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Abstract

In standard NLP pipelines, morphological
analysis and disambiguation (MA&D) pre-
cedes syntactic and semantic downstream
tasks. However, for languages with complex
and ambiguous word-internal structure, known
as morphologically rich languages (MRLs), it
has been hypothesized that syntactic context
may be crucial for accurate MA&D, and vice
versa. In this work we empirically confirm
this hypothesis for Modern Hebrew, an MRL
with complex morphology and severe word-
level ambiguity, in a novel transition-based
framework. Specifically, we propose a joint
morphosyntactic transition-based framework
which formally unifies two distinct transition
systems, morphological and syntactic, into a
single transition-based system with joint train-
ing and joint inference. We empirically show
that MA&D results obtained in the joint
settings outperform MA&D results obtained
by the respective standalone components, and
that end-to-end parsing results obtained by our
joint system present a new state of the art for
Hebrew dependency parsing.

1 Introduction

NLP research in recent years has shown in-
creasing interest in parsing typologically differ-
ent languages, as evident, for instance, by the
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universal dependencies' initiative (Nivre et al.,

2016). In particular, much attention is drawn to
parsing morphologically rich languages (MRLs),
which differ significantly from English in their
structure and characteristics (Tsarfaty et al., 2010).
In MRLs, grammatical information, typically
expressed using word order in English, is often
manifested in the internally complex structure of
the words. Words in MRLs may carry, in addition
to lexical content, functional affixes and clitics that
correspond to additional pieces of information.
In Modern Hebrew, for example, the inflected
verb “ahbtih”? (loved + lpers.singular.past +
3pers.feminine.singular) corresponds to three
different grammatical functions: the subject “L,”
the predicate “loved,” and the direct object
“her.” Similarly, Spanish ddmelo corresponds
to a predicate, an indirect object, and a direct
object, as in “give it to me.” Thus, in MRLs,
morphological analysis (MA) which translates
raw space-delimited tokens to syntactically
relevant “word” units is a necessary condition
for any syntactic or semantic downstream task.
However, raw space-delimited tokens in MRLs
are often highly ambiguous. In Hebrew, Arabic,
and other Semitic languages, this situation is
further complicated by fact that written texts lack
diacritics. The Hebrew token “fimn,”” for instance,
may be read as the noun “oil,” the adjective

“fat,”

the verb “lubricated,”

'Mttp://universaldependencies.org/.

2Using the transliteration of Sima’an et al. (2001).
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Figure 1: The morphological and syntactic interactions
in the analysis of the Hebrew phrase “bclm hneim”
according to the Hebrew SPMRL annotation.

“that”+“of,” or the phrase “their”’+‘“name,” only
one of which is relevant in context. This has clear
ramifications for dependency parsing. Figure 1
shows a lattice that captures all possible analyses
of the Hebrew phrase “bclm hneim,” literally:
“in-the-shadow-of-them the-pleasant,” translated
“in their pleasant shadow.” Each lattice arc
corresponds to a potential node in a dependency
tree. Dark circles mark morpheme boundaries,
double circles mark token boundaries. The top tree
depicts a correct syntactic analysis. In the bottom
tree, incorrectly disambiguated tokens lead to a
wrong syntactic analysis.

Previous dependency parsing evaluation cam-
paigns (Buchholz and Marsi, 2006; Nivre et al.,
2007) assumed that the correct morphological
analysis and disambiguation (MA&D) of the input
stream is known in advance. In realistic end-to-
end parsing scenarios, however, this is of course
not so. To overcome this, pipeline architectures
where MA&D precedes parsing have been set
up. These pipelines are suboptimal since they
suffer from error propagation, and since local lin-
ear context available for automatic MA&D may
be insufficient for accurate morphological dis-
ambiguation. For this, actual syntactic context
may be required (Tsarfaty, 2006). To resolve this
apparent loop, where morphological analysis
is required for syntactic parsing and syntac-
tic analysis is required for morphological dis-
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ambiguation, Tsarfaty (2006) hypothesised that
Jjoint morphosyntactic parsing, where morpholog-
ical information may assist syntactic disambigua-
tion and vice versa, may be better suited.

This joint morphosyntactic hypothesis has been
taken up and successfully confirmed in the context
of phrase—structure parsing for Semitic languages
(Goldberg and Tsarfaty, 2008; Cohen and Smith,
2007; Green and Manning, 2010). For dependency
parsing, Bohnet and Nivre (2012) and Bohnet et al.
(2013) present language-agnostic transition-based
frameworks for jointly parsing and tagging input
words, though without addressing the complex
issue of retokenizing ambiguous input tokens.
More recently, Seeker and Centinoglu (2015)
presented a graph-based framework for lattice
parsing of Turkish also covering morphological
segmentation. Their system takes a “product of
experts” approach wherein the morphological
paths and dependency trees are handled via two
distinct models (a linear model over bigrams for
MD and an arc-factor model for dependencies),
reaching agreement via a dual decomposition
setup.

In this work, we present a novel, language-
agnostic, transition-based framework for end-to-
end morphosyntactic dependency parsing. The
framework unifies a morphological and a syntac-
tic component into a joint parser encompass-
ing a single transition system, a single objective
function, joint learning, and joint decoding. We
apply this system to parsing Modern Hebrew
and empirically confirm that predicting MA&D
in the joint settings improves upon standalone
MA&D, and upon recently reported Hebrew
MA&D results. Our system further improves end-
to-end dependency parsing results in comparison
to existing state-of-the-art parsers in pipeline
scenarios, it significantly outperforms the joint
parser of Seeker and Centinoglu (2015), and it
substantially outperforms the dependency parser
of Goldberg and Elhadad (2010), so far considered
the de facto standard for Hebrew dependency
parsing.

The contribution of this paper is thus three-
fold. First, we define a language-agnostic joint
morphosyntactic parser in a transition-based
framework. Secondly, we empirically confirm that
MA&D benefits from syntactic parsing, and in
realistic end-to-end parsing scenarios, also vice
versa. Finally, we present a new set of strong
Hebrew end-to-end parsing results and deliver an



open-source, language agnostic implementation
of the joint parser, for further investigating joint
morphosyntactic parsing strategies. This paper is
organized as follows. In Section 2, we present
our formal framework (2.1), morphological model
(2.2), syntactic model (2.3), and joint framework
(2.4). Sections 3 and 4 present our experiments and
analysis, respectively. Section 5 discusses related
and future work, and Section 6 concludes.

2 The Proposal: Transition-Based Joint
Morpho-Syntactic Parsing

2.1 Formal Settings

We cast end-to-end morphosyntactic parsing as a
structure prediction function F' : X — )/, where
xz € X is a sequence of raw input tokens and
y € Y is a dependency representation where the
nodes in the tree correspond to disambiguated
morphosyntactic units we refer to as morphemes.>

We assume that F' is realized in a transition-
based framework augmented with the structure
prediction method of Zhang and Clark (2011).
We start off with a completely general definition
of a transition system as a quadruple S
(C,T,cs,Cy), with C' a set of configurations,
T a set of transitions, ¢, an initialization func-
tion, and C; C C a set of terminal configura-
tions. We then define different instantiations of
S for the different (morphological, syntactic,
morphosyntactic) parsing tasks. In each instan-
tiation, a transition sequence y for x is a se-
quence of configurations that are obtained by
applying transitions %;...t, € T sequentially.
That is, starting with an initial configuration
g = cs(x), we find y = ¢,...,c, such that
¢it1 = ti+1(c;) and ¢, € Cy. Thus, each y depicts
a sequence of decisions that constructs a valid
analysis for x at the relevant linguistic level.

For each task we employ an objective func-
tion F'(z) as follows, where GEN (z) holds all
the transition sequences that generate relevant
candidates:

F(x) argmazycGEN (z)Score(y)
argmaryeqen ) ®(y) - d

argmalryeGEN (x) chey > widi(cy).-

3In universal-dependencies terms, these are called syn-
tactic words or tree tokens. In previous work on Hebrew
parsing they are referred to as morphological segments.

35

To compute Score(y), y is mapped to a global
feature vector ®(y) of size d multiplied by a
weights vector b of the same size. The global
feature vector ®(y) consists of local feature
vectors, each of which is defined via a set of
functions {¢; : C — N}, which count the
occurrences of a prespecified pattern in a given
configuration in y. Following Zhang and Clark
(2011), we learn the weights vector & € R? via
the generalized perceptron using the early-update
averaged variant of Collins and Roark (2004).

Decoding is based on the beam search algo-
rithm, where a number of high-scoring candidate
sequences are maintained in the beam in order
to mitigate irrecoverable prediction errors that
characterize greedy search procedures. At each
step, the transition system applies all transitions
to all candidates, and keeps the B highest-scoring
candidates. During learning, the perceptron algo-
rithm iterates through a gold-annotated corpus.
Each sentence is parsed (decoded) with the last
known weights, and if the parsed result differs
from the gold, the weights are updated. The
learning is stopped when overfitting begins.

2.2 The Morphological Framework

Our departure point for morphological dis-
ambiguation (MD) is the transition system of
More and Tsarfaty (2016), currently established
as the state of the art for Hebrew MA&D.* The
input to the system is a lattice L that captures
the range of valid morphological analyses for the
input tokens x = x4, ..., g, as illustrated in the
middle of Figure 1. The goal of the MD system is
to select a sequence of contiguous arcs in L which
represents the morphological disambiguation of
x in context.

Formally, we define for each token x; its roken-
lattice L; = M A(x;) where each lattice-arc in L;
corresponds to a potential node in the dependency
tree. Each lattice-arc has a morphosyntactic repre-
sentation (MSR) which we define as a tuple
m = (bye, f,t,g) with b and e the beginning
and end indices in L, f a form, ¢ a part-of-speech
tag, and g a set of attribute:value grammatical
properties. L. = M A(x) is the sentence lattice
obtained by concatenating the token-lattices top
to bottom L = MA(x;) o ... o MA(z). Now,

4For exposition of the evaluation, alternatives, and a
cross-linguistic application, see More and Tsarfaty (2016).



L represents the full range of valid morphological
analyses applicable to z.

A configuration for any input x in the MD sys-
tem consists of its sentence lattice L = M A(z),
an index n representing the internal node (dark
circle) in L we are at, and an index ¢ representing
the O-based current-token index (double circle)
in L, while M is a set of disambiguated MSRs
(selected arcs):

Cod = (L,n,i,M).

The initial configuration function ¢, sets L =
MA(z), n = bottom(L), i = 0, and M = 0.
For traversing the lattice L from bottom to top
we define an open set of transitions using the
M Dy transition template, with s = (_,_, ¢, 9)
specifying the delexicalized projection of (any)
lattice arc (b, e, f,t, g).

MDyg: (L,p,i,M)— (L,q,5, M U{m}). (1)

This transition selects a single lattice arc at a given
position. Now, if p is our current position in the
lattice and m = (p, q, f,t, g) is the selected arc,
then j = ¢ + 1 if ¢ is at a token boundary (double
circle) and j = if it is not.

The terminal configuration set is defined to
be C {(L,top(L),|z|, M)} where M =
{m1, mg,....,m;} holds the fully disambiguated
path of MSRs (selected arcs) through L.

In order to find this path in a data-driven
fashion, we define a parametric model that scores
all transitions that can be applied at each step.
We define the properties f (form), ¢ (pos tag), g
(morphological attribute:value pairs), path (the
path in the previously disambiguated token-
lattices), and morphs (the set of outgoing mor-
phemes of the current node) and we use unigram,
bigram, and trigram combinations of these prop-
erties as features for the learning model.® Our
beam search decoder then applies at each point
in the lattice all possible transitions and selects
the B-top scoring candidates at this point. Those
that don’t make the B mark, fall off the beam.

Importantly, | M|, the number of lattice arcs in
the path at each stage, is unknown in advance,

3 As one of our reviewers pointed out, in the general case
there may be a single lattice for the entire sequence, with no
concatenation needed, as is the case in some Asian languages.

5The complete description of the feature model is provided
by More (2016).
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since different disambiguation decisions between
token boundaries may end up with different path
lengths. This can be seen in the lattice of Figure 1,
where path lengths vary between 4-7 arcs. This
is a thorny issue, because it violates a basic
assumption of beam search decoding—that the
number of transitions is a deterministic function
of the input and is known in advance. Such
length discrepancies may lead to preferring short
sequences in the beam due to reaching the end
goal early, or preferring long sequences, due to
artificial inflation of scores based on the multitude
of features.

To address this issue, we adopt the solution
proposed by More and Tsarfaty (2016), employing
a special transition ENDTOKEN (ET) given in (2)
which explicitly increments ¢ when reaching a
token boundary in L.

ET: (L,n,i,M) — (L,n,i+1,M). (2)
Set aside from other transitions, ET has its own set
of features (of size d’). Other than incrementing 1,
ET causes a re-ordering of candidates in the beam
at each token boundary. More and Tsarfaty (2016)
show that when using this anchor, the features of
the ET transition provide a counterbalance to the
effects of varied-length sequences and improve
the accuracy of Hebrew MD.

An MD transition sequence thus becomes a
union of disjoint sets of configurations y
Ymd U Yet, and Score(y) is as follows, where
w™ ¢4 score configurations resulting from MD

j
transitions and likewise wS‘¢“* for ET transitions:

d d
Score(y) =Y w @7 (yma) + > w65 (yer)

i=1 j=1
d d
d  md t et
= 2 et Y > wiel (@),
CkEYmd 1=1 Cl€Yet j=1

3)

2.3 The Syntactic Framework

Given a sequence of selected lattice arcs for the
input sequence x, we can define the syntactic
dependency representation for x as a dependency
tree where each lattice arc corresponds to a node in

ET kicks in only for variable length lattices. On token-
lattices where all paths are of the same length, ET is
skipped.



the dependency tree. Let R be a set of dependency
types and let M = mj...m; be the sequence
of [ arcs selected by the MD component.® We
denote a dependency graph for the sequence
M = myp...my as GM (VM,AM), where VM
is a set of nodes corresponding to the arcs of M
and Ap; C Vs x R x V) is a set of labeled arcs
between the elements of V).

A configuration of an arc system for a
morphological sequence M = m;...my, is a triplet
where o is a stack of morphemes m; € Vg, 3
is a buffer of morphemes m; € Vg, and A is
a set of labeled dependency arcs (m;,r,m;) €
Vg x R x Vg.

Cdep = (07 57 A)

A configuration represents a partial analysis of
the input sentence, where the morphemes on the
stack o are partially processed morphemes, the
morphemes in the buffer 3 are those waiting to
be processed, and the arc set A represents a
partially built dependency tree (Kiibler et al., 2009,
Chapter 3). Unless specified otherwise, the set of
terminal configurations is Cy = {(o, 3, A)} where
B =[and|oc| =1°

There are various options for defining tran-
sitions over such configurations in the depen-
dency parsing literature for English. In particular,
three transition systems have been successfully
applied to English as well as other languages
(cf. Ballesteros and Nivre [2016]):

Arc Standard: A straightforward method of
bottom-up left-to-right incremental parsing
as proposed in Nivre (2004). We assume the
definition by Kiibler et al. (2009).

Arc Eager: Following Abney and Johnson
(1991), Arc Eager defines a variant of Arc
Standard that allows to eagerly attach a right-
dependent to its head while allowing more
dependents to attach to it. We assume the
definition by Kiibler et al. (2009).

8To avoid confusion between lattice arcs and dependency
arcs, we refer to lattice arcs m; € M as “morphemes.”

°A transition system can introduce an artificial root node
that can head any partial tree in the sentence. The root node
allows for multiple partial trees (a forest) to be related only
through the root node. We call transition systems with and
without a root node root-full and root-less, respectively. In
the literature, o = [my] is the formal requirement for root-full
variations; however |o| = 1 is a generalization that applies
to both root-full and root-less cases.
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Arc (Z)Eager: In our reproduction of the
state-of-the-art results presented by Zhang
and Nivre (2011) for English, we discovered
in the code a variant of Arc Eager that
we call Arc (Z)Eager, which has interesting
subtle variations from Arc Eager, including a
second stack holding head nodes, and certain
hard constraints on the application of several
transitions.'”

An empirical study by Nivre (2008) compares the
performance of Arc Standard and Arc Eager for
13 languages, amongst them Arabic and Turkish,
both considered MRLs with some degree of word-
order freedom. For these languages, Arc Standard
slightly outperformed Arc Eager. On a different
but related note, our preliminary experiments
on English and Hebrew show that the Arc
ZEager variant always outperforms Arc Eager.
However, the question which of the two, Arc-
Standard or Arc-ZEager, will be more suited for
parsing Hebrew, remains open for our empirical
investigation in Section 3.

Defining Features. A significant contribution
of Zhang and Nivre (2011) is their proposal of a set
of rich non-local features (RNF) for Arc ZEager,
adding higher-order information previously found
only in graph-based parsers. To facilitate a fair
comparison of Arc Standard to Arc (Z)Eager, we
have to adapt the feature set of Zhang and Nivre
(2011) to the different arc system (to the extent
that this is possible), and to the different language
type. In particular, the RNF set depends on word
order, by encoding the arc direction explicitly. We
address the order-dependence of RNF by defining
a parallel set of features that is suitable for the
more flexible word order in MRLs, and that is
applicable to Arc-Standard. We call this feature
set rich linguistic features (RLF). The essence of
the two feature sets is the same, but we replace
features relying on positions of nodes with features
relying on the labeled grammatical functions of
these nodes.!!

To construct our features, we define properties
that capture the linguistic information of selec-
tional preferences and subcategorization frames
(Tesniere, 1959; Chomsky, 1965). To capture the

19For the documented list of deviations of Arc (Z)Eager
from Arc Eager, consult More (2016).

"For the full list and detailed comparison of rich non-local
features and rich linguistic features, consult More (2016).



distributional characterization of subcat frames,
we define sf, to be a multiset of part-of-speech
tags of the dependents of a given head. To capture
the functional characterization of subcat frames,
we define the sfy referring to the multiset of
function labels of all dependents of a given head.
For valency, we define the properties vy, referring
to the number of dependents of a given head. For
capturing selectional preferences in flexible word
order environments, we define order-agnostic
bilexical labeled-dependency features, generated
separately for each dependent.

Finally, we augment syntactic features with
morphological properties. Our augmentation op-
erator allows for creating multiple instances of
the same feature, with and without morphological
properties.

2.4 The Joint Framework

Given our morphological and syntactic compo-
nents, we seek an integration such that morpho-
logical information aids syntactic disambiguation
and vice versa.

We propose to literally embed the two stand-
alone configurations into a single configuration,
and to apply transitions via a coherent logic we
call a strategy that chooses which processor to
apply at a given state.

Formally, let ¢,,q and cqe, be MD and de-
pendency parser configurations as defined in
Sections 2.2 and 2.3, respectively. We define the
joint configuration as follows:

¢j = (¢ma; Cdep) = ((L,n, 3, M), (0,3, A)). (4)

We initialize the embedded MD configuration
cmd With the MD transition system initialization
function, as defined in Section 2.2, but leave cgep
empty, with 0 = § = [] empty stack and buffer.
Also, as before in cgep, A = (). A configuration
c; is terminal if and only if ¢,,q and cgep, are
both terminal configurations of their respective
systems.

Let T = (Tnd, Tuep) be a pair of transition
sets of the MD and dependency parsing transition
systems, respectively, let C = {C,4, Cgep } hold
the sets of possible non-terminal configurations,
and let C; = {C4,,,, Ci,,,} hold the respective
sets of terminal configurations. A joint strategy
is a function that, given a non-terminal joint
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configuration, chooses exactly one transition sys-
tem to act on:

JOINT :C = T. (5)
The Pipeline Strategy. Our baseline morpho-
syntactic parsing strategy is simply a pipeline that
first applies the morphological component which
selects the best output morpheme sequence, and
then applies the dependency parser to it.

The MDFirst Strategy. If we seek to improve on
the simplistic pipeline strategies, we first need to
adjust our MD transition system such that its dis-
ambiguation decisions feed into the configuration
of the dependency parser. We modify the M D,
transition as follows:

MDs: ((L,n,i,M),(c,5,A)) =
((L, g, 4, M U{m}), (o, [m|B], A)).

(6)

Now, a simple improvement upon the pipeline
approach would be, rather than choosing just
the top-scoring candidate of the MD component,
passing all B candidates in the beam to the
dependency component. We refer to this strategy
as MDFirst:

de Cmd € Ctmd

otherwise.

)

This simple extension offers the opportunity to
maximize a single objective function, and to
“re-rank” initially locally scored candidates if
syntactic processing leads to a better MD result.

MDFirst((cmd, ciep) € C) =
Tdep

The ArcGreedy Strategy. Since both transition
systems process their input left to right, there is no
inherent constraint preventing the application of
a syntactic transition as soon as the embedded
dependency configuration meets the minimal
state required for a dependency transition to be
applied. We therefore propose a set of ArcGreedyy,
strategies, in which we greedily choose to apply
a syntactic transition if the dependency buffer 5
is populated by at least k& morphemes, so that
the syntactic processor may look k& morphemes
“forward” in order to predict its next transition.

T 1Bl <k

ArcGreedyy(cma, (0,5, A)) =
Ty otherwise.
®)



In contrast with the pipeline architecture, both
MDFirst and ArcGreedyy, perform joint morpho-
syntactic parsing, in the sense that the framework
aims to maximize a joint global score over both
morphological and dependency transitions. This
is formally depicted as follows in (9), where ¢4
and c; are the resulting configurations of MD
and ET transitions respectively, and cge,, are the
resulting configurations of syntactic transitions:

Score joint(y) = Scorenp(y) + Scorepep(y)
)
d d
= WM yma) + Y w65 (yer)
i=1 j=1
d//

+ D WP (Yaep)

r=1

d d
= 3 Swrderdien) + Y0 Y wiedt(er)

CkEYmd i=1 C1€Yet j=1

d"

YD utn)

C4€Ydep T=1

The theoretical advantage of ArcGreedy;, com-
pared to MDFirst is that the incremental update
of the joint global score by the former alternates
between MD and syntactic predictions, allow-
ing for syntax and morphological information to
interact frequently. So, syntax can affect the order-
ing of candidates during the parsing sequence,
correcting local mistakes closer to where they
occur.

3 Experiments

Goal: We aim to test the hypothesis that joint
syntactic and morphological disambiguation is
better than a pipeline by empirically comparing
the Pipeline, MDFirst and ArcGreedys parsing
strategies in our unified transition-based morpho-
syntactic framework.!?

Data: We use the Modern Hebrew section of
the SPMRL shared task (Seddah et al., 2014),
derived from the Hebrew Unified-SD version
of Tsarfaty (2013). For the purpose of this work,
we harmonized the treebank annotation scheme

12We set k = 3 because some features of Zhang and Nivre
(2011) require three morphemes in the buffer.
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with the annotation scheme of the lexical resources
of Itai and Wintner (2008), and in particular the
HEBLEX lexicon of Adler and Elhadad (2006).
We use the standard train/dev/test sets split, train
on the train set (5,000 sentences) with a detailed
investigation on dev (500), and confirm our results
on test (716).

Implementation: We implemented from scratch
a fully integrated, transition-based, multilingual
natural language processor, written in Go.!> Our
implementation uses a general purpose morpho-
logical analyzer, which for Hebrew is backed by
the BGU HEBLEX lexicon (Adler and Elhadad,
2006). We implemented the morphological dis-
ambiguator, dependency parser, and joint inte-
gration strategies defined herein. We implemented
and experimented with both the Arc Standard and
Arc ZEager transition systems.'#

Scenarios: In MRLs, out-of-vocabulary (OOV)
tokens pose a great challenge to parsing. A raw
token may have not been observed during training,
even though all its morphemes have been observed
in other contexts. To gauge the effect of such OOV
items on the quality of Hebrew parses, we evalu-
ate the system in two different scenarios. In the
first, infused scenario, we verify that each lattice
contains the gold morphological analysis. That is,
if the gold path is not present in L = M A(x)
(hence, an OOV), we automatically infuse the
gold path into L. We contrast this with uninfused
scenarios, where we use a realistic morphological
analyzer with its (incomplete) lexical coverage as
is, compliant with Adler and Elhadad (2006).

Settings: In all experiments, we used a beam of
size 64, which, in our preliminary experiments on
dev, gave better results for the joint models than
a beam of 32, and in any event no worse results
than a beam of 128. To avoid both overfitting and
underfitting, we define a stopping condition for the
training procedure, which we test in each training
iteration. During training, we use a sliding window
of three iterations and select the first model that
precedes two sequential scores-drop on dev.

For pipeline models, we test distinct stopping
conditions for the morphological and the syntactic
models, each based on its own standalone scores.

B nttps://golang.org by Google.
“Dispensing with Arc Eager, which underperformed Arc
ZEager in all settings in all our preliminary investigations.
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For joint models, we test the stopping condition
with respect to a single overall dependency F}
score, which we define shortly.

Evaluating Morphology: To evaluate morpho-
logical disambiguation (MD) results, we report
the F} scores on the set of predicted morphemes
versus gold-standard morphemes in the sentence.
Formally, let M,, M, be sets of predicted and
gold morphemes of the sentence, respectively.
We define precision, recall, and F}-scores as:

My My o [M,NMy| . 2%PrxRe

T, T YT TPr+Re

Pr
| M| | M|

We report two different scores for each MA&D
run, one for full MD including segmentation,
tagging and morphological features (MD Full),
and one for segmentation and tags only (MD POS).

Evaluating Dependencies: Evaluating joint
morpho-syntactic dependency parsing perfor-
mance is non-trivial, because the gold and parse
trees may have a different number of nodes, which
precludes the application of standard attachment
scores; it suffices that an incorrect segmenta-
tion occurs early in the sequence, then off-by-one
indices in the remainder of the sentence deem the
rest of the arcs incorrect (Tsarfaty et al., 2012).

Let us illustrate this effect. Consider the Hebrew
phrase “bbit” (translated ‘“in the house”) that
appears as a single space-delimited token. Now
consider the two following MD alternatives, with
and without the Hebrew covert definite article. We
also include here the indices of the disambiguated
morphemes in their linear order:

Gold MD: 1.b(“in”) 2.h(*“the”) 3.bit(“house™)
Predicted MD: 1.b(“in”) 2.bit(“house”).

Further assume that both the Gold and Predicted
dependency trees contain the correct dependency
arc between b (“in”’) and bit (“house’) labeled
pobj. In simple LAS terms, the arcs that would be
compared for the purpose of evaluation are:

Gold Dep: pobj(1,3), det(3,2)
Predicted Dep: pobj(1,2).

So the pobj predicted arc will be considered an
error, even though the relation between forms is
correct, and accordingly both UAS and LAS will
be 0.

To address this issue, we define an F} accuracy
measure with respect to the forms of arc edges,
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rather than their node indices. Formally, let M), be
the predicted morphological disambiguation of x,
and let A, be the predicted dependency tree over
M,. Likewise, let M,, A, be the gold-standard
morphological disambiguation and dependency
tree of x. We now replace the index of each
node in the arcs of A, A, with the form of
the corresponding morpheme in M), and M,. Let
Jp, J4 be the form-based (rather than index-based)
arcs of the predicted and gold representations of
x. We report both labeled and unlabeled F} as:'

1Nyl
7]

[Jp N Tl

__2x PrxRe
[ Tgl '

P =
" ! Pr + Re

; Re =

In our example, the revised arcs will now be:

Gold Dep: pobj(b,bit),det(bit,h)
Predicted Dep: pobj(b,bit).

Now, the parser will be credited for identifying the
pobj arc correctly, as desired, and the dependency
scores will be: Pr = 1, Re = 0.5,and F; = 0.67.

Results: Tables 1-4 present our morpho-
syntactic parsing results for each of our different
systems in all, pipeline and joint, strategies.
We report Fj scores, both MD Full and MD
POS for morphological disambiguation (MD),
and both unlabeled and labeled F) scores for
the dependency trees (Dep). Tables 1 and 3
present results on the Modern Hebrew dev set, and
Tables 2 and 4 confirm our results on the fest set.

Table 1 presents parsing results for infused
morphological lattices; that is, ambiguous MA
lattices that are guaranteed to also include the
correct MD path in them. In these experiments,
we see that MD results in joint parsing strategies
(MDFirst, ArcGreedy) always improve upon the
MD standalone/pipeline results. In particular, all
MD results across the joint strategies are very
close. We observe only a minor advantage for Arc-
Zeager over Arc-Standard for both joint strategies.
This increase in MD accuracy unfortunately comes
at the expense of syntax, where we observe a slight
drop (up to 0.5 point in [un]labeled F}) when
switching from pipeline to joint strategies.

We confirm this trend on the test set in Table 2,
where we use the same models in the infused
settings to parse the standard test set. For MD, all

15 This is effectively equivalent to the F; metric in

Goldberg and Elhadad (2011) and Seeker and Centinoglu
(2015).



Strategy System MD F; Dep F; Strategy System MD Fy Dep Fy
Full/POS Un/labeled Full/POS Un/labeled
| Standalone | M&T 2016 | | 93.32/94.09 [ n/a/n/a | [ Standalone | M&T 2016 | | 88.57/90.83 [ n/a/n/a |
Pipeline Standard 93.32/94.09 | 80.44/73.86 Pipeline Standard 88.57/90.83 | 77.45/70.74
Pipeline ZEager 93.32/94.09 | 80.82/74.28 Pipeline ZEager 88.57/90.83 | 77.56/70.85
MDFirst Standard 94.39/95.19 | 80.32/73.22 MDFirst Standard 89.48/91.89 | 78.30/71.21
MDFirst ZEager 94.71/95.49 | 80.50/73.53 MDFirst ZEager 89.83/92.34 | 78.86/71.91
ArcGreedys | Standard 94.56/95.36 | 80.60/73.43 ArcGreedys | Standard 89.67/92.26 | 78.76/71.80
ArcGreedys | ZEager 94.62/95.45 | 80.73/73.89 ArcGreedys | ZEager 89.81/92.36 | 79.07/72.39

Table 1: Joint morpho-syntactic parsing of the Modern
Hebrew dev set with infused morphological lattices.

Table 3: Joint morpho-syntactic parsing of the Modern
Hebrew dev set with uninfused (realistic) lattices.

Strategy System MD F; Dep Fy Strategy System MD F; Dep F}
Full/POS Un/labeled Full/POS Un/labeled
Standalone | M&T 2016 | [ 92.09/92.92 [ n/a/n/a | [ Standalone | M&T 2016 | | 84.89/87.53 | n/a/n/a
Pipeline Standard 92.09/92.92 | 78.51/73.13 Pipeline Standard 84.89/87.53 | 73.70/67.83
Pipeline ZEager 92.09/92.92 | 78.59/73.22 Pipeline ZEager 84.89/87.53 | 74.43/68.33
MDFirst Standard 92.70/93.66 | 77.32/70.57 MDFirst Standard 85.79/88.81 | 75.49/69.41
MDFirst ZEager 92.90/93.92 | 77.33/70.62 MDFirst ZEager 85.92/89.02 | 75.37/69.28
ArcGreedys | Standard 92.88/93.85 | 77.73/70.69 ArcGreedy; | Standard 85.98/89.08 | 75.73/69.23
ArcGreedys | ZEager 92.60/93.67 | 77.70/70.96 ArcGreedys | ZEager 85.85/88.92 | 75.30/69.13

Table 2: Joint morpho-syntactic parsing of the Modern
Hebrew test set with infused morphological lattices.

joint results are better than the respective pipelines
(although now Arc-Standard slightly improves
upon Arc-Zeager in the ArcGreedy strategy),
while dependency parsing results drop in joint
scenarios (a slightly larger drop than on dev).

Tables 3 and 4 present parsing results for the
more interesting scenario, a realistic parsing sce-
nario where we use uninfused lattices—ambigous
lattices obtained by an existing broad-coverage
morphological analyzer, which are not (and cannot
be) guaranteed to always also include the correct
path. As expected, on both the dev set (Table 3)
and ftest set (Table 4), the results drop relative
to the respective infused scenarios (Tables 1
and 2, respectively), as some elements from the
correct path and tree are no longer reachable
within the search space. At the same time, it is
interesting to observe that for both dev and test,
all MD scores (Full/POS) as well as dependency
scores (un/labeled) are better in joint parsing. The
specific differences between the joint strategies
and transition systems do not matter very much—
the robust empirical trend is that switching from
pipeline to joint improves both MD and de-
pendency parsing performance.

It is interesting to inquire why in the infused
scenario, on both dev and fest, dependency parsing
results in the joint strategies drop relative to the
respective pipelines. At it turns out, in case the
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Table 4: Joint morpho-syntactic parsing of the Modern
Hebrew test set with uninfused (realistic) lattices.

correct analysis of a rare (OOV) token has been in-
jected artificially into the lattice, training on these
lattices may turn out to be misleading. Injecting
a correct but rare MSR may lead to an artificial
“certainty” as to its appropriate syntactic context.
Then, if the parser does not apply robust statistics
on the general behavior of rare/OOV items in
different syntactic contexts (as would be the case
in joint uninfused scenarios), selecting the injected
MD may lead to a wrong syntactic decision.

The main message coming out of our exper-
iments is that joint morphological disambiguation
and syntactic parsing in this transition-based
framework is preferred to pipeline settings, in
line with the hypothesis that syntactic information
aids morphological disambiguation. Furthermore,
it is reassuring to observe that when parsing
uninfused lattices, as in the more realistic scenario,
dependency parsing results improve upon pipeline
scenarios, corroborating the findings of Seeker
and Centinoglu (2015) in graph-based frameworks
and of Cohen and Smith (2007) and Goldberg and
Tsarfaty (2008) in phrase—structure parsing.

End-to-End Parsing Performance: To put
our end-to-end system performance in context,
Tables 5 and 6 present our best results for
dependency parsing in a pipeline architecture,
assuming gold morphology, on the dev ser and



System H UAS/LAS System Un/labeled F}

Previous SOTA | G&E 2010 MST 84.4/— Previous SOTA | S&C 2015 Mate 71.11/65.69
Previous SOTA | G&E 2010 Malt 80.7/— Previous SOTA | S&C 2015 Turbo 70.86/65.66
Previous SOTA | G&E 2010 EasyFirst || 84.2/— Previous SOTA | S&C 2015 Pipeline || 71.30/66.33
This Work Pipeline Standard || 86.75/80.46 Previous SOTA | S&C 2015 Joint _ || 71.52/66.68
This Work Pipeline ZEager 87.22/81.24 This Work Pipeline Standard 73.70/67.83
This Work Pipeline ZEager 74.43/68.33

Table 5: Comparing to previous pipelines: Parsing Th%s Work Jo?m Standard 75.73/69.23
results with gold morphology on the Hebrew dev set. This Work Joint ZEager 75.49/69.41

‘ System UAS/LAS ‘
SPMRL 2013 | MALT OPTIMER 84.9/80.0
SPMRL 2013 | ALPAGE DYALOG || 86.2/80.7
SPMRL 2013 | IMS-SZEGED-CIS 88.9/83.8
SPMRL 2014 | MALT 81.36/76.61
SPMRL 2014 | LORIA 82.73/75.24
SPMRL 2014 | ICT 88.08/81.37
This Work Pipeline Standard 85.94/80.70
This Work Pipeline ZEager 86.05/80.92

Table 6: Comparing to previous pipelines: Parsing
results with gold morphology on the Hebrew test set.

the test set, respectively. We compare these re-
sults with studies that parsed the same data sets.
As Table 5 shows, our parser significantly out-
performs the state-of-the-art parser by Goldberg
and Elhadad (2011), so far considered the de
facto standard for Hebrew parsing.'® As shown in
Table 6, the parser also outperforms the results
reported by most (though not all) SPMRL shared
tasks participants, using the same data and same
split.

Such gold morphology settings are of course
not suited for realistic parsing scenarios. So, in
Table 7 we compare our best end-to-end parsing
results to the most recent dependency parsing re-
sults in realistic scenarios on the same data (by
(Seeker and Centinoglu 2015). Here our best pipe-
line and joint systems outperform the previously
reported pipeline and joint results, thus present-
ing a new state of the art for Hebrew dependency
parsing. Moreover, these results are obtained
within a unified formal framework in a single “all-
included” implementation, providing a further
practical advantage of not having to maintain
and train separate standalone components.'’

16Goldberg and Elhadad (2010) report only UAS, only dev.

70Our implementation, models, and data are publicly
available via https://github.com/OnlpLab/yap.
We also provide a web demo of Hebrew raw-to-dependency
parsing http://onlp.openu.org.il/.
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Table 7: Comparing to previous SOTA: Parsing
results in predicted morphology, uninfused lattices on
test set. S&C 2015 refers to Seeker and Centinoglu
(2015).

4 Qualitative Error Analysis

To shed more light on the particular ways in
which the joint system improves performance
over the pipeline, we conducted a qualitative
error analysis in 100 sentences from the Modern
Hebrew standard dev set, when parsed in the more
realistic uninfused scenario. More concretely, we
sampled 100 sentences from our parsed corpus
and a linguist manually assigned each error to one
of 10 linguistic categories. We then clustered the
categories into four different types.

e TYPE 1 errors include true semantic ambi-
guity, where additional semantic and world
knowledge is required for disambiguation.

TYPE 2 errors include categories that tran-
scend different levels of linguistic structure,
for example, when morphological segmenta-
tion errors affect syntactic disambiguation.

TYPE 3 errors include parsing errors that stem
from idiosyncrasies of the data and pecu-
liarities of the SPMRL annotation scheme,

TYPE 4 (other) errors include parse errors
that pertain to linguistic structures that char-
acterize Semitic phenomena.

Table 8 shows, for each error category, the
number (and percentage) of occurrences of that
error in the pipeline versus joint settings. The
most outcome is that the type that shows the
largest decrease in joint scenarios relative to
pipeline scenarios belongs to TYPE 2, reflecting
phenomena directly related to the morpho-
syntactic interface. Moreover, we also see a
decrease in the errors concerned with the lexico-
syntactic interface (e.g., solving PP attachment


https://github.com/OnlpLab/yap
http://onlp.openu.org.il/

System Zeager Zeager Zeager
Strategy Pipeline Pipeline | ArcGreedy
Morphology Gold Predicted Joint
Total Number of Errors ‘ 390 H 641 ‘ 546 ‘
TYPE 1.

Could be Considered Correct 64 (16.4) 62 (9.6) 17 (3.1)
Difficult Clause Attachment 62 (15.8) || 103 (18.8) | 109 (19.9)
Difficult PP Attachment 27 (6.9) 41 (6.4) 30 (5.4)
TYPE 2:

Wrong arc due to Seg/Tag

Error in the focus word 0 106 (16.5) | 56 (10.2)
Wrong arc due to Seg/Tag

Error in other words 0 58 (9.0) 37 (6.7)
Wrong arc label due to tag error 0 23 (3.6) 31 (5.6)
TYPE 3:

Gold Standard is Wrong 51(13.0) 48 (7.5) 44 (8.0)
Trainset is Inconsistent 68 (17.4) 60 (9.3) 69 (12.6)
Prediction is Underspecified 65 (16.6) || 76 (11.8) 83 (15.2)
TYPE 4.

Other 53 (13.6) 64 (9.9) 70 (12.8)

Table 8: Qualitative error analysis: The number (percentage) of error patterns of Arc-Zeager in pipeline/joint
scenarios, on a sample of 100 sentences from the dev set, in uninfused lattices settings.

ambiguity), which turn out to also benefit from
the joint settings. With the other types of errors,
there is no clear advantage for joint parsing, and
we would not expect one. TYPE 3 errors have to do
with train-set inconsistencies, under-specification,
or errors in the gold trees. TYPE 4 errors stem
from linguistic phenomena which appear harder to
disambiguate, and they are equally difficult across
scenarios.

5 Related and Future Work

Monolingual MA&D for Modern Hebrew has
been previously addressed in standalone settings
using Hidden Markov Models (Bar-haim et al.,
2008; Adler, 2007). While these results are ade-
quate for some downstream applications, using
Adler’'s MA&D for dependency parsing, for
instance, significantly harms parsing performance
(Goldberg and Elhadad, 2010). More recently,
More and Tsarfaty (2016) presented a standalone
transition-based MA&D which jointly solves
morphological segmentation, tagging, and fea-
ture assignment, presenting new state-of-the-art
Hebrew MA&D, providing the starting point for
our study.

In terms of end-to-end dependency parsing for
Hebrew, Goldberg and Elhadad (2010) were the
first to evaluate the impact of predicted morphol-
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ogy compared to gold morphology across dif-
ferent (transition-based, graph-based, easy-first)
frameworks. They demonstrated a significant loss
in accuracy for all models in predicted mor-
phology settings, and concluded with a sug-
gestion to attempt joint processing. Recently,
Straka et al. (2016) presented UDPipe, a tool-
kit with standalone components for morphological
analysis, segmentation, tagging, features assign-
ment, and dependency parsing—again using a
pipeline architecture, with no way of interleaving
the different decisions, as we strive to do here.
This work aims to cover all stages of UDPipe,
but within a joint architecture, allowing the use of
information from any layer when disambiguating
another.

Joint morphological and syntactic processing
has been addressed in the context of phrase-
structure parsing for Semitic languages, showing
empirical advantages over pipeline architectures
(Goldberg and Tsarfaty, 2008; Cohen and Smith,
2007; Green and Manning, 2010). In the context
of dependency parsing, Bohnet and Nivre (2012)
and Bohnet et al. (2013) integrated tagging
and dependency parsing, improving state-of-the-
art accuracy for a set of typologically dif-
ferent languages. Andor et al. (2016) use the
joint transition system proposed by Bohnet and
Nivre (2012), and improve it using a globally




TYPE

Error

Explanation

Could be considered correct

Clause attachment

PP attachment

Cases of true semantic ambiguity. Both analyses could be considered correct.

For example, in the phrase mrkz kwx erbi the adjective erbi (“arab’) modifies

mrkz (“center”) in gold. The parser attaches it to kwx (“force”). Both could be correct.
In complex sentences with multiple clauses or coordinated structures, the parser

often identifies the conjunctions and the predicates correctly, but makes mistakes in

connecting clauses. Semantic or world knowledge is required for disambiguation.
Semantic or world knowledge is also often required to determine PP attachment.

For example, in the clause kdi Imnwe hedptm el ewbdim ifralim the parser attaches the

PP el ewbdim ifralim (“over Israeli workers™) to the verb Imnew (*“to prevent”)

rather than to the required noun hedptm (“‘their preference”).

Seg/Tag err in focus word

Seg/Tag err in other word

Label err due to tagging err

Incorrect segmentation of a token may lead to missing or incorrect dependency heads.
For example, the parser analyses the token bgrb as a single word (a preposition,
“near””) while in the gold standard it is segmented into three words b + h + grb
(preposition + def + noun, “in the battle’’). This leads to missing dependency heads.

Incorrect segmentation of a token may also lead to an incorrect dependent.

For example, in the phrase bgrb mgnnh the parser analyses the PP b + grb
(preposition + noun, “in battle”) as a single word bkrb (preposition, “near”).
As a result, the word mgnnh (defence) is labeled object of a preposition (pobj)
rather than a genitive object of a construct-state noun (gobj).

Incorrect tag prediction may lead to an apropriate yet incorrect arc label.

For example, in the phrase amcei xi Ihpgnwt (“living means for demonstrations’)
the parser tags the adjective xi (“living”) as a noun instead of an adjective, which is
why it attaches xi as gobj (genitive object) to “means’ rather than as amod.

Gold is wrong

Train is inconsistent

Label underspecified

The analysis in gold is wrong, while the analysis provided by the parser is correct.

For example, in the phrase w+b+silwp ewbdwt (“‘and in distortion of facts”),

the conjunction marker w is labeled comp in gold while the parser correctly picks cc.
(a) Multiple labels are used for the same type of dependencies.

For example, prepmod and comp are both used in the train set for

prepositional complements and prepositional modifiers without a clear distinction.
(b) Identical structures are analyzed in different ways. For example, in the train set

there are different structures used for the same type of partitive construction.

In both (a) and (b), the predicted analyses might likewise be inconsistent and arbitrary.
The label dep is used instead of different types of dependencies in gold. In several cases

the test set uses more specific labels where the parser predicts dep, and vice versa.

Other

There is a smaller amount of errors that involve linguistic structures that reflect

particular Semitic phenomena. For example:

(a) Indefinite objects in Hebrew are not case marked, so are sometimes mislabeled as
subject due to flexible word order patterns and object pre-posing.

(b) Construct-state nouns may be analysed as names and vice versa. Since Hebrew
lacks capitalization, Hebrew names very often string-match common nouns.

(c) Adjective attachment errors inside construct-state nouns. For example, in the phrase
hjlt gnswt kbdim the parser attaches the adjective kbdim (““heavy”) to the construct-state
noun Ajlt (“imposition-of”’) instead of attaching it to the genitive object gnswt (“fines”),

Table 9: Qualitative error analysis: Explanation and illustrations.

normalized neural network. These systems address
joint morpho-syntactic analysis for disambiguated
words, but without addressing the issue of
segmenting and disambiguating raw input tokens.

Seeker and Centinoglu (2015) explore the idea
of joint morphological and syntactic parsing,
including morphological segmentation, in a graph-
based framework. Their system integrates two
standalone components that reach agreement via
a dual-decomposition setup. However, they report
suboptimal performance on the standard Hebrew
benchmark. For various Chinese parsing tasks,
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joint systems for word segmentation and syntactic
parsing have been shown to outperform pipeline
settings (Li et al.,, 2011; Zhang et al., 2014),
but these systems assume transitions over equal-
length character-based sequences, and thus they
are not applicable to the setup of variable-length
lattice paths, as demonstrated in Figure 1.

With the surge of interest in deep learning for
NLP (Goldberg, 2016), research in dependency
parsing seeks to replace engineered feature
models with neural networks that induce a model
automatically (Chen and Manning, 2014; Zhou



et al., 2015; Andor et al., 2016). Furthermore,
the concept of word embedding introduced by
Mikolov et al. (2013) allows for words to have
vector representations, such that syntactic and
semantic similarities are embodied in the vector
space. However, these kinds of architectures are
not immediately applicable to parsing Hebrew
and other MRLs. Pretraining word embeddings
is non-trivial for ambiguous input tokens,
unless resorting to pipeline ‘“segmentation-first”
scenarios. Similarly, parsing architectures based
in RNNs require morphologically disambiguated
forms as input, which prevents syntax from
improving morphological disambiguation, as we
argue for here.

In the future, we intend to augment the
architecture we present here with neural network
models for both the morphological and syntactic
models, in a way that would allow them to
effectively interact and affect one another, in the
hope to lead towards further improvements in both
tasks.

6 Conclusion

We present a novel joint transition-based frame-
work for morpho-syntactic parsing, designed to
solve end-to-end dependency parsing in real-
istic scenarios. We consider the properties of
MRLs and directly address the disambiguation
of raw input tokens exploiting larger syntac-
tic contexts. We apply this system to Modern
Hebrew, and our empirical results support the
long-standing conjecture that MA&D can greatly
benefit from syntactic parsing. We present a new
set of state-of-the-art Hebrew parsing results, in
both pipeline and joint scenarios, which then serve
as a strong baseline for exploring future neural
joint morpho-syntactic architectures that would
potentially improve performance on both tasks.
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