance of the extractor is low,
so the semantic role labeler gradually learns how
to utilize noisy label embeddings, instead of rely-
ing on the accuracy of extractor. This makes our
model more robust in situations where the depen-
dency extractor cannot achieve high performance,
and also explains why our model performs better
on the out-of-domain test set compared with other
systems relying on parsers.

In the third block of Table 5, we first verify
whether multi-task learning is critical to our SRL
task by removing the term (LLBL + LLNK) from
the training objective (see Equation (6)) and
observe a 0.8 percentage point drop in F1. In
Figure 5 we compare the full model with multi-
task learning against a model trained only for
semantic role labeling (SRL only) in more detail.
We group the semantic roles assigned by the two
models (our full model vs. SRL only) by their
dependency labels. As can be seen, the full model
outperforms SRL-only on most dependency labels
except OPRD and TMP, which account only for
3% of semantic roles. We observe noticeable gains
for semantic roles with dependency labels NMOD,
OBJ, SBJ, and ADV, which appear relatively
frequently in the development set. In Table 6, we
present model performance for verbal and nominal
predicates, and again compare the results of the full

350



Figure 5: Semantic role labeling performance on
the English CoNLL-2009 development set; roles
are grouped into corresponding dependency relations
whose proportional frequencies shown in parentheses
(x-axis).

Verbal Ours SRL only Frequency(%)

A0 92.9 92.2 15%
A1 93.5 92.8 21%
A2 84.3 82.8 5%
AM-* 80.8 80.1 16%
All 89.1 88.3 61%

Nominal Ours SRL only Frequency(%)

A0 84.4 83.1 10%
A1 87.8 86.3 16%
A2 82.7 81.5 7%
AM-* 77.0 75.7 5%
All 84.5 83.2 39%

Table 6: F1 results on the English test set broken
down into verbal and nominal predicates.

model against an SRL only model. Both models
are worse at predicting the semantic roles of
nominal predicates (compared with verbal ones).
However, our model is generally more accurate,
especially for nominal predicates, bringing an
overall improvement of 1.3 percentage point in F1.

We next substituted the dependency extractor
with a full parser, specifically, the graph-based
neural model of Kiperwasser and Goldberg
(2016). The parser, enhanced model achieves a
performance of 85.6% in F1, which is quite close
to the model relying on the dependency extractor
(see row ‘‘with full parser’’ in Table 5). This
indicates that we are able to capture most of the
information contained in a syntactic parser without
any overhead incurred by full-blown parsing. We
observed that using a full parser leads to a 0.2 per-
centage point F1 increase in recall, but at the
expense of precision which drops by 0.3 percent-
age point. As shown in Figure 5, approximately

32% of the arguments in the English development
set are not directly linked to the predicate (see
no arc bar). Long-range dependencies often pose
problems for SRL models; in fact, special net-
works like GCN (Marcheggiani and Titov, 2017)
and PathLSTM (Roth and Lapata, 2016) have
been proposed to explicitly percolate information
from each word in the sentence to its syntactic
neighbors. However, PathLSTM performs worse
than a vanilla BiLSTM model in the case of long-
distance arguments, and the performance of an
SRL model augmented with GCN also decreases
when more than one GCN layer is stacked. One of
the disadvantages of using an external parser are
errors that then propagate through paths in the tree.

In our model, a word’s dependency information
solely relates to the predicate under consider-
ation, which renders the semantic role labeler
aware of the overall dependency structure of the
input sentence without, however, propagating
errors to other words. Although the dependency
information extractor is trained to recognize arcs
pertaining to the predicate, its hidden layers still
capture syntactic features for long-distance argu-
ments and share them with the semantic role
labeler. As shown in the first bar of Figure 5,
arguments not directly linked to the predicate are
identified more accurately with the full model (F1

improves by approximately 2 percentage point).
Finally, instead of building a dependency

information extractor, we simply took the one-best
outputs of the trained full parser and directly used
them as word representations (i.e., replacing the
elink and elabel). This means that the full parser is
pre-trained and its parameters will not be updated
during the training process for SRL. We see (row
‘‘w/o joint training’’ in Table 5) that compared
with the model using a full parser, removing
joint training further hurts SRL performance
(0.3 percentage point drop in F1).

3.3 Dependency Annotations

Although our model does not rely on an exter-
nal parser for providing information pertaining
to dependency relations, it nevertheless requires
gold standard dependency annotations for training
the dependency extractor component (i.e., depen-
dency label and link prediction). As manual anno-
tations are expensive and not always available,
we also examined whether it is possible to obtain
competitive performance with fewer annotations.

351



Figure 6: SRL performance on the English CoNLL-
2009 development set when different proportions of
dependency annotations are used for training.

Figure 6 shows how F1 varies when the full
model is trained on increasing amounts of depen-
dency annotations. Like our previous ablation
studies, we do not perform predicate disambigua-
tion and do not use character embeddings in these
experiments. We randomly choose a subset of
training samples (10%, 20% etc.) with depen-
dency annotations, and if the input sample is in
the subset, we update model parameters during
training according to the combined loss of the
SRL and auxiliary tasks, otherwise parameters are
updated for the SRL task only.

It is obvious from Figure 6 that the performance
of our model increases gradually with more
annotations. Interestingly, we observe a large jump
in performance with only 10% of the available
dependency annotations (F1 improves from 84.5%
to 85%). The model’s performance becomes
competitive when 80% of the annotations are
used, and remains stable when more annotations
are provided. In general, these results suggest that
our model can also work effectively when a small
number of gold dependency labels are given as a
supervision signal to the dependency information
extractor.

4 Related Work

Our model resonates with the recent trend of
developing neural network models for semantic
role labeling. It also agrees with previous work
in devising ways to better take advantage of
syntactic information for the SRL task within
a relatively simple modeling framework based
on bi-directional LSTMs (Marcheggiani et al.,
2017). Previous proposals for incorporating syn-
tactic information include the use of low-rank
tensor factorizations (Lei et al., 2015), convolu-

tional and time-domain neural networks (Foland
and Martin, 2015), jointly embedded arguments
and semantic roles in a shared vector space
(FitzGerald et al., 2015), learning representations
of shortest dependency paths between a predicate
and its potential arguments (Roth and Lapata,
2016), encoding sentences with graph convolu-
tional networks (Marcheggiani and Titov, 2017),
constrained decoding (He et al., 2017), and argu-
ment pruning (He et al., 2018). In contrast to these
approaches, we do not use an external dependency
parser but rather incorporate syntactic informa-
tion as part of the model’s learning objective.
Aside from assigning semantic roles, our model
performs two auxiliary tasks (dependency and
link type prediction), thereby learning syntactic
information specific to the SRL task.

Multi-task learning (MTL; Caruana, 1993)
has been a popular approach for various NLP
tasks, starting with Collobert et al. (2011a) who
propose a multi-task model for POS-tagging,
chunking, named entity recognition, and SRL.
Søgaard and Goldberg (2016) train a multi-task
model for POS-tagging, syntactic chunking, and
combinatory categorical grammar supertagging,
while Hashimoto et al. (2017) introduce a joint
many-task model together with a strategy for suc-
cessively growing its depth to solve increasingly
complex tasks. Zhang and Weiss (2016) propose
stack-propagation using a continuous and differ-
entiable link between POS tagging and depen-
dency parsing, in which POS tags are utilized as a
regularizer of learned representations for parsing.
MTL has also been applied to semantic depen-
dency parsing (Peng et al., 2017; Swayamdipta
et al., 2017) and semantic role labeling. Strubell
et al. (2018) present an end-to-end SRL model
that is trained to jointly predict parts of speech and
predicates, perform parsing, and attend to syntactic
parse parents, while assigning semantic role labels.

Most recent MTL models (Bingel and Søgaard,
2017; Hashimoto et al., 2017) use different
layers for multiple tasks with different datasets,
separately optimizing each task at each epoch. In
our case, the SRL task and the two auxiliary tasks
share the same input, and as a result optimization
for all three tasks takes place simultaneously
which is more efficient. Also, in terms of model
architecture, information from the auxiliary tasks
is not incorporated by simply stacking layers on
top of each other but rather is explored more
directly by serving as input to the SRL model

352



itself. Like Strubell et al. (2018), we resort to
multi-task learning in order to make use of lin-
guistic information for semantic role labeling as
effectively as possible. Our model is simpler in
eschewing the training of a parser; it also does not
predict part of speech tags or predicates, although
such auxiliary tasks could be incorporated in the
future. We introduce novel auxiliary tasks such
as predicting the dependency label of a word
and whether there exists an arc linking it to
the predicate and show that they improve SRL
performance for English and other languages.

5 Conclusions

In this paper, we proposed a multi-task model
that learns dependency aware representations for
semantic role labeling without using any external
parser. Experimental results across languages have
shown improvements over competitive baselines
and state-of-the-art systems. Through several
ablation studies we have also confirmed that
hidden-layer representations, pre-trained word
embeddings, and label embeddings all contribute
in improving the performance of our SRL model.
Although the dependency extractor takes a rather
local view of the sentence, concentrating on
the predicate and closely related neighbors,
more global syntactic information is neverthe-
less implicitly captured. Even when dependency
annotations are sparse, our model is able to encap-
sulate syntactic information and improve upon a
syntax agnostic variant.

Directions for future work are many and varied.
We would like to improve our multi-task model
by determining the value of α (i.e., the loss weight
for the two auxiliary tasks) dynamically. This
would allow us to optimize performance for the
main and auxiliary tasks at the same time. Our
experiments in this work have focused exclusively
on dependency-based formalisms for representing
semantic predicate-argument structures (as oper-
ationalized in the CoNLL-2008 shared task). An
interesting question is whether our model would
work equally well for semantic role representa-
tions based on constituents (i.e., phrases or spans)
such as those annotated in the CoNLL-2005
shared task (Carreras and Màrquez, 2005) or
OntoNotes (Pradhan et al., 2013). Addressing this
question would also allow direct comparisons
with recently proposed span-based models (He
et al., 2017; Strubell et al., 2018). Finally, a more

ambitious goal would be to learn a semantic role
labeler in a weakly supervised setting where only
annotations for dependency labels are available.

Acknowledgments

We thank the anonymous reviewers for their feed-
back and the action editor Alessandro Moschitti
for his comments. We gratefully acknowledge
the support of the European Research Council
(award number 681760, ‘‘Translating Multiple
Modalities into Text’’).

References

Wilker Aziz, Miguel Rios, and Lucia Specia.
2011. Shallow semantic trees for SMT. In
Proceedings of the Sixth Workshop on Sta-
tistical Machine Translation, pages 316–322.
Edinburgh.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In
Proceedings of the 3rd International Confer-
ence on Learning Representations. San Diego,
CA.

Joachim Bingel and Anders Søgaard. 2017. Iden-
tifying beneficial task relations for multi-task
learning in deep neural networks. In Proceed-
ings of the 15th Conference of the European
Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers,
pages 164–169.

Johannes Bjerva, Barbara Plank, and Johan Bos.
2016. Semantic tagging with deep residual
networks. In Proceedings of COLING 2016,
the 26th International Conference on Com-
putational Linguistics: Technical Papers,
pages 3531–3541. Osaka.

Anders Björkelund, Bernd Bohnet, Love Hafdell,
and Pierre Nugues. 2010. A high-performance
syntactic and semantic dependency parser. In
Proceedings of the 23rd International Con-
ference on Computational Linguistics: Demon-
strations, pages 33–36.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions of

353



the Association for Computational Linguistics,
5:135–146.

Xavier Carreras and Lluı́s Màrquez. 2005. Intro-
duction to the CoNLL-2005 shared task: Se-
mantic role labeling. In Proceedings of the
Ninth Conference on Computational Nat-
ural Language Learning (CoNLL-2005),
pages 152–164. Ann Arbor, MI.

Richard Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias. In
Proceedings of the 10th International Con-
ference on Machine Learning, pages 41–48.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2015.
Open-domain name error detection using a
multi-task RNN. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 737–746. Lisbon.

Janara Christensen, Mausam, Stephen Soderland,
and Oren Etzioni. 2011. An analysis of open
information extraction based on semantic role
labeling. In Proceedings of the 6th Inter-
national Conference on Konwledge Capture,
pages 113–119. Banff.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011a. Natural language processing
(almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537.

Ronan Collobert, Jason Weston, Michael
Karlen, Léon Bottou, Koray Kavukcuoglu, and
Pavel Kuksa. 2011b. Natural language process-
ing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537.

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural depend-
ency parsing. CoRR, abs/1611.01734.

David K Duvenaud, Dougal Maclaurin, Jorge
Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P. Adams.
2015. Convolutional networks on graphs for
learning molecular fingerprints. In Advances
in Neural Information Processing Systems 28,
pages 2224–2232.

Chris Dyer, Miguel Ballesteros, Wang Ling,
Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with stack

long short-term memory. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 334–343.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic
role labeling with neural network factors.
In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language
Processing, pages 960–970. Lisbon.

William Foland and James Martin. 2015.
Dependency-based semantic role labeling using
convolutional neural networks. In Proceedings
of the Fourth Joint Conference on Lexical and
Computational Semantics, pages 279–288.

Nelson Francis and Henry Kucera. 1979, Brown
corpus manual. Technical report, Department of
Linguistics, Brown Unviersity, Providence, RI.

Jan Hajič, Massimiliano Ciaramita, Richard
Johansson, Daisuke Kawahara, Maria Antònia
Martı́, Lluı́s Màrquez, Adam Meyers, Joakim
Nivre, Sebastian Padó, Jan Štěpánek, Pavel
Straňák, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. 2009. The CONLL-2009 shared
task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of the
Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009):
Shared Task, pages 1–18. Boulder, CO.

Eva Hajičová, Zdeněk Kirschner, and Petr Sgall.
1999. A manual for analytic layer annotation
of the Prague dependency treebank (English
translation), ÚFAL MFF UK, Prague, Czech
Republic.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa
Tsuruoka, and Richard Socher. 2017. A joint
many-task model: Growing a neural network for
multiple NLP tasks. In Proceedings of the 2017
Conference on Empirical Methods in Natural
Language Processing, pages 1923–1933.

Luheng He, Kenton Lee, Mike Lewis, and Luke
Zettlemoyer. 2017. Deep semantic role label-
ing: What works and what’s next. In Pro-
ceedings of the 55th Annual Meeting of the
Association for Computational Linguistics

354



(Volume 1: Long Papers), pages 473–483.
Vancouver.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao
Bai. 2018. Syntax for semantic role labeling,
to be, or not to be. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 2061–2071.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9:1735–1780.

Richard Johansson and Pierre Nugues. 2008. The
effect of syntactic representation on semantic
role labeling. In Proceedings of the 22nd
International Conference on Computational
Linguistics, pages 393–400. Manchester.

Steven Kearnes, Kevin McCloskey, Marc Berndl,
Vijay Pande, and Patrick Riley. 2016. Mo-
lecular graph convolutions: Moving beyond
fingerprints. Journal of Computer-Aided Mo-
lecular design, 30(8):595–608.

Atif Khan, Naomie Salim, and Yogan Jaya Kumar.
2015. A framework for multi-document ab-
stractive summarization based on semantic role
labelling. Applied Soft Computing, 30:737–747.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. arXiv
preprint, arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing using
bidirectional LSTM feature representations.
Transactions of the Association for Compu-
tational Linguistics, 4:313–327.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolu-
tional networks. In Proceedings of the 5th
International Conference on Learning Repre-
sentations. Toulon.

Joel Lang and Mirella Lapata. 2010. Unsupervised
induction of semantic roles. In Human Lan-
guage Technologies: The 2010 Annual Con-
ference of the North American Chapter of
the Association for Computational Linguistics,
pages 939–947.

Tao Lei, Yuan Zhang, Lluı́s Màrquez,
Alessandro Moschitti, and Regina Barzilay.
2015. High-order low-rank tensors for se-
mantic role labeling. In Proceedings of the
2015 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 1150–1160. Denver, CO.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings
of the 2015 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 1299–1304, Denver, CO.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever,
Oriol Vinyals, and Lukasz Kaiser. 2016.
Multi-task sequence to sequence learning. In
Proceedings of the International Conference
on Learning Representations. San Juan, PR.

Diego Marcheggiani, Joost Bastings, and Ivan
Titov. 2018. Exploiting semantics in neural
machine translation with graph convolutional
networks. In Proceedings of the the 16th Annual
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT
2018). New Orleans, LA.

Diego Marcheggiani, Anton Frolov, and Ivan
Titov. 2017. A simple and accurate syntax-
agnostic neural model for dependency-based
semantic role labeling. In Proceedings of the
21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 411–420.
Vancouver.

Diego Marcheggiani and Ivan Titov. 2017.
Encoding sentences with graph convolutional
networks for semantic role labeling. In Proceed-
ings of the 2017 Conference on Empirical
Methods in Natural Language Processing,
pages 1506–1515. Copenhagen.

Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S. Corrado, and Jeff Dean. 2013,
Distributed representations of words and
phrases and their compositionality. In Advances
in Neural Information Processing Systems 26,
pages 3111–3119.

355



Marth Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics,
31(1):71–106.

Mitchell P. Parcus, Beatrice Santorini, and Mary
Ann Marcinkiewicz. 1993. Building a large
annotated corpus of English: The Penn treebank.
Computational Linguistics, 19(2):313–330.

Hao Peng, Sam Thomson, and Noah A. Smith.
2017. Deep multitask learning for semantic
dependency parsing. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 2037–2048.

Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep con-
textualized word representations. In Pro-
ceedings of the 2018 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers),
pages 2227–2237.

Barbara Plank. 2016. Keystroke dynamics
as signal for shallow syntactic parsing.
In Proceedings of the 26th International
Conference on Computational Linguistics:
Technical Papers, pages 609–619. Osaka.

Sameer Pradhan, Alessandro Moschitti, Nianwen
Xue, Hwee Tou Ng, Anders Björkelund,
Olga Uryupina, Yuchen Zhang, and Zhi
Zhong. 2013. Towards robust linguistic anal-
ysis using Ontonotes. In Proceedings of the
Seventeenth Conference on Computational
Natural Language Learning, pages 143–152.
Sofia.

Michael Roth and Mirella Lapata. 2016. Neural
semantic role labeling with dependency path
embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long
Papers), pages 1192–1202. Berlin.

Anders Søgaard and Yoav Goldberg. 2016.
Deep multi-task learning with low level tasks
supervised at lower layers. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 231–235. Berlin.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for se-
mantic role labeling. In Proceedings of the
2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5027–5038.

Mihai Surdeanu, Richard Johansson, Adam
Meyers, Lluı́s Màrquez, and Joakim Nivre.
2008. The CONLL 2008 Shared Task on joint
parsing of syntactic and semantic dependencies.
In CoNLL 2008: Proceedings of the 12th Con-
ference on Computational Natural Language
Learning, pages 159–177.

Swabha Swayamdipta, Sam Thomson, Chris Dyer,
and Noah A Smith. 2017. Frame-semantic par-
sing with softmax-margin segmental RNNS
and a syntactic scaffold. arXiv preprint,
arXiv:1706.09528.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey Hinton.
2015. Grammar as a foreign language. In
Proceedings of the 28th International Con-
ference on Neural Information Processing
Systems, pages 2773–2781. Montreal.

Nanwen Xue, Fei Xia, Fu Dong Chiou, and
Martha Palmer. 2005. The Penn Chinese
treebank: Phrase structure annotation of a
large corpus. Natural Language Engineering,
11(2):207–238.

Nianwen Xue and Martha Palmer. 2009. Adding
semantic roles to the Chinese treebank. Natural
Language Engineering, 15(1):143–172.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning
for syntax. In Proceedings of the 54th An-
nual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1557–1566.

Jie Zhou and Wei Xu. 2015. End-to-end learning
of semantic role labeling using recurrent neural
networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1127–1137.
Beijing.

356


	Introduction
	Model Description
	Dependency Information Extractor
	Syntax-aware Semantic Role Labeler

	Experiments
	Results
	Ablation Studies and Analysis
	Dependency Annotations

	Related Work
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


