
Categorical Metadata Representation for Customized Text Classification

Jihyeok Kim*1 Reinald Kim Amplayo*2

Kyungjae Lee1 Sua Sung1 Minji Seo1 Seung-won Hwang1

(* equal contribution)

1Yonsei University 2University of Edinburgh
zizi1532@yonsei.ac.kr reinald.kim@ed.ac.uk

{lkj0509,dormouse,ggatalminji,seungwonh}@yonsei.ac.kr

Abstract

The performance of text classification has
improved tremendously using intelligently
engineered neural-based models, especially those
injecting categorical metadata as additional
information, e.g., using user/product informa-
tion for sentiment classification. This infor-
mation has been used to modify parts of the
model (e.g., word embeddings, attention mech-
anisms) such that results can be customized
according to the metadata. We observe that
current representation methods for categorical
metadata, which are devised for human con-
sumption, are not as effective as claimed in
popular classification methods, outperformed
even by simple concatenation of categorical
features in the final layer of the sentence
encoder. We conjecture that categorical fea-
tures are harder to represent for machine use,
as available context only indirectly describes
the category, and even such context is often
scarce (for tail category). To this end, we pro-
pose using basis vectors to effectively incor-
porate categorical metadata on various parts
of a neural-based model. This additionally
decreases the number of parameters dramatic-
ally, especially when the number of categori-
cal features is large. Extensive experiments on
various data sets with different properties are
performed and show that through our method,
we can represent categorical metadata more
effectively to customize parts of the model,
including unexplored ones, and increase the
performance of the model greatly.

1 Introduction

Text classification is the backbone of most NLP
tasks: review classification in sentiment analysis

(Pang et al., 2002), paper classification in sci-
entific data discovery (Sebastiani, 2002), and
question classification in question answering (Li
and Roth, 2002), to name a few. While prior meth-
ods require intensive feature engineering, recent
methods enjoy automatic extraction of features
from text using neural-based models (Socher et al.,
2011) by encoding texts into low-dimensional
dense feature vectors.

This paper discusses customized text clas-
sification, generalized from personalized text
classification (Baruzzo et al., 2009), where we
customize classifiers based on possibly multiple
different known categorical metadata information
(e.g., user/product information for sentiment
classification) instead of just the user information.
As shown in Figure 1, in addition to the text,
a customizable text classifier is given a list of
categories specific to the text to predict its class.
Existing works applied metadata information to
improve the performance of a model, such as
user and product (Tang et al., 2015) information
in sentiment classification, and author (Rosen-
Zvi et al., 2004) and publication (Joorabchi and
Mahdi, 2011) information in paper classification.

Towards our goal, we are inspired by the ad-
vancement in neural-based models, incorporat-
ing categorical information ‘‘as is’’ and injecting
it on various parts of the model such as in the
word embeddings (Tang et al., 2015), attention
mechanism (Chen et al., 2016; Amplayo et al.,
2018a) and memory networks (Dou, 2017).
Indeed, these methods theoretically make use
of combined features from both textual and
categorical features, which make them more
powerful than disconnected features. However,
metadata is generated for human understanding,
and thus we claim that these categories need
to be carefully represented for machine use to

201

Transactions of the Association for Computational Linguistics, vol. 7, pp. 201–215, 2019. Action Editor: Bo Pang.
Submission batch: 11/2018; Revision batch: 1/2019; Final submission: 2/2019; Published 4/2019.

c© 2019 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

Figure 1: A high-level framework of models for the Customized Text Classification Task that inputs a text with n
tokens (e.g., review) and m categories (e.g., users, products) and outputs a class (e.g., positive/negative). Example
tasks are shown in the left of the figure.

improve the performance of the text classifier
effectively.

First, we empirically invalidate the results from
previous studies by showing in our experiments
on multiple data sets that popular methods using
metadata categories ‘‘as is’’ perform worse than
a simple concatenation of textual and categorical
feature vectors. We argue that this is because of
the difficulties of the model in learning optimized
dense vector representation of the categorical
features to be used by the classification model.
The reasons are two-fold: (a) categorical features
do not have direct context and thus rely solely
on classification labels when training the feature
vectors, and (b) there are categorical information
that are sparse and thus cannot effectively learn
optimal feature vectors.

Second, we suggest an alternative represen-
tation, using low-dimensional basis vectors to
mitigate the optimization problems of categorical
feature vectors. Basis vectors have nice properties
that can solve the issues presented here because
they (a) transform multiple categories into useful
combinations, which serve as mutual context to all

categories, and (b) intelligently initialize vectors,
especially of sparse categorical information, to
a suboptimal location to efficiently train them
further. Furthermore, our method reduces the
number of trainable parameters and thus is flex-
ible for any kinds and any number of available
categories.

We experiment on multiple classification tasks
with different properties and kinds of catego-
ries available. Our experiments show that while
customization methods using categorical infor-
mation ‘‘as is’’ do not perform as well as the
naive concatenation method, applying our pro-
posed basis-customization method makes them
much more effective than the naive method. Our
method also enables the use of categorical meta-
data to customize other parts of the model, such
as the encoder weights, that are previously un-
explored due to their high space complexity and
weak performance. We show that this unexplored
use of customization outperform popular and con-
ventional methods such as attention mechanism
when our proposed basis-customization method
is used.

202

2 Preliminaries

2.1 Problem: Customized Text Classification
The original text classification task is defined
as follows: Given a text W = {w1, w2, ..., wn},
we are tasked to train a mapping function f(W)
to predict a correct class y ∈ {y1, y2, ..., yp}
among the p classes. The customized text
classification task makes use of the categorical
metadata information attached on the text to
customize the mapping function. In this paper,
we define categorical metadata as non-continuous
information that describes the text.1 An example
task is review sentiment classification with user
and product information as categorical metadata.

Formally, given a text t = {W,C}, where
W = {w1, w2, ..., wn}, C = {c1, c2, ..., cm}, wx

is the xth of the n tokens in the text, and cz is the
category label of the text on the zth category of
the m available categories, the goal of customized
text classification is to optimize a function fC(W)
to predict a label y, where fC(W) is the classifier
dependent with C. In our example task, W is the
review text, and we have m = 2 categories where
c1 and c2 are the user and product information.

This is an interesting problem because of the
vast opportunities it provides. First, we are moti-
vated to use categorical metadata because exist-
ing work has shown that non-textual additional
information, such as POS tags (Go et al., 2009)
and latent topics (Zhao et al., 2017), can be used
as strong supplementary supervision to improve
the performance of text classification. Second,
while previously used additional information is
found to be helpful, they are either domain-
dependent or very noisy (Amplayo et al., 2018b).
On the other hand, categorical metadata are
usually factual and valid information that are
either inherent (e.g., user/product information)
or human-labeled (e.g., research area). Finally,
the customized text classification task generalizes
the personalization problem (Baruzzo et al.,
2009), where instead of personalizing based on
single user information, we customize based on

1We limit our scope to texts with categorical metadata
information (product reviews, news articles, tweets, etc.),
which covers most of the texts on the Web. Texts without
metadata can use predicted categorical information, such as
topics from a topic model, which are commonly used (Zhao
et al., 2017; Chou et al., 2017). However, because the predic-
tion may be incorrect, performance gains cannot be guaran-
teed. We leave the investigation of this area in future work.

possibly multiple categories, which may or may
not include user information. This consequently
creates an opportunity to develop customizable
virtual assistants (Papacharissi, 2002).

2.2 Base Classifier: BiLSTM
We use a Bidirectional Long Short Term Memory
(BiLSTM) network (Hochreiter and Schmidhuber,
1997) as our base text classifier as it is proven to
work well on classifying text sequences (Zhou
et al., 2016). Although the methods that are
described here apply to other effective classifiers
as well, such as convolutional neural networks
(CNNs) (Kim, 2014) and hierarchical models
(Yang et al., 2016), we limit our experiments
to BiLSTM to cover more important findings.

Our BiLSTM classifier starts by encoding the
word embeddings using a forward and a back-
ward LSTM. The resulting pairs of vectors are
concatenated to get the final encoded word vec-
tors, as shown here:

wi ∈ W (1)

−→
h i = LSTMf (wi,

−→
h i−1) (2)

←−
h i = LSTMb(wi,

←−
h i+1) (3)

hi = [
−→
h i;

←−
h i] (4)

Next, we pool the encoded word vectors hi into
a text vector d using an attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015), which
calculates importance scores using a latent context
vector x for all words, normalizes the scores using
softmax, and uses them to do weighted sum on
encoded word vectors, as shown:

ei = x�hi (5)

ai =
exp(ei)∑
j exp(ej)

(6)

d =
∑
i

hi ∗ ai (7)

Finally, we use a logistic regression classifier to
classify labels using learned weight matrix W (c)

and bias vector b(c):

y′ = W (c)d+ b(c) (8)

We can then train our classifier using any gradient
descent algorithm by minimizing the negative log
likelihood of the log softmax of predicted labels
y′ with respect to the actual labels y.

203

2.3 Baseline 1: Concatenated BiLSTM
To incorporate the categories into the classifier,
a simple and naive method is to concatenate the
categorical features with the text vector d. To do
this, we create embedding spaces for the dif-
ferent categories and get the category vectors
c1, c2, ..., cm based on the category labels of text
d. We then use the concatenated vector as features
for the logistic regression classifier:

y′ = W (c)[d; c1; c2; ...; cm] + b(c) (9)

2.4 Baseline 2: Customized BiLSTM
Although the Concatenated BiLSTM easily makes
use of the categories as additional features for
the classifier, it is not able to leverage on the
possible low-level dependencies between textual
and categorical features.

There are different levels of dependencies
between texts and categories. For example, when
predicting the sentiment of a review ‘‘The food is
very sweet,’’ given the user who wrote the review,
the classifier should give a positive label if the user
likes sweet foods and a negative label otherwise.
In this case, the dependency between the review
and the user is on the higher level, where we
look at relationships between the full text and the
categories. Another example is when predicting
the acceptance of a research paper given that the
research area is NLP, the classifier should focus
more on NLP words (e.g., language, text) rather
than less-related words (e.g., biology, chemistry).
In this case, the dependency between the research
paper and the research area is on the lower level,
where we look at relationships between segments
of text and the categories.

We present five levels of Customized BiLSTM,
which differ on the location where we inject the
categorical features, listed here from the highest
level to the lowest level of dependencies between
text and categories. The main idea is to impose
category-specific weights, rather than a single
weight at each level of the model:

1. Customize on the bias vector: At this level
of customization, we look at the general
biases the categories have towards the prob-
lem. As a concrete example, when classify-
ing the type of message a politician wrote,
he/she can be biased towards writing personal
messages than policy messages. Instead of
using a single bias vector b(c) in the logistic

regression classifier (Equation 8), we use
additional multiple bias vectors for each
category, as shown below. In fact, this is
in spirit essentially equivalent to concate-
nated BiLSTM (Equation 9), where the
derivation is:

y′ = Wdd+ bc1 + ...+ bcm + b(c)

= Wdd+Wc1c1 + ...+Wcmcm + b(c)

= W (c)[d; c1; c2; ...; cm] + b(c)

2. Customize on the linear transformation:
At this level of customization, we look at
the text-level semantic biases the categories
have. As a concrete example, in the sentiment
classification task, the review ‘‘The food is
very sweet’’ can have a negative sentiment
if the user who wrote the review does
not like sweets. Instead of using a single
weight matrix W (c) in the logistic regres-
sion classifier (Equation 8), we use different
weight matrices for each category:

y′ = W (c)
c1 d+W (c)

c2 d+ ...+W (c)
cmd+ b(c)

3. Customize on the attention pooling: At
this level of customization, we look at the
word importance biases the categories have.
A concrete example is, when classifying a
research paper, NLP words should be focused
more when the research area is NLP. Instead
of using a single context vector xwhen calcu-
lating the attention scores e (Equation 5),
we use different context vectors for each
category:

ei = x�
c1hi + x�

c2hi + ...+ x�
cmhi

a = softmax(e)

d =
∑
i

hi ∗ ai

4. Customize on the encoder weights: At this
level of customization, we look at the word
contextualization biases the categories need.
A concrete example is, given the text ‘‘deep
learning for political message classifica-
tion’’, when encoding the word classifica-
tion, the BiLSTM should retain the semantics
of words political message more and forget
the semantics of other words more when
the research area is about politics. Instead of

204

using a single set of input, forget, output, and
memory cell weights for each LSTM (Equa-
tions 2 and 3), we use multiple sets of the
weights, one for each category:⎡
⎢⎢⎢⎣
gt

it

ft

ot

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
tanh

σ

σ

σ

⎤
⎥⎥⎥⎦
(∑

0<k≤m

W (e)
ck

[wt;ht−1] + b

)

5. Customize on the word embeddings: At
this level of customization, we look at the
word preference biases the categories have.
For example, a user can prefer the use of
word ‘‘terribly’’ as a positive adverb rather
than the more common usage of the word
with negative sentiment. Instead of directly
using the word vectors from the embedding
space W (Equation 1), we add a residual
vector calculated based on a nonlinear trans-
formation of the word vector using category-
specific weights:

r = tanh(W (w)
c1 wi + ...+W (w)

cm wi) (10)

wi = wi + r

Previous work has proposed customization on
bias vectors and word embeddings (Tang et al.,
2015), and on attention pooling (Chen et al.,
2016). We are the first to introduce customization
on the linear transformation matrix and the en-
coders. Moreover, we are the first to use residual
perturbations as word meaning modification for
customizing word embeddings, in which we saw
better performance than using a naive affine
transformation, proposed in Tang et al. (2015),
in our prior experiments.

3 Proposed Method

3.1 Problems of Customized BiLSTM
As explained in the previous section, Customized
BiLSTM should perform better than Concatenated
BiLSTM. However, that is only if the optimization
of category-specific weights operates properly for
machine usage. Training the model to optimize
these weights is very difficult for two reasons.

First, categorical information has unique prop-
erties that make it nontrivial to train. One property
is that unlike texts that naturally use neighboring
words/sentences as context (Lin et al., 2015;
Peters et al., 2018), categorical information stands

alone and thus does not have information aside
from itself. This forces the learning algorithm to
rely solely on the classification labels y to find
the optimal category-specific weights. Another
property is that some categories may contain labels
that are sparse or do not have enough instances. For
example, a user can be cold-start (Lam et al., 2008)
or does not have enough reviews. In this case, the
problem expands to few-shot learning (Li et al.,
2006). Thus weights are hard to optimize using
gradient-based techniques (Ravi and Larochelle,
2016).

Second, the number of weights is multiplied by
the number of categories m and the number of
category labels each category has, which enlarges
the number of parameters needed to be trained as
m increases. This magnifies the problems of con-
text absence and information sparsity described
above, since optimizing large parameters with
limited inductive bias is very difficult. Moreover,
because of the large parameters, some methods
may not fit in commercially available machines
and thus may not be practically trainable.

3.2 Basis Customization

We propose to solve these problems by using basis
vectors to produce basis-customized weights, as
shown visually in Figure 2. Specifically, we use
a trainable set of d
 dim basis vectors B =
{b1, b2, ..., bd}, where dim is the dimension of the
original weights. Let Vc be the vector search space
that contains all the optimal customized weight
vectors vc, such thatB is the basis ofVc. Basis vec-
tors follow the spanning property, thus we can rep-
resent all vectors in v ∈ Vc as a linear combination
of B—that is vc =

∑
i γi ∗ bi, where the γs are the

coefficients. Moreover, because we set d to a small
number, we constrain the search space to a smaller
vector space. Hence we can find the optimal
weights in a constrained search space much faster.

To determine the γ coefficients, we first set
the concatenated category vectors of the text
q = [c1; c2; ...; cm] as the query vector, and use a
trainable set of key vectors K = {k1, k2, ..., kd}.
We then calculate the dot product between the
query and key vectors, and finally use softmax to
create γ coefficients that sum to one:

zi = q�ki

γi =
exp(zi)∑
j exp(zj)

205

Figure 2: The full architecture of the proposed model, basis-customizing parts of the BiLSTM model: (1) the bias
vector, (2) the linear transformation matrix, (3) the attention context vector, (4) the BiLSTM encoder weights, and
(5) the word embeddings.

We can then use the γ coefficients to basis-
customize a specific weight v, namely, vc =∑

i γi ∗ bi. In our BiLSTM classifier, we can
basis-customize one of the following weights:
(1) the bias vector v = b(c) and (2) the linear
transformation matrix v = W (c) of the logistic
regression classifier in Equation 8, (3) the context
vector v = x of the attention mechanism in
Equation 5, (4) the BiLSTM weights v = W (e)

in Equations 2 and 3, and (5) the nonlinear
transformation matrix v = W (w) on the residual
vector in Equation 10 to modify the word em-
beddings. These correspond to the five versions
of Customized BiLSTM discussed earlier.

Basis-customizing weights help solve the prob-
lems of customizing BiLSTM in three ways. First,
the basis vectors serve as fuzzy clusters of all the
categories, that is, we can say that two sets of
category labels are similar if they have similar γ
coefficients. This information can serve as mutual
context information that helps the learning algo-
rithm find optimal weights. Second, because the
search space Vc is constrained, the model is forced
to initialize the category vectors and look for
the optimal vectors inside the constrained space.
This smart initialization contributes to situate
vectors of sparse categorical information to a sub-
optimal location and efficiently trains them fur-
ther, despite the lack of instances. Finally, because
we only use a very small set of basis vectors, we
reduce the number of weights dramatically.

4 Experiments

We experiment on three data sets for different
tasks: (1) the Yelp 2013 data set2 (Tang et al.,
2015) for Review Sentiment Classification, (2)
the AAPR data set3 (Yang et al., 2018) for Paper
Acceptance Classification, and (3) the PolMed
data set4 for Political Message Type Classifica-
tion. Statistics, categories, and properties of the
data sets are reported in Table 1. Details about the
data sets are discussed in the next sections.

General experimental settings are as follows.
The dimensions of the word vectors are set
to 300. We use pre-trained GloVe embeddings
(Pennington et al., 2014) to initialize our word
vectors. We create UNK tokens by transforming
tokens with frequency less than five into UNK. We
handle unknown category labels by setting their
corresponding vectors to zero. We tune the number
of basis vectors d using a development set, first
by sweeping across 2 to 30 with large intervals,
and then by searching through the neighbors of
the best configuration during the first sweep.
Interestingly, d tends to be very small, between
values 2 to 4. We set the batch size to 32. We use
stochastic gradient descent over shuffled mini-
batches with the Adadelta update rule (Zeiler,

2http://ir.hit.edu.cn/˜dytang.
3https://github.com/lancopku/AAPR.
4https://www.figure-eight.com/.

206

http://ir.hit.edu.cn/~dytang
https://github.com/lancopku/AAPR
https://www.figure-eight.com/

Data Set Splits Categories Properties
Yelp 2013 62,522 / 7,773 / 8,671 • users (1.6k)

• products (1.6k)
Categories can be sparse (i.e., there may not be
enough reviews for each user/product).

AAPR 33,464 / 2,000 / 2,000 • authors (48k)
• research area (144)

Authors are sparse and have many category
labels. Categories can have multiple labels
(e.g., multiple authors, multidisciplinary fields).

PolMed 4,500 / 0 / 500 • politician (505)
• media source (2)
• audience (2)
• political bias (2)

The data set has more categories. Categories
with binary labels may not be diverse enough to
be useful.

Table 1: The data sets, the split sizes (train, dev, test), and the available categories and their properties. Numbers
inside parentheses are the number of unique category labels.

Models Yelp 2013 AAPR PolMed
Accuracy RMSE Param Accuracy Param Accuracy Param

Base: BiLSTM 63.7 0.687 442k 61.70 188k 40.30 86k
bias vector
(concat)

cust 66.3 0.661 1.3m 65.30 6.3m 40.57 121k
basis-cust 66.9 0.654 653k 64.80 1.7m 40.92 95k

linear
trasformation*

cust 59.6 0.758 4.6m 63.55 6.3m 40.04 379k
basis-cust 67.1 0.662 655k 65.75 1.7m 41.89 96k

attention
pooling

cust 65.4 0.674 1.3m 62.80 6.3m 40.93 119k
basis-cust 66.0 0.671 652k 65.85 1.7m 41.73 95k

encoder
weights*

cust - - - - - 40.26 43.5m
basis-cust 66.1 0.665 1.5m 66.15 2.1m 41.42 179k

word
embedding*

cust 58.4 0.767 294m - - 40.84 46.0m
basis-cust 66.1 0.666 1.0m 65.80 2.0m 41.58 455k

Table 2: Accuracy, RMSE, and parameter values of competing models for all data sets. An asterisk (*) indicates
customization methods first introduced in this paper. A dash (-) indicates the model is too big to be trained in
an NVIDIA 1080 Ti GPU. Boldface indicates that the performance of basis-customization is significantly better
(p < 0.05) than that of a simple customization. Values colored red are performance weaker than that of the
BiLSTM model, thus customization hurts the performance in those cases.

2012) with l2 constraint of 3. We do early stopping
using the accuracy of the development set. We
perform 10-fold cross-validation on the training
set when the development set is not available.
Data set–specific settings are described in their
corresponding sections.

We compare the performance of the following
competing models: the base classifier BiLSTM
with no customization, the five versions (i.e.,
bias, linear, attention, encoder, embedding) of
Customized BiLSTM, and our proposed basis-
customized versions. We report the accuracy and
the number of parameters of all models, and addi-
tionally report the root mean square error (RMSE)
values for the sentiment classification task. We
also compare with results from previous papers
whenever available. Results are shown in Table 2,
and further discussion is provided the following
sections.

4.1 Review Sentiment Classification

Review sentiment classification is a task of pre-
dicting the sentiment label (e.g., 1 to 5 stars) of
a review text (Pang et al., 2002). We use users
and products as categorical metadata. One main
characteristic of the categorical information here
is that both user and product can be cold-start
entities (Amplayo et al., 2018a). Thus issues on
sparseness may aggravate. We use 256 dimen-
sions for the hidden states in the BiLSTM encoder
and the context vector in the attention mechanism,
and 64 dimensions for each of the user and product
category vectors.

The results in Table 2 show that when using
Customized BiLSTM, customizing on the bias
vector (i.e., Concatenated BiLSTM) performs the
best compared to customizing on other parts of the
model with lower dependencies, which is counter-
intuitive and contrary to previously reported

207

Models Acc RMSE
UPNN (Tang et al., 2015) CNN + word-cust + bias-cust 59.6 0.784
UPDMN (Dou, 2017) LSTM + memory-cust 63.9 0.662
NSC (Chen et al., 2016) LSTM + attention-cust 65.0 0.692
HCSC (Amplayo et al., 2018a) BiLSTM + CNN + attention-cust (CSAA) 65.7 0.660
PMA (Zhu and Yang, 2017) HierLSTM + attention-cust (PMA) 65.8 0.668
DUPMN (Long et al., 2018) HierLSTM + memory-cust 66.2 0.667
CMA (Ma et al., 2017) HierAttention + attention-cust (CMA) 66.4 0.677

Our best models
BiLSTM + encoder-basis-cust 66.1 0.665
BiLSTM + bias-basis-cust 66.9 0.654
BiLSTM + linear-basis-cust 67.1 0.662

Table 3: Performance comparison of previous and our best models in the Yelp 2013 dataset. Our best models
perform better, even though we only use a single BiLSTM encoder. Boldface correspond to the best values for
each block. Underlined values correspond to the best values across the board.

results. Moreover, the performance of customizing
on the linear transformation matrix and word em-
bedding is weaker than that of the base BiLSTM
model, and customizing on the encoder weights
makes the model too big to be trained in our GPU.
When using our proposed basis-customization
method, we obtain a significant increase in perfor-
mance on all levels of customization in almost all
performance metrics. Overall, a BiLSTM basis-
customized on the linear transformation matrix,
the bias vector, and the encoder weights perform
the best among the models. Finally, we reduce the
number of parameters dramatically by at least
half compared with the Customized BiLSTM,
which enables the training of Basis-Customized
BiLSTM on encoder weights.

In addition to the competing models above,
we also report results from previous state-of-the-
art sentiment classification models that use user
and product information: (a) UPNN (Tang et al.,
2015) uses a CNN encoder and customizes on bias
vectors and word embeddings; (b) UPDMN (Dou,
2017) uses an LSTM encoder and customizes on
memory vectors; (c) NSC (Chen et al., 2016)
uses a hierarchical LSTM encoder and customizes
on attention mechanism; (d) HCSC (Amplayo
et al., 2018a) uses a BiLSTM and a CNN as
encoders and customizes on a cold-start aware
attention mechanism (CSAA); (e) PMA (Zhu and
Yang, 2017) uses a hierarchical LSTM encoder
and customizes on PMA, an attention mechanism
guided by external features; (f) DUPMN (Long
et al., 2018) uses a hierarchical LSTM encoder
and customizes on memory vectors; and (g) CMA
(Ma et al., 2017) uses a hierarchical attention-
based encoder and customizes on user- and
product-specific attention mechanism (CMA).

The comparison in Table 3 shows that our methods
outperform previous models, even though (1) we
only use a single BiLSTM encoder rather than
more complicated ones (UPDMN and DUPMN
use deep memory networks, NSC, PMA, and
CMA use hierarchical encoders) and (2) we only
customize on one part of the model rather than on
multiple parts (UPNN customizes on bias vectors
and word embeddings).

4.2 Paper Acceptance Classification

Paper acceptance classification is a task of pre-
dicting whether the paper in question is accepted
or rejected (Yang et al., 2018). We use the authors5

and the research area of the papers as categor-
ical metadata. Both authors and research field
information accept multiple labels per instance
(e.g., multiple authors, multidisciplinary field),
hence learning the category vector space properly
is crucial to perform vector operations (Mikolov
et al., 2013). We use 128 dimensions for both
the hidden states in the BiLSTM encoder and
the context vector in the attention mechanism
and 32 dimensions for each of the categorical
information. We use the paper abstract as the text.
To handle multiple labels, we find that averaging
the category vectors works well.

The results in Table 2 show similar trends from
the sentiment classification results. First, we ob-
tain better performance when using Concatenated
BiLSTM than when using Customized BiLSTM.

5In reviewing scenarios, the use of authors as additional
information is discouraged for fairness. We show how
powerful these features are for prediction when properly
modeled, which is useful for other scenarios, for example,
deciding which arXiv papers to read.

208

Models Accuracy
using full text (Yang et al., 2018)
LSTM 60.5
MHCNN 67.7
using abstract and categories (our setting)
LSTM 60.6
MHCNN 63.7
BiLSTM 61.7
BiLSTM+word-basis-cust 65.8
BiLSTM+attention-basis-cust 65.9
BiLSTM+encoder-basis-cust 66.2

Table 4: Performance comparison of models using
full texts and our implemented models using paper
abstracts (and authors and research areas as categories
for basis-customized models) as inputs in the AAPR
data set.

Second, incorporating metadata information on
the attention mechanism does not perform as well
as previously reported. Third, when customizing
on encoder weights and word embedding, the
model parameters are too big to be trained on a
commercial GPU. Finally, we see significant im-
provements in all levels of customization when
using our proposed basis-customization method,
except on the bias vectors where we obtain compa-
rable results. Overall, a BiLSTM basis-customized
on the encoder weights, the attention pooling, and
the word embedding perform the best among
all the models. We also see at least 3.7x reduc-
tion of parameters when comparing Customized
BiLSTM and Basis-Customized BiLSTM.

We also compare our results from previous lit-
erature (Yang et al., 2018), where they proposed
a modular and hierarchical CNN-based encoder
(MHCNN), and used the full text (i.e., from the
title and authors up to the conclusion section),
rather than just the abstract, the author and the
research area information. Results are reported
in Table 4, although full text and abstract results
are not directly comparable because the original
authors did not release the train/dev/test splits of
their experiments. We instead re-run MHCNN
using our settings and compare with our mod-
els. The results show that using either full text or
abstract as input to LSTM produces similar results,
thus using just the abstract can give us similar
predictive bias when using the full text, at least in
this data set. Moreover, our best models (1) per-
form significantly better (p < 0.5) than MHCNN
when restricted to our settings, and (2) are com-
petitive with the state-of-the-art, even though we
use a simple BiLSTM encoder and only have

access to the abstract, authors, and research area
information.

4.3 Political Message Type Classification
Political message type classification is a task of
predicting the type of information a message writ-
ten by a politician is conveying, with the following
nine types: attack, constituency, information,
media, mobilization, personal, policy, support, and
others. Two characteristics of this data set differ-
ent from others are (a) that it has four kinds of
categorical information: the audience (national or
constituency), bias (neutral or partisan), politician,
and the source (Twitter or Facebook) information,
and (b) that the category types of three categories
are not diverse as they only have binary category
labels. Because all of these categories may not
give useful information biases to the classifier,
models should be able to select which categories
are informative or not. We use 64 dimensions for
the hidden states in the BiLSTM encoder and the
context vector in the attention mechanism, and 16
dimensions for the category vectors of each of the
categorical information.

The results in Table 2 also show similar trends
from the previous task, but because the data set is
smaller, we can compare the performance of the
model when customizing on encoder weights. We
show that Customized BiLSTM on linear transfor-
mation matrix and encoder weights shows weaker
performance than the base BiLSTM model, Basis-
Customized BiLSTM on the same levels shows
significantly improved performance, and Basis-
Customized BiLSTM on linear transformation
matrix performs the best among the competing
models. The parameters also decreased dramati-
cally, especially on encoder weights and on word
embedding where we see at least 100x difference
in parameter size.

5 Analysis

5.1 Semantics of Basis Attention Vectors
We investigate how basis vectors understand
word-level semantics through the lens of the
attention vectors they create. Previous models
either combine user/product information into a
single attention vector (Chen et al., 2016) or
entirely separate them into distinct user and prod-
uct attention vectors (Amplayo et al., 2018a).
On the other hand, our model creates a single

209

Figure 3: Examples of attention vectors from three
different pairs of users and products (u′, p), (u, p′),
(u, p), and from the basis vectors. Numbers in
parentheses are the γi coefficient of the pair (u, p)
with respect to basis bi.

attention vector, but through the k basis atten-
tion vectors, which are vectors containing fuzzy
semantics among users and products. Figure 3
shows two examples of six attention vectors
regarding a single text in the Yelp 2013 data set
using the following: (1) the original user, product
pair (u, p); (2–3) a sampled user/product paired
with the original product/user (u′, p) and (u, p′);
and (4–6) the basis vectors. We can see in the
first example that the first basis vector focuses
on ‘‘cheap’’ and the third basis vector focuses on
‘‘delicious.’’ An interesting output is by user u,
such that they wants cheaper food in product p yet
care more about the taste in product p′.

5.2 Document-level Customized Dependencies
Previous literature only focused on the analysis
(Amplayo et al., 2018a) and case studies (Chen
et al., 2016) of word-level customized dependen-
cies, usually through attention vectors. In this
paper, we additionally investigate the document-
level customized dependencies, namely, how our
basis-customization changes the document-level
semantics when a category is different. Table 5
shows two examples, one from the AAPR data set
and one from the Political Media data set, with a
variable category research area and political bias,
respectively. In the first example, the abstract
refers to a study on bi-sequence classification
problem, a task mainly studied in the natural lan-
guage processing domain, and thus is classified as
accepted when the research area category is cs.CL.
The model also classifies the paper as accepted
when the research area is cs.IR because the two

areas are related. However, when the research area
is changed to an unrelated area like cs.CR, the
paper is rejected. In the second example, the clas-
sifier predicts that when a politician with a neutral
bias posts a Christmas greeting and mentions
people who work on holidays, he is conveying a
personal message. However, when the politician
is biased towards a political party, the classifier
thinks that the message is to offer support to those
workers who are unable to be with their families.

5.3 Learning Strategy of Basis-customized
Vectors

We argue that because the basis vectorsB limit the
search space into a constrained vector space Vc,
finding the optimal values of the basis-customized
vectors is faster. We show in Figure 4 the dif-
ference between the category vector space of
Customized BiLSTM and of Basis-Customized
BiLSTM. We see that the vector space of Cus-
tomized BiLSTM looks random, with very few
noticeable clusters, even when we iterate with four
epochs. On the other hand, the basis-customized
vector space starts as a cluster of one continuous
spiral line, then starts to break down into smaller
clusters. Multiple clusters of vectors in the vector
space are clearly seen when the epoch is 4. There-
fore, using the basis vectors makes optimization
more efficient by following the learning strategy
of starting from one cluster and dividing into
smaller coherent clusters. This can also be shown
in the visualization of the γ coefficients (also
shown in the figure), where the coefficient values
that are clumped together gradually spread out to
their optimal values.

5.4 Performance on Sparse Conditions
We look at the performance of three models,
BiLSTM, Customized BiLSTM, and Basis-
Customized BiLSTM, per review frequency of
user or product. Figure 5 shows plots of the
accuracy of the models over different user review
frequency and product review frequency on the
Yelp 2013 data set. We observe that naive cus-
tomization drops the performance of the BiLSTM
model as the frequency of user/product review
decreases. This means that the model is heavily
reliant on large amounts of data for optimization.
On the other hand, because basis customization
can learn the optimal weights of category vectors
more intelligently, it improves the performance of
the model across all ranges of review frequency.

210

Abstract Several tasks in argumentation mining and debating, question-answering, and natural
language inference involve classifying a sequence in the context of another sequence
(referred as bi-sequence classification). For several single sequence classification tasks,
the current state-of-the-art approaches are based on recurrent and convolutional neural
networks. On the other hand, for bi-sequence classification problems, there is not much
understanding as to the best deep learning architecture. In this paper, we attempt to
get an understanding of this category of problems by extensive empirical evaluation
of 19 different deep learning architectures (specifically on different ways of handling
context) for various problems originating in natural language processing like debating,
textual entailment and question-answering. Following the empirical evaluation, we offer
our insights and conclusions regarding the architectures we have considered. We also
establish the first deep learning baselines for three argumentation mining tasks.

Research Area cs.CL (Computation and cs.IR (Information cs.CR (Cryptography and
Language) Retrieval) Security)

Classification Accept Accept Reject
Message <UNK> christmas and happy holidays from my family to yours. wishing special <UNK>

to those first responders and military personnel working to ensure our safety who are unable
to be with their families this holiday season. we are all thank you for your service and
dedication.

Political Bias Neutral Partisan
Classification Personal Support

Table 5: Example texts from the AAPR data set (upper) and Political Media data set (lower) with a variable
category label (research field and political bias) that changes the classification label.

Figure 4: TSNE Visualization of the category vectors of Customized BiLSTM (first row) and Basis-Customized
BiLSTM (middle row), and the γ coefficients of the latter model (last row), when epoch is equal to 1, 2, 4, and
when training has finished (left to right).

We finally examine the performance of our
models when data contain cold-start entities (i.e.,
users/products may have zero or very few reviews)
using the Sparse80, subset of the Yelp 2013 data
set provided in Amplayo et al. (2018a). We com-
pare our models with three competing models:

NSC (Chen et al., 2016), which uses a hierarchi-
cal LSTM encoder coupled with customization
on the attention mechanism, BiLSTM+CSAA
(Amplayo et al., 2018a), which uses a BiLSTM
encoder with customization on a CSAA mecha-
nism, and HCSC (Amplayo et al., 2018a), which is

211

Figure 5: Accuracy per user/product review frequency on Yelp 2013 data set. The review frequency value f
represents the frequencies in the range [f, f + 10), except when f = 100, where it represents the frequencies in
the range [f, inf).

Models Accuracy
NSC 51.1
BiLSTM+CSAA 52.7
HCSC 53.8
BiLSTM+encoder-basis-cust 50.4
BiLSTM+linear-basis-cust 50.8
BiLSTM+bias-basis-cust 51.9
BiLSTM+word-basis-cust 51.9
BiLSTM+attention-basis-cust 53.1

Table 6: Performance comparison of competing models
in the Yelp 2013 Sparse80 data set.

a combination of CNN and the BiLSTM encoder
with customization on CSAA.

Results are reported in Table 6, which provide
us two observations. First, the BiLSTM model
customized on the linear transformation matrix,
which performs the best on the original Yelp 2013
data set (see Table 3), obtains a very sharp decrease
in performance. We posit that this is because basis
customization is not able to handle zero-shot cold-
start entities, which are amplified in the Yelp 2013
Sparse80 data set. We leave extensions of basis for
zero-shot or cold-start, studied actively in machine
learning (Wang et al., 2019) and recommendation
domains (Sun et al., 2012), respectively. Inspired
by CSAA (Amplayo et al., 2018a), using similar
review texts for inferring the cold-start user (or
product), we expect to infer meta context, similarly
based on similar meta context, which may mitigate
the zero-shot cold-start problem. Second, despite
having no zero-shot learning capabilities, Basis-
Customized BiLSTM on the attention mechanism
performs competitively with HCSC and performs

better than BiLSTM+CSAA, which is Custom-
ized BiLSTM on attention mechanism with cold-
start awareness.

6 Conclusion

We presented a new study on customized text
classification, a task where we are given, aside
from the text, its categorical metadata informa-
tion, to predict the label of the text, customized by
the categories available. The issue at hand is that
these categorical metadata information are hardly
understandable and thus difficult to use by neural
machines. This, therefore, makes neural-based
models hard to train and optimize to find a proper
categorical metadata representation. This issue is
very critical, in such a way that a simple concate-
nation of these categorical information provides
better performance than existing popular neural-
based methods. We propose solving this problem
by using basis vectors to customize parts of a clas-
sification model such as the attention mechanism
and the weight matrices in the hidden layers. Our
results show that customizing the weights using
the basis vectors boosts the performance of a basic
BiLSTM model, and also effectively outperforms
the simple yet robust concatenation methods. We
share the code and data sets used in our experi-
ments here: https://github.com/zizi1532/
BasisCustomize.

Acknowledgments

This work was supported by Microsoft Research
Asia and IITP/MSIT research grant (no. 2017-0-
01779).

212

https://github.com/zizi1532/BasisCustomize
https://github.com/zizi1532/BasisCustomize

References

Reinald Kim Amplayo, Jihyeok Kim, Sua Sung,
and Seung-won Hwang. 2018a. Cold-start
aware user and product attention for sentiment
classification. In Proceedings of the 56th An-
nual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 2535–2544. Association for Computa-
tional Linguistics.

Reinald Kim Amplayo, Kyungjae Lee, Jinyoung
Yeo, and Seung-won Hwang. 2018b. Trans-
lations as additional contexts for sentence clas-
sification. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial
Intelligence, IJCAI 2018, pages 3955–3961.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Pro-
ceedings of the 3rd International Conference
on Learning Representations, ICLR’15.

Andrea Baruzzo, Antonina Dattolo, Nirmala
Pudota, and Carlo Tasso. 2009. A general
framework for personalized text classification
and annotation. In Proceedings of the Workshop
on Adaptation and Personalization for Web 2.0,
AP WEB 2.0@UMAP.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai
Lin, and Zhiyuan Liu. 2016. Neural sentiment
classification with user and product atten-
tion. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, pages 1650–1659. Association for
Computational Linguistics.

Po-Hao Chou, Richard Tzong-Han Tsai, and Jane
Yung-jen Hsu. 2017. Context-aware sentiment
propagation using LDA topic modeling on
chinese conceptnet. Soft Computing, 21(11):
2911–2921.

Zi-Yi Dou. 2017. Capturing user and product
information for document level sentiment anal-
ysis with deep memory network. In Proceed-
ings of the 2017 Conference on Empirical
Methods in Natural Language Processing,
pages 521–526. Association for Computational
Linguistics.

Alec Go, Richa Bhayani, and Lei Huang. 2009.
Twitter sentiment classification using distant

supervision. CS224N Project Report, Stanford,
1(12).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Arash Joorabchi and Abdulhussain E. Mahdi.
2011. An unsupervised approach to automatic
classification of scientific literature utilizing
bibliographic metadata. Journal of Information
Science, 37(5):499–514.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 1746–1751. Association for Computa-
tional Linguistics.

Xuan Nhat Lam, Thuc Vu, Trong Duc Le,
and Anh Duc Duong. 2008. Addressing cold-
start problem in recommendation systems.
In Proceedings of the 2nd International
Conference on Ubiquitous Information Man-
agement and Communication, ICUIMC 2008,
pages 208–211.

Fei-Fei Li, Robert Fergus, and Pietro Perona.
2006. One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(4):594–611.

Xin Li and Dan Roth. 2002. Learning question
classifiers. In COLING 2002: The 19th
International Conference on Computational
Linguistics.

Rui Lin, Shujie Liu, Muyun Yang, Mu Li,
Ming Zhou, and Sheng Li. 2015. Hierarchical
recurrent neural network for document model-
ing. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language
Processing, pages 899–907. Association for
Computational Linguistics.

Yunfei Long, Mingyu Ma, Qin Lu, Rong
Xiang, and Chu-Ren Huang. 2018. Dual mem-
ory network model for biased product review
classification. In Proceedings of the 9th Work-
shop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis,
pages 140–148. Association for Computational
Linguistics.

213

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to
attention-based neural machine translation. In
Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Pro-
cessing, pages 1412–1421. Association for
Computational Linguistics.

Dehong Ma, Sujian Li, Xiaodong Zhang,
Houfeng Wang, and Xu Sun. 2017. Cas-
cading multiway attentions for document-level
sentiment classification. In Proceedings of the
Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long
Papers), pages 634–643. Asian Federation of
Natural Language Processing.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

Bo Pang, Lillian Lee, and Shivakumar
Vaithyanathan. 2002. Thumbs up? sentiment
classification using machine learning tech-
niques. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language
Processing (EMNLP 2002).

Zizi Papacharissi. 2002. The presentation of self
in virtual life: Characteristics of personal home
pages. Journalism & Mass Communication
Quarterly, 79(3):643–660.

Jeffrey Pennington, Richard Socher, and
Christopher Manning. 2014. GloVe: Global
vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 1532–1543. Association for Computa-
tional Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contex-
tualized word representations. In Proceedings
of the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227–2237.
Association for Computational Linguistics.

Sachin Ravi and Hugo Larochelle. 2016. Optimi-
zation as a model for few-shot learning. In

Proceedings of the 4th International Confer-
ence on Learning Representations, ICLR’16.

Michal Rosen-Zvi, Thomas L. Griffiths, Mark
Steyvers, and Padhraic Smyth. 2004. The
author-topic model for authors and documents.
In UAI ’04, Proceedings of the 20th Confer-
ence in Uncertainty in Artificial Intelligence,
pages 487–494.

Fabrizio Sebastiani. 2002. Machine learning in
automated text categorization. ACM Computing
Surveys, 34(1):1–47.

Richard Socher, Jeffrey Pennington, Eric H.
Huang, Andrew Y. Ng, and Christopher D.
Manning. 2011. Semi-supervised recursive
autoencoders for predicting sentiment distri-
butions. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language
Processing, pages 151–161. Association for
Computational Linguistics.

Dong-ting Sun, Tao He, and Fu-hai Zhang. 2012.
Survey of cold-start problem in collaborative
filtering recommender system. Computer and
Modernization, 5:59–63.

Duyu Tang, Bing Qin, and Ting Liu. 2015.
Learning semantic representations of users and
products for document level sentiment classi-
fication. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1014–1023.
Association for Computational Linguistics.

Wei Wang, Vincent W. Zheng, Han Yu, and
Chunyan Miao. 2019. A survey of zero-shot
learning: Settings, methods, and applications.
ACM Transactions on Intelligent Systems and
Technology, 10(2):13:1–13:37.

Pengcheng Yang, Xu SUN, Wei Li, and Shuming
Ma. 2018. Automatic academic paper rating
based on modularized hierarchical convolu-
tional neural network. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 496–502. Association for
Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong
He, Alex Smola, and Eduard Hovy. 2016.

214

Hierarchical attention networks for document
classification. In Proceedings of the 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 1480–1489.
Association for Computational Linguistics.

Matthew D. Zeiler. 2012. ADADELTA: An adap-
tive learning rate method. CoRR, abs/1212.5701.

Rui Zhao, Kezhi Mao, Rui Zhao, and Kezhi
Mao. 2017. Topic-aware deep compositional
models for sentence classification. IEEE/ACM
Transactions on Audio, Speech and Languange
Processing, 25(2):248–260.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming
Xu, Hongyun Bao, and Bo Xu. 2016. Text
classification improved by integrating bidi-
rectional LSTM with two-dimensional max
pooling. In Proceedings of COLING 2016,
the 26th International Conference on Com-
putational Linguistics: Technical Papers,
pages 3485–3495.

Pengcheng Zhu and Yujiu Yang. 2017. Parallel
multi-feature attention on neural sentiment
classification. In Proceedings of the Eighth
International Symposium on Information and
Communication Technology, pages 181–188.

215

	Introduction
	Preliminaries
	Problem: Customized Text Classification
	Base Classifier: BiLSTM
	Baseline 1: Concatenated BiLSTM
	Baseline 2: Customized BiLSTM

	Proposed Method
	Problems of Customized BiLSTM
	Basis Customization

	Experiments
	Review Sentiment Classification
	Paper Acceptance Classification
	Political Message Type Classification

	Analysis
	Semantics of Basis Attention Vectors
	Document-level Customized Dependencies
	Learning Strategy of Basis-customized Vectors
	Performance on Sparse Conditions

	Conclusion

