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Abstract

Can advances in NLP help advance cog-
nitive modeling? We examine the role of
artificial neural networks, the current state
of the art in many common NLP tasks, by
returning to a classic case study. In 1986,
Rumelhart and McClelland famously in-
troduced a neural architecture that learned
to transduce English verb stems to their
past tense forms. Shortly thereafter, in 1988,
Pinker and Prince presented a comprehen-
sive rebuttal of many of Rumelhart and
McClelland’s claims. Much of the force of
their attack centered on the empirical in-
adequacy of the Rumelhart and McClelland
model. Today, however, that model is
severely outmoded. We show that the
Encoder-Decoder network architectures used
in modern NLP systems obviate most of
Pinker and Prince’s criticisms without requir-
ing any simplification of the past tense map-
ping problem. We suggest that the empirical
performance of modern networks warrants
a reexamination of their utility in linguistic
and cognitive modeling.

1 Introduction

In their famous 1986 opus, Rumelhart and
McClelland (R&M) describe a neural network capa-
ble of transducing English verb stems to their past
tense. The strong cognitive claims in the article
fomented a veritable brouhaha in the linguistics
community and eventually led to the highly influ-
ential rebuttal of Pinker and Prince (1988) (P&P).
P&P highlighted the extremely poor empirical per-
formance of the R&M model, and pointed out a
number of theoretical issues with the model, which
they suggested would apply to any neural network,
contemporarily branded connectionist approaches.
Their critique was so successful that many linguists
and cognitive scientists to this day do not consider
neural networks a viable approach to modeling lin-
guistic data and human cognition.
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In the field of natural language processing (NLP),
however, neural networks have experienced a
renaissance. With novel architectures, large new
data sets available for training, and access to exten-
sive computational resources, neural networks now
constitute the state of the art in many NLP tasks.
However, NLP as a discipline has a distinct prac-
tical bent and more often concerns itself with the
large-scale engineering applications of language
technologies. As such, the field’s findings are not
always considered relevant to the scientific study
of language (i.e., the field of linguistics). Recent
work, however, has indicated that this perception
is changing, with researchers, for example, prob-
ing the ability of neural networks to learn syntactic
dependencies like subject—verb agreement (Linzen
et al., 2016).

Moreover, in the domains of morphology and
phonology, both NLP practitioners and linguists
have considered virtually identical problems, seem-
ingly unbeknownst to each other. For example,
both computational and theoretical morphologists
are concerned with how different inflected forms
in the lexicon are related and how one can learn
to generate such inflections from data. Indeed, the
original R&M network focuses on such a gener-
ation task, namely, generating English past tense
forms from their stems. R&M’s network, however,
was severely limited and did not generalize cor-
rectly to held-out data. In contrast, state-of-the art
morphological generation networks used in NLP,
built from the modern evolution of recurrent neural
networks (RNNs) explored by Elman (1990) and
others, solve the same problem almost perfectly
(Cotterell et al., 2016). This level of performance
on a cognitively relevant problem suggests that it
is time to consider further incorporating network
modeling into the study of linguistics and cognitive
science.

Crucially, we wish to sidestep one of the issues
that framed the original debate between P&P and
R&M—whether or not neural models learn and
use “rules.” From our perspective, any system that
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picks up systematic, predictable patterns in data
may be referred to as rule-governed. We focus
instead on an empirical assessment of the ability
of a modern state-of-the-art neural architecture to
learn linguistic patterns, asking the following ques-
tions: (i) Does the learner induce the full set of
correct generalizations about the data? Given a
range of novel inputs, to what extent does it apply
the correct transformations to them? (ii) Does the
behavior of the learner mimic humans? Are the
errors human-like?

In this work, we run new experiments examin-
ing the ability of the Encoder-Decoder architecture
developed for machine translation (Bahdanau et al.,
2014; Sutskever et al., 2014) to learn the English
past tense. The results suggest that modern nets
absolutely meet the first criterion, and often meet
the second. Furthermore, they do this given lim-
ited prior knowledge of linguistic structure: The
networks we consider do not have phonological
features built into them and must instead learn their
own representations for input phonemes. The de-
sign and performance of these networks invalidate
many of the criticisms in Pinker and Prince (1988).
We contend that, given the gains displayed in this
case study, which is characteristic of problems
in the morpho-phonological domain, researchers
across linguistics and cognitive science should con-
sider evaluating modern neural architectures as part
of their modeling toolbox.

This paper is structured as follows. Section 2
describes the problem under consideration, the
English past tense. Section 3 lays out the origi-
nal Rumelhart and McClelland model from 1986
in modern machine-learning parlance, and com-
pares it to a state-of-the-art Encoder-Decoder ar-
chitecture. A historical perspective on alternative
approaches to modeling, both neural and non-
neural, is provided in Section 4. The empirical per-
formance of the Encoder-Decoder architecture is
evaluated in Section 5. Section 6 provides a sum-
mary of which of Pinker and Prince’s original crit-
icisms have effectively been resolved, and which
ones still require further consideration. Concluding
remarks follow.

2 The English Past Tense

Many languages mark words with syntactico-
semantic distinctions. For instance, English marks
the distinction between present and past tense verbs,
for example, walk and walked. English verbal mor-
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orthographic 1PA
stem  past part. stem  past part. infl. type
go went gone gou went  gon suppletive
sing  sang sung s saen) su1) ablaut
swim swam  swum SwIm swam swum ablaut
sack  sacked sacked sak sakt sakt [-t]
sag sagged sagged seg segd segd  [-d]
pat patted  patted paet petid petd  [-1d]
pad padded padded ped paedid paedid [-1d]

Table 1: Examples of inflected English verbs.

phology is relatively impoverished, distinguishing
maximally five forms for the copula fo be and only
three forms for most verbs. In this work, we con-
sider learning to conjugate the English verb forms,
rendered as phonological strings. As it is the focus
of the original R&M study, we focus primarily on
the English past tense formation.

Both regular and irregular patterning exist in
English. Orthographically, the canonical regular
suffix is -ed, which, phonologically, may be ren-
dered as one of three phonological strings: [-1d],
[-d], or [-t]. The choice among the three is deter-
ministic, depending only on the phonological prop-
erties of the previous segment. English selects [-1d]
where the previous phoneme is a [t] or [d], for ex-
ample, [pat]—[peetid] (pat—patted) and [ped]—
[paedid] (pad—padded). In other cases, English
enforces voicing agreement: It opts for [-d] when
the proceeding phoneme is a voiced consonant or
a vowel (e.g., [seg]—[segd] (sag—sagged) and
[Jou]—[[oud] (showr—sshowed)), and for [-t] when
the proceeding phoneme is an unvoiced consonant
(e.g., [sek]—[sa&kt] (sack—sacked)). English ir-
regulars are either suppletive (e.g., [gou]—[went]
(go—went)), or exist in sub-regular islands de-
fined by processes like ablaut (e.g., sing—sang)
that may contain several verbs (Nelson, 2010); see
Table 1.

Single vs. Dual Route. A frequently discussed
cognitive aspect of past tense processing concerns
whether or not irregular forms have their own pro-
cessing pipeline in the brain. Pinker and Prince
(1988) proposed separate modules for regular and
irregular verbs; regular verbs go through a general,
rule-governed transduction mechanism, and excep-
tional irregulars are produced via simple memory
look-up.! While some studies (e.g., Marslen-
Wilson and Tyler, 1997; Ullman et al., 1997)

"Note that irregular look-up can simply be recast as the
application of a context-specific rule.



provide corroborating evidence from speakers with
selective impairments to regular or irregular verb
production, others have called these results into
doubt (Stockall and Marantz, 2006). From the per-
spective of this paper, a complete model of the
English past tense should cover both regular and
irregular transformations. The neural network ap-
proaches we advocate for achieve this goal, but
do not clearly fall into either the single or dual-
route category—internal computations performed
by each network remain opaque, so we cannot at
present make a claim whether two separable com-
putation paths are present.

2.1 Acquisition of the Past Tense

The English past tense is of considerable theoretical
interest because of the now well-studied acquisi-
tion patterns of children. As first shown by Berko
(1958) in the so-called wug-test, knowledge of
English morphology cannot be attributed solely to
memorization. Indeed, both adults and children are
fully capable of generalizing the patterns to novel
words (e.g., [wag]—[wagd] (wug—wugged)). Dur-
ing acquisition, only a few types of errors are com-
mon; children rarely blend regular and irregular
forms—for example, the past tense of come is
either produced as comed or came, but rarely camed
(Pinker, 1999).

Acquisition Patterns for Irregular Verbs. It is
widely claimed that children learning the past tense
forms of irregular verbs exhibit a “U-shaped” learn-
ing curve. At first, they correctly conjugate irregu-
lar forms (e.g., come—came), then they regress
during a period of overregularization produc-
ing the past tense as comed as they acquire the
general past tense formation. Finally, they learn
to produce both the regular and irregular forms.
Plunkett and Marchman, however, observed a more
nuanced form of this behavior. Rather than a macro
U-shaped learning process that applies globally and
uniformly to all irregulars, they noted that many
irregulars oscillate between correct and overreg-
ularized productions (Marchman, 1988). These
oscillations, which Plunkett and Marchman refer to
as a micro U-shape, further apply at different rates
for different verbs (Plunkett and Marchman, 1991).
Interestingly, although the exact pattern of irreg-
ular acquisition may be disputed, children rarely
overirregularize, that is, misconjugate a regular
verb as if it were irregular, such as ping—pang.
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3 1986 vs. Today

In this section, we compare the original R&M archi-
tecture from 1986 to today’s state-of-the-art neural
architecture for morphological transduction, the
Encoder-Decoder model.

3.1 Rumelhart and McClelland (1986)

For many linguists, the face of neural networks
to this day remains the work of R&M. Here, we
describe in detail their original architecture, us-
ing modern machine learning parlance whenever
possible. Fundamentally, R&M were interested
in designing a sequence-to-sequence network for
variable-length input using a small feed-forward
network. From an NLP perspective, this work con-
stitutes one of the first attempts to design a net-
work for a task reminiscent of popular NLP tasks
today that require variable-length input (e.g., part-
of-speech tagging, parsing, and generation).

Wickelphones and Wickelfeatures. Unfortu-
nately, a fixed-sized feed-forward network is not
immediately compatible with the goal of trans-
ducing sequences of varying lengths. Rumelhart
and McClelland decided to get around this lim-
itation by representing each string as the set of
its constituent phoneme trigrams. Each trigram
is termed a Wickelphone (Wickelgren, 1969).
As a concrete example, the IPA-string [#keet#],
marked with a special beginning- and end-of-
string character, contains three distinct Wickel-
phones: [#kee], [ket], [t#]. In fact, Rumelhart
and McClelland went one step further and de-
composed Wickelphones into component Wickel-
features, or trigrams of phonological features,
one for each Wickelphone phoneme. For exam-
ple, the Wickelphone [ipt] is represented by the
Wickelfeatures (+vowel,+unvoiced,+interrupted)
and (+high,+stop,+stop). Because there are far
fewer Wickelfeatures than Wickelphones, words
could be represented with fewer units (of key im-
portance for 1986 hardware) and more shared Wickel-
features potentially meant better generalization.
We can describe R&M’s representations us-
ing the modern linear-algebraic notation standard
among researchers in neural networks. First, we
assume that the language under consideration con-
tains a fixed set of phonemes %, plus an edge sym-
bol # marking the beginning and end of words.
Then, we construct the set of all Wickelphones
® and the set of all Wickelfeatures F by enu-
meration. The first layer of the R&M neural



network consists of two deterministic functions:
(i) ¢ : ¥* — BI®l and (i) f : B/®l — BV,
where we define B = {—1, 1}. The first function ¢
maps a phoneme string to the set of Wickelphones
that fire, as it were, on that string; for example,
¢ ([#kaet#]) = {[#ke], [keet], [t#]}. The output
subset of ® may be represented by a binary vector
of length |®|, where a 1 means that the Wickel-
phone appears in the string and a —1 that it does
not.> The second function f maps a set of Wickel-
phones to its corresponding set of Wickelfeatures.

Pattern Associator Network. Here we define
the complete network of R&M. We denote strings
of phonemes as x € X*, where x; is the jth
phoneme in a string. Given source and target
phoneme strings x(, y() ¢ ¥*, R&M optimize
the following objective, a sum over the individual
losses for each of the ¢ = 1, ..., N training items:

3 [ .m0 (x4 )
=1
)

where max{-} is taken point-wise, ® is point-wise
multiplication, W € RM1**1 is a projection ma-
trix, b € R is a bias term, and 7 = ¢ o f is the
composition of the Wickelphone and Wickelfeature
encoding functions. Using modern terminology,
the architecture is a linear model for a multi-label
classification problem (Tsoumakas and Katakis,
2006): The goal is to predict the set of Wickel-
features in the target form y(© given the input
form x(*) using a point-wise perceptron loss (hinge
loss without a margin); that is, a binary percep-
tron predicts each feature independently, but there
is one set of parameters {WW, b}. The total loss
incurred is the sum of the per-feature loss, hence
the use of the 1,1 norm. The model is trained with
stochastic sub-gradient descent (the perceptron up-
date rule) (Rosenblatt, 1958; Bertsekas, 2015) with
a fixed learning rate.> Later work augmented the
architecture with multiple layers and nonlinearities
(Marcus, 2001, Table 3.3).

*We have chosen —1 instead of the more traditional 0 so
that the objective function that Rumelhart and McClelland
optimize may be more concisely written.

3Follow-up work, e.g., Plunkett and Marchman (1991),
has speculated that the original experiments in R&M may not
have converged. Indeed, convergence may not be guaranteed
depending on the fixed learning rate chosen. As Equation (1)
is jointly convex in its parameters {W, b}, there exist con-
vex optimization algorithms that will guarantee convergence,
albeit often with a decaying learning rate.
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Decoding. Decoding the R&M network necessi-
tates solving a tricky optimization problem. Given
an input phoneme string x(¥), we then must find the
corresponding y’ € ¥* that minimizes

Hﬂ'(y’) — threshold {Wﬂ(x(i)) + b} ‘ ’0 )

where threshold is a step function that maps all
non-positive reals to —1 and all positive reals to
1. In other words, we seek the phoneme string y’
that shares the most features with the maximum
a posteriori decoded binary vector. This problem
is intractable, and so R&M provide an approxima-
tion. For each test stem, they hand-selected a set
of likely past-tense candidate forms, for example,
good candidates for the past tense of break would
be {break, broke, brake, braked}, and choose the
form with Wickelfeatures closest to the network’s
output. This manual approximate decoding proce-
dure is not intended to be cognitively plausible.

Architectural Limitations. R&M used Wickel-
phones and Wickelfeatures in order to help with
generalization and limit their network to a tractable
size. However, this came at a significant cost to the
network’s ability to represent unique strings—the
encoding is lossy: Two words may have the same
set of Wickelphones or features. The easiest way
to see this shortcoming is to consider morpholog-
ical reduplication, which is common in many of
the world’s languages. P&P provide an example
from the Australian language of Oykangand, which
distinguishes between algal ‘straight’ and algalgal
‘ramrod straight’; both of these strings have the
identical Wickelphone set {[#all, [alg], [Iga], [gall,
[al#]}. Moreover, P&P point out that phonologi-
cally related words such as [slit] and [s1lt] have dis-
joint sets of Wickelphones: {[#sl], [sli], [Iit], [1t#]}
and {[#s1], [s1l], [1lt], [1t#]}, respectively. These
two words differ only by an instance of metathesis,
or swapping the order of nearby sounds. The use
of Wickelphone representations imposes the strong
claim that they have nothing in common phonolog-
ically, despite sharing all phonemes. P&P suggest
this is unlikely to be the case. As one point of evi-
dence, the metathesis of the kind that differentiates
[slit] and [s1lt] is a common diachronic change. In
English, for example, [horse] evolved from [hross],
and [bird] from [brid] (Jesperson, 1942).

3.2 Encoder-Decoder Architectures

The NLP community has recently developed an
analogue to the past-tense generation task originally



considered by R&M: morphological paradigm com-
pletion (Durrett and DeNero, 2013; Ahlberg et al.,
2015; Cotterell et al., 2015; Nicolai et al., 2015;
Faruqui et al., 2016). The goal is to train a model
capable of mapping the lemma (stem in the case
of English) to each form in the paradigm. In the
case of English, the goal would be to map a lemma,
for example, walk, to its past-tense word walked as
well as its gerund and third person present singular,
walking and walks, respectively. This task gener-
alizes the R&M setting in that it requires learning
more mappings than simply lemma to past tense.
By definition, any system that solves the more
general morphological paradigm completion task
must also be able to solve the original R&M task.
As we wish to highlight the strongest currently
available alternative to R&M, we focus on the state
of the art in morphological paradigm comple-
tion: the Encoder-Decoder network architecture
(ED) (Cotterell et al., 2016). This architecture
consists of two RNNs coupled together by an
attention mechanism. The encoder RNN reads
each symbol in the input string one at a time,
first assigning it a unique embedding, then pro-
cessing that embedding to produce a represen-
tation of the phoneme given the rest of the
phonemes in the string. The decoder RNN pro-
duces a sequence of output phonemes one at a time,
using the attention mechanism to peek back at the
encoder states as needed. Decoding ends when a
halt symbol is output. Formally, the ED architec-
ture encodes the probability distribution over forms

N
p(y %) =[]pwilv,. - vicre) 3
=1

N
=[[9wi-1.si,0) 4)
i=1

where g is a non-linear function (in our case it is
a multi-layer perceptron), s; is the hidden state
of the decoder RNN, y = (y1,...,yn) is the
output sequence (a sequence of N = |y| char-
acters), and finally c¢; is an attention-weighted
sum of the the encoder RNN hidden states h;, us-
ing the attention weights ay(s;—1) that are com-
puted based on the previous decoder hidden state:
¢ = Zsz‘l ag(si—1)h-

In contrast to the R&M network, the ED network
optimizes the log-likelihood of the training data,
that is, - log p(y® | x®) fori=1, ..., M train-
ing items. We refer the reader to Bahdanau et al.
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(2014) for the complete architectural specification
of the specific ED model we apply in this paper.

Theoretical Improvements. Although there are
a number of possible variants of the ED archi-
tecture (Luong et al., 2015),* they all share sev-
eral critical features that make up for many of
the theoretical shortcomings of the feed-forward
R&M model. The encoder reads in each phoneme
sequentially, preserving identity and order and al-
lowing any string of arbitrary length to receive a
unique representation. Despite this encoding, a
flexible notion of string similarity is also main-
tained, as the ED model learns a fixed embedding
for each phoneme that forms part of the representa-
tion of all strings that share the phoneme. When the
network encodes [s1lt] and [slit], it uses the same
phoneme embeddings—only the order changes. Fi-
nally, the decoder permits sampling and scoring
arbitrary length fully formed strings in polynomial
time (forward sampling), so there is no need to
determine which string a non-unique set of Wickel-
features represents. However, we note that decod-
ing the 1-best string from a sequence-to-sequence
model is likely NP-hard (1-best string decoding is
even hard for weighted finite-state transducers
[Goodman, 1998]).

Multi-Task Capability. A single ED model is
easily adapted to multi-task learning (Caruana,
1997; Collobert et al., 2011), where each task is
a single transduction (e.g., stem — past). Note
that R&M would need a separate network for each
transduction (e.g., stem — gerund and stem — past
participle). In fact, the current state of the art in
NLP is to learn all morphological transductions
in a paradigm jointly. The key insight is to con-
struct a single network p(y | x,t) to predict all
inflections, marking the transformation in the in-
put string—that is, we feed the network the string
“w a 1 k <gerund>" as input, augmenting the al-
phabet X to include morphological descriptors. We
refer to reader to Kann and Schiitze (2016) for the
encoding details. Thus, one network predicts all
forms; for example, p(y | x=walk, t=past) yields
a distribution over past tense forms for walk and
p(y | x=walk, t=gerund) yields a distribution over
gerunds.

“For the experiments in this paper, we use the variant in
Bahdanau et al. (2014), which has explicitly been shown to be
state of the art in morphological transduction (Cotterell et al.,
2016).



Type of Model

Reference

Input

Output

Feedforward Network
Feedforward Network
Feedforward Network
Attractor Network
Feedforward Network
Recurrent Neural Network
Feedforward Network
Feedforward Neural Network
Recurrent Neural Network
Feedforward Neural Network

Convolutional Neural Network

Feedforward Neural Network
Feedforward Neural Network
Feedforward Neural Network

Rumelhart and McClelland (1986)
MacWhinney and Leinbach (1991)
Plunkett and Marchman (1991)
Hoeffner (1992)

Plunkett & Marchman (1993)
Cottrell & Plunkett (1994)

Hare, Elman, & Daugherty (1995)
Hare & Elman (1995)
Westermann & Goebel (1995)
Nakisa & Hahn (1996)

Bullinaria (1997)

Plunkett & Nakisa (1997)
Plunkett & Juola (1999)

Hahn & Nakisa (2000)

Wickelphones

Fixed Size Phonological Template
Fixed Size Phonological Template
Semantics

Fixed Size Phonological Template
Semantics

Fixed Size Phonological Template
Semantics

Phonological String

Fixed Size Phonological Template
Phonological String

Fixed Size Phonological Template
Fixed Size Phonological Template
Fixed Size Phonological Template

‘Wickelphones

Fixed Size Phonological Template
Fixed Size Phonological Template
Fixed Size Phonological Template
Fixed Size Phonological Template
Phonological String

Inflection Class

Fixed Size Phonological Template
Phonological String

Inflection Class

Phonological String

Inflection Class

Fixed Size Phonological Template
Inflection Class

Table 2: A curated list of related work, categorized by aspects of the technique. Based on a similar list found in

Marcus (2001, page 82).
4 Related Work

In this section, we first describe direct follow-ups to
the original 1986 R&M model, using various neu-
ral architectures. Then we review competing non-
neural systems of context-sensitive rewrite rules
in the style of the Sound Pattern of English (SPE)
(Halle and Chomsky, 1968), as favored by Pinker
and Prince.

4.1 Follow-ups to Rumelhart and McClelland
(1986) Over the Years

Following R&M, a cottage industry devoted to
cognitively plausible connectionist models of in-
flection learning sprouted in the linguistics and
cognitive science literature. We provide a summary
listing of the various proposals, along with broad-
brush comparisons, in Table 2.

Although many of the approaches apply more
modern feed-forward architectures than R&M, intro-
ducing multiple layers connected by nonlinear trans-
formations, most continue to use feed-forward
architectures with limited ability to deal with variable-
length inputs and outputs and remain unable to pro-
duce and assign probability to arbitrary output strings.

MacWhinney and Leinbach (1991), Plunkett and
Marchman (1991, 1993), and Plunkett and Juola
(1999) map phonological strings to phonological
strings using feed-forward networks, but rather
than turning to Wickelphones to imprecisely rep-
resent strings of any length, they use fixed-size
input and output templates, with units represent-
ing each possible symbol at each input and out-
put position. For example, Plunkett and Marchman
(1991, 1993) simplify the past-tense mapping prob-
lem by only considering a language of artificially
generated words of exactly three syllables and
a limited set of constructed past-tense formation
patterns. MacWhinney and Leinbach (1991) and
Plunkett and Juola (1999) additionally modify the
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input template to include extra units marking par-
ticular transformations (e.g., past or gerund), en-
abling their network to learn multiple mappings.

Some proposals simplify the problem even fur-
ther, mapping fixed-size inputs into a small finite
set of categories, solving a classification prob-
lem rather than a transduction problem. (Nakisa
and Hahn, 1996; Hahn and Nakisa, 2000) classify
German noun stems into their appropriate plural
inflection classes. Plunkett and Nakisa (1997) do
the same for Arabic stems.

Hoeffner (1992), Hare and Elman (1995), and
Cottrell and Plunkett (1994) also solve an alterna-
tive problem—mapping semantic representations
(usually one-hot vectors with one unit per possible
word type, and one unit per possible inflection) to
phonological outputs. As these networks use un-
structured semantic inputs to represent words, they
must act as memories—the phonological content
of any word must be memorized. This precludes
generalization to word types that were not seen
during training.

Of the proposals that map semantics to phonol-
ogy, the architecture in Hoefftner (1992) is unique
in that it uses an attractor network rather than a
feed-forward network, with the main difference be-
ing training using Hebbian learning rather than the
standard backpropagation algorithm. Cottrell and
Plunkett (1994) present an early use of a simple
recurrent network (Elman, 1990) to decode out-
put strings, making their model capable of variable
length output.

Bullinaria (1997) includes one of the few mod-
els proposed that can deal with variable length inputs.
They use a derivative of the NETtalk pronuncia-
tion model (Sejnowski and Rosenberg, 1987) that
would today be considered a convolutional net-
work. Each input phoneme in a stem is read in-
dependently along with its left and right context



phonemes within a limited context window (i.e., a
convolutional kernel). Each kernel is then mapped
to zero or more output phonemes within a fixed
template. Because each output fragment is inde-
pendently generated, the architecture is limited to
learning only local constraints on output string
structure. Similarly, the use of a fixed context win-
dow also means that inflectional patterns that de-
pend on long-distance dependencies between input
phonemes cannot be captured.

Finally, the model of Westermann and Goebel
(1995) is arguably the most similar to a modern
ED architecture, relying on simple recurrent net-
works to both encode input strings and decode out-
put strings. However, the model was intended to
explicitly instantiate a dual route mechanism and
contains an additional explicit memory component
to memorize irregulars. Despite the addition of this
memory, the model was unable to fully learn the
mapping from German verb stems to their partici-
ple forms, failing to capture the correct form for
strong training verbs, including the copular sein —
gewesen. As the authors note, this may be due to
the difficulty of training simple recurrent networks,
which tend to converge to poor local minima.
Modern RNN varieties, such as long short-term
memory (LSTM) networks in the ED model, were
specifically designed to overcome these training
limitations (Hochreiter and Schmidhuber, 1997).

4.2 Non-neural Learners

P&P describe several basic ideas that underlie a
traditional, symbolic rule learner. Such a learner
produces SPE-style rewrite rules that may be ap-
plied to deterministically transform the input string
into the target. Rule candidates are found by com-
paring the stem and the inflected form, treating the
portion that changes as the rule that governs the
transformation. This is typically a set of non—copy
edit operations. If multiple stem—past pairs share
similar changes, these may be collapsed into a sin-
gle rule by generalizing over the shared phonologi-
cal features involved in the changes. For example,
if multiple stems are converted to the past tense
by the addition of the suffix [-d], the learner may
create a collapsed rule that adds the suffix to all
stems that end in a [+voice] sound. Different rules
may be assigned weights (e.g., probabilities) de-
rived from how many stem—past pairs exemplify
the rules. These weights decide which rules to
apply to produce the past tense.
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Several systems that follow this rule-based tem-
plate have been developed in NLP. Although the
SPE itself does not impose detailed restrictions on
rule structure, these systems generate rules that can
be compiled into finite-state transducers (Kaplan
and Kay, 1994; Ahlberg et al., 2015). These sys-
tems generalize well, but even the most successful
variants have been shown to perform significantly
worse than state-of-the-art neural networks at mor-
phological inflection, often with a >10 percent-
age point differential in accuracy on held-out data
(Cotterell et al., 2016).

In the linguistics literature, the most straight-
forward, direct, machine-implemented instantiation
of the P&P proposal is, arguably, the Minimal Gen-
eralization Learner (MGL) of Albright and Hayes
(2003) (c.f., Allen and Becker, 2015; Taatgen and
Anderson, 2002). This model takes a mapping
of phonemes to phonological features and makes
feature-level generalizations like the post-voice
[-d] rule described earlier. For a detailed technical
description, see Albright and Hayes (2002). We
treat the MGL as a baseline in §5.

Unlike Taatgen and Anderson (2002), who
explicitly account for dual route processing by
including both memory retrieval and rule appli-
cation submodules, Albright and Hayes (2003)
and Allen and Becker (2015) rely on discovering
and correctly weighting (using weights learned by
log-linear regression) highly stem-specific rules to
account for irregular transformations.

Within the context of rule-based systems, several
proposals focus on the question of rule generaliza-
tion, rather than rule synthesis. That is, given a set
of predefined rules, the systems implement metrics
to decide whether rules should generalize to novel
forms, depending on the number of exceptions in
the data set. Yang (2016) defines the ‘tolerance prin-
ciple, a threshold for exceptionality beyond which
a rule will fail to generalize. O’Donnell (2011)
treats the question of whether a rule will generalize
as one of optimal Bayesian inference.

5 Evaluation of the ED Learner

We evaluate the performance of the ED architecture
in light of the criticisms P&P levied against the
original R&M model. We show that, in most cases,
these criticisms no longer apply.’

SData sets and code for all experiments are avail-
able at https://github.com/ckirov/Revisit
PinkerAndPrince.


https://github.com/ckirov/RevisitPinkerAndPrince
https://github.com/ckirov/RevisitPinkerAndPrince

The most potent line of attack P&P use against
the R&M model is that it simply does not learn the
English past tense very well. Although the non-
deterministic, manual, and non-precise decoding
procedure used by R&M makes it difficult to ob-
tain exact accuracy numbers, P&P estimate that the
model only prefers the correct past tense form for
about 67% of English verb stems. Furthermore,
many of the errors made by the R&M network are
unattested in human performance. For example,
the model produces blends of regular and irreg-
ular past-tense formation (e.g., eat — ated) that
children do not produce unless they mistake ate
for a present stem (Pinker, 1999). Furthermore,
the R&M model frequently produces irregular past
tense forms when a regular formation is expected
(e.g., ping — pang). Humans are more likely to
overregularize. These behaviors suggest that the
R&M model learns the wrong kind of generaliza-
tions. As shown subsequently, the ED architecture
seems to avoid these pitfalls, while outperforming
a P&P-style non-neural baseline.

5.1 Experiment 1: Learning the Past Tense

In the first experiment, we seek to show: (i) the ED
model successfully learns to conjugate both regular
and irregular verbs in the training data, and gener-
alizes to held-out data at convergence and (ii) the
pattern of errors the model exhibits is compatible
with attested speech errors.

CELEX Data Set. Our base data set consists of
4,039 verb types in the CELEX database (Baayen
et al., 1993). Each verb is associated with a present
tense form (stem) and past tense form, both in IPA.
Each verb is also marked as regular or irregular
(Albright and Hayes, 2003). A total of 168 of the
4,039 verb types were marked as irregular. We as-
signed verbs to train, development, and test sets
according to a random 80-10-10 split. Each verb
appears in exactly one of these sets once. This corre-
sponds to a uniform distribution over types because
every verb has an effective frequency of 1.

In contrast, the original R&M model was trained
and tested (data was not held out) on a set of 506
stem/past pairs derived from Kucera and Francis
(1967). A total of 98 of the 506 verb types were
marked as irregular.

Types vs. Tokens. In real human communica-
tion, words follow a Zipfian distribution, with many
irregular verbs being exponentially more common
than regular verbs. Although this condition is more
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true to the external environment of language learn-
ing, it may not accurately represent the psycholog-
ical reality of how that environment is processed.
A body of psycholinguistic evidence (Bybee, 1995,
2001; Pierrehumbert, 2001) suggests that human
learners generalize phonological patterns based on
the count of word types they appear in, ignoring the
token frequency of those types. Thus, we chose to
weigh all verb types equally for training, effecting a
uniform distribution over types as described above.

Hyperparameters and Other Details. Our ar-
chitecture is nearly identical to that used in
Bahdanau et al. (2014), with hyperparameters set
following Kann and Schiitze (2016, §4.1.1). Each
input character has an embedding size of 300 units.
The encoder consists of a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with two lay-
ers. There is a dropout value of 0.3 between the
layers. The decoder is a unidirectional LSTM with
two layers. Both the encoder and decoder have 100
hidden units. Training was done using the Adadelta
procedure (Zeiler, 2012) with a learning rate of
1.0 and a minibatch size of 20. We train for 100
epochs to ensure that all verb forms in the training
data are adequately learned. We decode the model
with beam search (k = 12). The code for our ex-
periments is derived from the OpenNMT package
(Klein et al., 2017). We use accuracy as our metric
of performance. We train the MGL as a non-neural
baseline, using the code distributed with Albright
and Hayes (2003) with default settings.

Results and Discussion. The non-neural MGL
baseline unsurprisingly learns the regular past-
tense pattern nearly perfectly, given that it is im-
bued with knowledge of phonological features as
well as a list of phonologically illegal phoneme
sequences to avoid in its output. However, in our
testing of the MGL, the preferred past-tense output
for all verbs was never an irregular formulation.
This was true even for irregular verbs that were
observed by the learner in the training set. One
might say that the MGL is only intended to account
for the regular route of a dual route system. How-
ever, the intended scope of the MGL seems to be
wider. The model is billed as accurately learning
“islands of subregularity” within the past tense sys-
tem, and Albright and Hayes use the model to make
predictions about which irregular forms of novel
verb stems are preferable to human speakers (see
the subsequent discussion of wugs).



all regular irregular

train  dev test train dev test train dev test
Single-Task (MGL) 96.0  96.0 94.5 99.9 100.0 100.0 0.0 0.0 0.0

Single-Task (Type) 99.8f 97.4 95.1 99.9 99.2 98.9 97.61 53.31 28.6t1
Multi-Task (Type) 100.01 96.9 95.1 100.0 99.5 99.7 99.2f 33.31 28.6t1

Table 3: Results on held-out data in English past tense
prediction for single- and multi-task scenarios. The
MGL achieves perfect accuracy on regular verbs, and
0 accuracy on irregular verbs. } indicates that a neu-
ral model’s performance was found to be significantly
different (p < 0.05) from the MGL.

In contrast, the ED model, despite no built-
in knowledge of phonology, successfully learns
to conjugate nearly all the verbs in the training
data, including irregulars—no reduction in scope
is needed. This capacity to account for specific
exceptions to the regular rule does not result in
overfitting. We note similarly high accuracy on
held-out regular data—98.9% to 99.2% at conver-
gence depending on the condition. We report the
full accuracy in all conditions in Table 3. The
indicates when a neural model’s performance was
found to be significantly different (p < 0.05) from
the MGL according to a x? test. The ED model
achieves near-perfect accuracy on regular verbs,
and irregular verbs seen during training, as well
as substantial accuracy on irregular verbs in the
dev and test sets. This behavior jointly results in
better overall performance for the ED model when
all verbs are considered. Figure 1 shows learning
curves for regular and irregular verbs types in dif-
ferent conditions.

An error analysis of held-out data shows that the
errors made by this network do not show any of
the problems of the R&M architecture. There are
no blend errors of the eat — ated variety. Indeed,
the only error the network makes on irregulars is
overregularization (e.g., throw — throwed). In
fact, the overregularization-caused lower accuracy
that we observe for irregular verbs in development
and test is expected and desirable; it matches the
human tendency to treat novel words as regular,
lacking knowledge of irregularity (Albright and
Hayes, 2003).

Although most held-out irregulars are regular-
ized, as expected, the ED model does, perhaps
surprisingly, correctly conjugate a handful of ir-
regular forms it has not seen during training—five
in the test set. However, three of these are pre-
fixed versions of irregulars that exist in the training
set (retell — retold, partake — partook, withdraw

- === Multi-Task Regulars
' —— Single-Task Regulars
! Multi-Task All Verbs

! wo Single-Task All Verbs
20 J Multi-Task Irregulars
Single-Task Irregulars

0 20 40 60 80 100

Figure 1: Single-task vs. multi-task. Learning curves
for the English past tense. The z-axis is the number of
epochs (one complete pass over the training data) and
the y-axis is the accuracy on the training data (not the
metric of optimization).

— withdrew). One (sling — slung) is an analogy
to similar training words (fling, cling). The final
conjugation, forsake — forsook, is an interesting
combination, with the prefix “for,” but an unat-
tested base form “sake” that is similar to “take.”®

From the training data, the only regular verb
with an error is compartmentalized, whose past
tense is predicted to be “compartmentalized,” with
a spurious vowel change that would likely be ironed
out with additional training. Among the regular
verbs in the development and test sets, the errors
also consisted of single vowel changes (the full
set of these errors was “thin” — “thun,” “try” —
“traud,” “institutionalize” — “instititionalized,” and
“drawl” — “drooled”).

Overall then, the ED model performs extremely
well, a far cry from the ~67% accuracy of the
R&M model. It exceeds any reasonable standard
of empirical adequacy, and shows human-like error
behavior.

Acquisition Patterns. R&M made several
claims that their architecture modeled the detailed
acquisition of the English past tense by children.
The core claim was that their model exhibited a
macro U-shaped learning curve as in §2. Irregulars
were initially produced correctly, followed by
a period of overregularization preceding a final
correct stage. However, P&P point out that R&M
only achieve this pattern by manipulating the
input distribution fed into their network. They
trained only on irregulars for a number of epochs,

®[s] and [t] are both coronal consonants, a fricative and a
stop, respectively.
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CLING MISLEAD CATCH FLY
# output #  output # output #  output
5 [klipd] 8 [misli:did] 7 [keetf]] 6 [flard]
11 [klag] 19 [misled] 31 [keetf] 31 [flu]
13 [klig] 21 [mrsled] 43 [kot] 40 [flard]
14 [klipd] 23 [misled] 44 [keetf]] 42 [fle1]
18 [klag] 24 [misliidid] 51 [ketf]] 47 [flaid]
21 [klipd] 29 [misled] 52 [kot] 56 [flu]
28 [klag] 30 [msliidid] 66 [ketf] 62 [flaid]
40 [klag] 41 [misled] 73 [kot] 70 [flu:]

Table 4: Here we evince the oscillating development of
single words in our corpus. For each stem, e.g., CLING,
we show the past form that produced at change points to
show the diversity of alternation. Beyond the last epoch
displayed, each verb was produced correctly.

before flooding the network with regular verb
forms. R&M justify this by claiming that young
children’s vocabulary consists disproportionately
of irregular verbs early on, but P&P cite contrary
evidence. A survey of child-directed speech shows
that the ratio of regular to irregular verbs a child
hears is constant while they are learning their
language (Slobin, 1971). Furthermore, psycholin-
guistic results suggest that there is no early skew
towards irregular verbs in the vocabulary children
understand or use (Brown, 1973).

Although we do not wish to make a strong claim
that the ED architecture accurately mirrors chil-
dren’s acquisition, only that it ultimately learns
the correct generalizations, we wanted to see if it
would display a child-like learning pattern without
changing the training inputs fed into the network
over time—that is, in all of our experiments, the
data sets remained fixed for all epochs, unlike in
R&M. We do not clearly see a macro U-shape, but
we do observe Plukett and Marchman’s predicted
oscillations for irregular learning—the so-called
micro U-shaped pattern. As shown in Table 4, in-
dividual verbs oscillate between correct produc-
tion and overregularization before they are fully
mastered.

Wug Testing. As a further test of the MGL as
a cognitive model, Albright and Hayes created a
set of 74 nonce English verb stems with varying
levels of similarity to both regular and irregular
verbs. For each stem (e.g., rife), they picked one
regular output form (rifed), and one irregular out-
put form (rofe). They used these stems and po-
tential past-tense variants to perform a wug test
with human participants. For each stem, they had
24 participants freely attempt to produce a past
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English | Network MG
Regular (rife ~ rifed, n=58) 0.48 0.35
Irregular (rife ~ rofe, n=74) 0.45 0.36

Table 5: Spearman’s p of human wug production proba-
bilities with MG scores and ED probability estimates.

tense form. They then counted the percentage of
participants who produced the pre-chosen regular
and irregular forms (production probability). The
production probabilities for each pre-chosen reg-
ular and irregular form could then be correlated
with the predicted scores derived from the MGL.
In Table 5, we compare the correlations based on
their model scores, with correlations comparing
the human scores to the output probabilities given
by an ED model. As the wug data provided with
Albright and Hayes (2003) use a different phonetic
transcription than the one we used, we trained a
separate ED model for this comparison. Model
architecture, training verbs, and hyperparameters
remained the same. Only the transcription used
to represent input and output strings was changed
to match Albright and Hayes (2003). Following
the original paper, we correlate the probabilities
for regular and irregular transformations separately.
We apply Spearman’s rank correlation, as we don’t
necessarily expect a linear relationship. We see that
the ED model probabilities are slightly more corre-
lated than the MGL’s scores.

5.2 Experiment 2: Joint Multi-Task Learning

Another objection levied by P&P is R&M’s focus
on learning a single morphological transduction:
stem to past tense. Many phonological patterns
in a language, however, are not restricted to a sin-
gle transduction—they make up a core part of the
phonological system and take part in many differ-
ent processes. For instance, the voicing assimila-
tion patterns found in the past tense also apply to
the third person singular: we see the affix -s ren-
dered as [-s] after voiceless consonants and [-z]
after voiced consonants and vowels.

P&P argue that the R&M model would not be
able to take advantage of these shared generaliza-
tions. Assuming a different network would need
to be trained for each transduction (e.g., stem to
gerund and stem to past participle), it would be im-
possible to learn that they have any patterns in com-
mon. However, as discussed in §3.2, a single ED
model can learn multiple types of mapping, simply
by tagging each input—output pair in the training



set with the transduction it represents. A network
trained in such a way shares the same weights and
phoneme embeddings across tasks, and thus has the
capacity to generalize patterns across all transduc-
tions, naturally capturing the overall phonology of
the language. Because different transductions mu-
tually constrain each other (e.g., English in general
does not allow sequences of identical vowels), we
actually expect faster learning of each individual
pattern, which we test in the following experiment.

We trained a model with an architecture iden-
tical to that used in Experiment 1, but this time
to jointly predict four mappings associated with
English verbs (past, gerund, past participle, third-
person singular).

Data. For each of the verb types in our base train-
ing set from Experiment 1, we added the three
remaining mappings. The gerund, past-participle,
and third-person singular forms were identified in
CELEX according to their labels in Wiktionary
(Sylak-Glassman et al., 2015). The network was
trained on all individual stem — inflection pairs in
the new training set, with each input string modi-
fied with additional characters representing the cur-
rent transduction (Kann and Schiitze, 2016): take
<PST> — took, but take <PTCP> — taken.’

Results. Table 3 and Figure 1 show the results.
Overall, accuracy is >99% after convergence on
train. Although the difference in final performance
is never statistically significant compared to single-
task learning, the learning curves are much steeper,
so this level of performance is achieved much more
quickly. This provides evidence for our intuition
that cross-task generalization facilitates individual
task learning due to shared phonological patterning
(i.e., jointly generating the gerund hastens past-
tense learning).

6 Summary of Resolved and
Outstanding Criticisms

In this paper, we have argued that the Encoder-
Decoder architecture obviates many of the criti-

"Without input annotation to mark the different mappings
the network must learn, it would treat all input/output pairs
as belonging to the same mapping, with each inflected form
of a single stem as an equally likely output variant associated
with that mapping. It is not within the scope of this net-
work architecture to solve problems other than morphological
transduction, such as discovering the range of morphological
paradigm slots.
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cisms P&P levied against R&M. Most importantly,
the empirical performance of neural models is no
longer an issue. The past tense transformation is
learned nearly perfectly, compared to an approxi-
mate accuracy of 67% for R&M. Furthermore, the
ED architecture solves the problem in a fully gen-
eral setting. A single network can easily be trained
on multiple mappings at once (and appears to gener-
alize knowledge across them). No representational
cludges such as Wickelphones are required—ED
networks can map arbitrary length strings to arbi-
trary length strings. This permits training and eval-
uating the ED model on realistic data, including the
ability to assign an exact probability to any arbi-
trary output string, rather than “representative” data
designed to fit in a fixed-size neural architecture
(e.g., fixed input and output templates). Evaluation
shows that the ED model does not appear to display
any of the degenerate error-types P&P note in the
output of R&M (e.g., regular/irregular blends of
the ate — ated variety).

Despite this litany of successes, some outstand-
ing criticisms of R&M still remain to be addressed.
On the trivial end, P&P correctly point out that the
R&M model does not handle homophones: write
— wrote, but right — righted. This is because it
only takes the phonological make-up of the input
string into account, without concern for its lexical
identity. This issue affects the ED models we dis-
cuss in this paper as well—lexical disambiguation
is outside of their intended scope. However, even
the rule learner that P&P propose does not have
such functionality. Furthermore, if lexical mark-
ings were available, we could incorporate them into
the model just as with different transductions in the
multi-task set-up (i.e., by adding the disambiguat-
ing markings to the input).

More importantly, we need to limit any claims
regarding treating ED models as proxies for child
language learners. P&P criticized such claims
from R&M because they manipulated the input
data distribution given to their network over time
to effect a U-shaped learning curve, despite no
evidence that the manipulation reflected children’s
perception or production capabilities. We avoid this
criticism in our experiments, keeping the input dis-
tribution constant. We even show that the ED model
captures at least one observed pattern of child lan-
guage development—Plukett and Marchman’s pre-
dicted oscillations for irregular learning, the micro
U-shaped pattern. However, we did not observe a
macro U-shape, nor was the micro effect consistent



across all irregular verbs. More study is needed to
determine the ways in which ED architectures do
or do not reflect children’s behavior. Even if nets
do not match the development patterns of any indi-
vidual, they may still be useful if they ultimately
achieve a knowledge state that is comparable to
that of an adult or, possibly, the aggregate usage
statistics of a population of adults.

Along this vein, P&P note that the R&M model
is able to learn highly unnatural patterns that do
not exist in any language. For example, it is trivial
to map each Wickelphone to its reverse, effectively
creating a mirror-image of the input, for exam-
ple, brag—garb. Although an ED model could
likely learn linguistically unattested patterns as
well, some patterns may be more difficult to learn
than others—for example, they might require in-
creased time-to-convergence. It remains an open
question for future research to determine which pat-
terns RNNs prefer, and which changes are needed
to account for over- and underfitting. Indeed, any
sufficiently complex learning system (including
rule-based learners) would have learning biases
that require further study.

There are promising directions from which to
approach this study. Networks are in a way analo-
gous to animal models (McCloskey, 1991), in that
they share interesting properties with human learn-
ers, as shown empirically, but are much easier and
less costly to train and manipulate across multiple
experiments. Initial experiments could focus on
default architectures, as we do in this paper, effec-
tively treating them as inductive baselines (Gildea
and Jurafsky, 1996) and measuring their perfor-
mance given limited domain knowledge. Our ED
networks, for example, have no built-in knowledge
of phonology or morphology. Failures of these
baselines would then point the way towards the
biases required to learn human language, and mod-
els modified to incorporate these biases could be
tested.

7 Conclusion

We have shown that the application of the ED ar-
chitecture to the problem of learning the English
past tense obviates many, though not all, of the
objections levied by P&P against the first neural
network proposed for the task, suggesting that the
criticisms do not extend to all neural models, as
P&P imply. Compared with a non-neural base-
line, the ED model accounts for both regular and
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irregular past tense formation in observed training
data and generalizes to held-out verbs, all with-
out built-in knowledge of phonology. Although
not necessarily intended to act as a proxy for a
child learner, the ED model also shows one of the
development patterns that has been observed in
children, namely, a micro U-shaped (oscillating)
learning curve for irregular verbs. The accurate
and substantially human-like performance of the
ED model warrants consideration of its use as a re-
search tool in theoretical linguistics and cognitive
science.
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