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Abstract

This paper demonstrates that word sense
disambiguation (WSD) can improve neural
machine translation (NMT) by widening the
source context considered when modeling
the senses of potentially ambiguous words.
We first introduce three adaptive cluster-
ing algorithms for WSD, based on k-means,
Chinese restaurant processes, and random
walks, which are then applied to large word
contexts represented in a low-rank space
and evaluated on SemEval shared-task data.
We then learn word vectors jointly with
sense vectors defined by our best WSD
method, within a state-of-the-art NMT sys-
tem. We show that the concatenation of
these vectors, and the use of a sense selec-
tion mechanism based on the weighted av-
erage of sense vectors, outperforms several
baselines including sense-aware ones. This
is demonstrated by translation on five lan-
guage pairs. The improvements are more
than 1 BLEU point over strong NMT base-
lines, +4% accuracy over all ambiguous
nouns and verbs, or +20% when scored
manually over several challenging words.

1 Introduction

The correct translation of polysemous words re-
mains a challenge for machine translation (MT).
Although some translation options may be in-
terchangeable, substantially different senses of

∗ Work conducted while at the Idiap Research Institute.

source words must generally be rendered by dif-
ferent words in the target language. Hence, an MT
system should identify—implicitly or explicitly—
the correct sense conveyed by each occurrence in
order to generate an appropriate translation. For
instance, in the following sentence from Europarl,
the translation of “deal” should convey the sense
“to handle” (in French traiter) and not “to cope”
(in French remédier, which is wrong):

Source: How can we guarantee the system of
prior notification for high-risk products at
ports that have the necessary facilities to deal
with them?

Reference translation: Comment pouvons-nous
garantir le système de notification préalable
pour les produits présentant un risque élevé
dans les ports qui disposent des installations
nécessaires pour traiter ces produits ?

Baseline neural MT: [. . .] les ports qui disposent
des moyens nécessaires pour y remédier ?

Sense-aware neural MT: [. . .] les ports qui dis-
posent des installations nécessaires pour les
traiter ?

Current MT systems perform word sense disam-
biguation implicitly, based on co-occurring words
in a rather limited context. In phrase-based statis-
tical MT, the context size is related to the order of
the language model (often between 3 and 5) and to
the length of n-grams in the phrase table (seldom
above 5). In attention-based neural MT (NMT),
the context extends to the entire sentence, but
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multiple word senses are not modeled explicitly.
The implicit sense information captured by word
representations used in NMT leads to a bias in
the attention mechanism towards dominant senses.
Therefore, the NMT decoders cannot clearly iden-
tify the contexts in which one word sense should
be used rather than another one. Hence, although
NMT can use local constraints to translate “great
rock band” into French as superbe groupe de rock
rather than grande bande de pierre—thus cor-
rectly assigning the musical rather than geological
sense to “rock”—it fails to do so for word senses
that require larger contexts.

In this paper, we demonstrate that the explicit
modeling of word senses can be helpful to NMT
by using combined vector representations of word
types and senses, which are inferred from contexts
that are larger than that of state-of-the-art NMT
systems. We make the following contributions:

• Weakly supervised word sense disambigua-
tion (WSD) approaches integrated into NMT,
based on three adaptive clustering methods
and operating on large word contexts.

• Three sense selection mechanisms for inte-
grating WSD into NMT, respectively based
on top, average, and weighted average (i.e.,
attention) of word senses.

• Consistent improvements against baseline
NMT on five language pairs: from English
(EN) into Chinese (ZH), Dutch (NL), French
(FR), German (DE), and Spanish (ES).

The paper is organized as follows. In §2, we
present three adaptive WSD methods based on
k-means clustering, the Chinese restaurant pro-
cess, and random walks. In §3, we present three
sense selection mechanisms that integrate the
word senses into NMT. The experimental details
appear in §4, and the results concerning the opti-
mal parameter settings are presented in §5, where
we also show that our WSD component is compet-
itive on the SemEval 2010 shared task. §6 presents
our results: The BLEU scores increase by about 1
point with respect to a strong NMT baseline, and
the accuracy of ambiguous noun and verb transla-
tion improves by about 4%, while a manual eval-
uation of several challenging and frequent words
shows an improvement of about 20%. A discus-
sion of related work appears finally in §7.

2 Adaptive Sense Clustering for MT

In this section, we present the three unsupervised
or weakly supervised WSD methods used in our
experiments, which aim at clustering different oc-
currences of the same word type according to their
senses. We first consider all nouns and verbs in
the source texts that have more than one sense in
WordNet, and extract from there the definition of
each sense and, if available, the example. For each
occurrence of such nouns or verbs in the train-
ing data, we use word2vec to build word vectors
for their contexts (i.e., neighboring words). All
vectors are passed to an unsupervised clustering
algorithm, possibly instantiated with WordNet
definitions or examples. The resulting clusters can
be numbered and used as labels, or their centroid
word vector can be used as well, as explained in
§3.

This approach answers several limitations
of previous supervised or unsupervised WSD
methods. On the one hand, supervised meth-
ods require data with manually sense-annotated
labels and are thus limited to typically small sub-
sets of all word types—for example, up to one
hundred content words targeted in SemEval 20101

(Manandhar et al., 2010) and up to a thousand
words in SemEval 2015 (Moro and Navigli, 2015).
In contrast, our method does not require labeled
texts for training, and applies to all word types
with multiple senses in WordNet (e.g., nearly
4,000 for some data sets; see Table 1 later in this
paper). On the other hand, unsupervised methods
often predefine the number of possible senses for
all ambiguous words before clustering their occur-
rences, and do not adapt to what is actually ob-
served in the data; as a result, the senses are often
too fine-grained for the needs of MT, especially for
a particular domain. In contrast, our model learns
the number of senses for each analyzed ambiguous
word directly from the data.

2.1 Definitions and Notations

For each noun or verb type Wt appearing in
the training data, as identified by the Stanford
POS tagger,2 we extract the senses associated to
it in WordNet3 (Fellbaum, 1998) using NLTK.4

1www.cs.york.ac.uk/semeval2010_WSI.
2nlp.stanford.edu/software.
3wordnet.princeton.edu/.
4www.nltk.org/howto/wordnet.html.
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Specifically, we extract the set of definitions Dt =
{dtj |j = 1, . . . ,mt} and the set of examples of
use Et = {etj |j = 1, . . . , nt}, each of them
containing multiple words. Most of the senses are
accompanied by a definition, but only about half
of them also include an example of use.

Definitions dtj and examples etj are repre-
sented by vectors defined as the average of the
word embeddings over all the words constitut-
ing them (except stopwords). Formally, these vec-
tors are dtj = (

∑
wl∈dtj wl)/|dtj | and etj =

(
∑

wl∈e′tj
wl)/|e′tj |, respectively, where |dtj | is the

number of tokens of the definition. Although the
entire definition dtj is used to build the dtj vector,
we do not consider all words in the example etj ,
but limit the sum to a fragment e′tj contained in a
window of size c centered around the considered
word, to avoid noise from long examples. Hence,
we divide by the number of words in this win-
dow, noted |e′tj |. All of these word vectors wl are
pre-trained word2vec embeddings from Google5

(Mikolov et al., 2013). If dim is the dimensional-
ity of the word vector space, then all vectors wl,
dtj , and etj are in Rdim . Each definition vector
dtj or example vector etj for a word type Wt is
considered as a center vector for each sense dur-
ing the clustering procedure.

Turning now to tokens, each word occurrence
wi in a source sentence is represented by the av-
erage vector ui of the words from its context, that
is, a window of c words centered on wi, c being an
even number. We calculate the vector ui for wi by
averaging vectors from c/2 words before wi and
from c/2 words after it. We stop nevertheless at
the sentence boundaries, and filter out stopwords
before averaging.

2.2 Clustering Word Occurrences by Sense

We adapt three clustering algorithms to our needs
for WSD applied to NMT. The objective is to
cluster all occurrences wi of a given word type
Wt, represented as word vectors ui, according to
the similarity of their senses, as inferred from the
similarity of the context vectors. We compare the
algorithms empirically in §5.

K-means Clustering. The original k-means al-
gorithm (MacQueen, 1967) aims to partition a set
of items, which are here tokens w1, w2, . . . , wn of
the same word type Wt, represented through their

5code.google.com/archive/p/word2vec/.

embeddings u1,u2, . . . ,un where ui ∈ Rdim .
The goal of k-means is to partition (or cluster)
these vectors into k sets S = {S1, S2, . . . , Sk} so
as to minimize the within-cluster sum of squared
distances to each centroid µi:

S = argmin
S

k∑
i=1

∑
u∈Si

||u− µi||2 (1)

At the first iteration, when there are no clusters yet,
the algorithm selects k random points as centroids
of the k clusters. Then, at each subsequent itera-
tion t, the algorithm calculates for each candidate
cluster a new centroid of the observations, defined
as their average vector, as follows:

µ t+1
i =

1

|St
i |

∑
uj∈St

i

uj (2)

In an earlier application of k-means to phrase-
based statistical MT, but not neural MT, we made
several modifications to the original k-means al-
gorithm to make it adaptive to the word senses
observed in training data (Pu et al., 2017). We
maintain these changes and summarize them
briefly here. The initial number of clusters kt for
each ambiguous word typeWt is set to the number
of its senses in WordNet, either considering only
the senses that have a definition or those that have
an example. The centroids of the clusters are ini-
tialized to the vectors representing the senses from
WordNet, either using their definition vectors dtj

or their example vectors etj . These initializations
are thus a form of weak supervision of the cluster-
ing process.

Finally, and most importantly, after running
the k-means algorithm, the number of clusters
for each word type is reduced by removing the
clusters that contain fewer than 10 tokens and as-
signing their tokens to the closest large cluster.
“Closest” is defined in terms of the cosine distance
between ui and their centroids. The final number
of clusters thus depends on the observed occur-
rences in the training data (which are the same data
as for MT), and avoids modeling infrequent senses
that are difficult to translate anyway. When used in
NMT, in order to assign each new token from the
test data to a cluster (i.e., to perform WSD), we
select the closest centroid, again in terms of
cosine distance.

Chinese Restaurant Process. The Chinese
Restaurant Process (CRP) is an unsupervised
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method considered as a practical interpretation
of a Dirichlet process (Ferguson, 1973) for non-
parametric clustering. In the original analogy, each
token is compared to a customer in a restaurant,
and each cluster is a table where customers can
be seated. A new customer can choose to sit at a
table with other customers, with a probability
proportional to the numbers of customers at that
table, or sit at a new, empty table. In an appli-
cation to multisense word embeddings, Li and
Jurafsky (2015) proposed that the probability to
“sit at a table” should also depend on the con-
textual similarity between the token and the sense
modeled by the table. We build upon this idea
and bring several modifications that allow for an
instantiation with sense-related knowledge from
WordNet, as follows.

For each word typeWt appearing in the data, we
start by fixing the maximal number kt of senses
or clusters as the number of senses of Wt in
WordNet. This avoids an unbounded number of
clusters (as in the original CRP algorithm) and the
risk of cluster sparsity by setting a non-arbitrary
limit based on linguistic knowledge. Moreover, we
define the initial centroid of each cluster as the
word vector corresponding either to the definition
dtj of the respective sense, or alternatively to the
example etj illustrating the sense.

For each token wi and its context vector ui the
algorithm decides whether the token is assigned to
one of the sense clusters Sj to which previous to-
kens have been assigned, or whether it is assigned
to a new empty cluster, by selecting the option that
has the highest probability, which is computed as
follows:

P ∝


Nj(λ1s(ui,dtj) + λ2s(ui,µj))

if Nj 6= 0 (non-empty sense)
γs(ui,dtj)

if Nj = 0 (empty sense)

(3)

In other words, for a non-empty sense, the proba-
bility is proportional to the popularity of the sense
(number of tokens it already contains, Nj) and to
the weighted sum of two cosine similarities s(·, ·):
one between the context vector ui of the token and
the definition of the sense dtj , and another one
between ui and the average context vector of the
tokens already assigned to the sense (µj). These
terms are weighted by the two hyper-parameters
λ1 and λ2. For an empty sense, only the second
term is used, weighted by the γ hyper-parameter.

Random Walks. Finally, we also consider
for comparison a WSD method based on random
walks on the WordNet knowledge graph (Agirre
and Soroa, 2009; Agirre et al., 2014) available
from the UKB toolkit.6 In the graph, senses cor-
respond to nodes and the relationships or depen-
dencies between pairs of senses correspond to the
edges between those nodes. From each input sen-
tence, we extract its content words (nouns, verbs,
adjectives, and adverbs) that have an entry in the
WordNet weighted graph. The method calculates
the probability of a random walk over the graph
from a target word’s sense ending on any other
sense in the graph, and determines the sense with
the highest probability for each analyzed word. In
this case, the random walk algorithm is PageRank
(Grin and Page, 1998), which computes a relative
structural importance or “rank” for each node.

3 Integration with Neural MT

3.1 Baseline Neural MT Model
We now present several models integrating WSD
into NMT, starting from an attention-based NMT
baseline (Bahdanau et al., 2015; Luong et al.,
2015). Given a source sentence X with words wx,
X = (wx

1 , w
x
2 , ..., w

x
T ), the model computes a con-

ditional distribution over translations, expressed
as p(Y = (wy

1 , w
y
2 , ..., w

y
T ′)|X). The neural net-

work model consists of an encoder, a decoder, and
an attention mechanism. First, each source word
wx
t ∈ V is projected from a one-hot word vec-

tor into a continuous vector space representation
xt. Then, the resulting sequence of word vectors
is read by the bidirectional encoder, which con-
sists of forward and backward recurrent networks
(RNNs). The forward RNN reads the sequence in
left-to-right order (i.e.,

−→
h t =

−→
φ (
−→
h t−1,xt)), and

the backward RNN reads it right-to-left (
←−
ht =

←−
φ (
←−
ht+1,xt)).

The hidden states from the forward and back-
ward RNNs are concatenated at each time step
t to form an “annotation” vector ht = [

−→
ht;
←−
ht].

Taken over several time steps, these vectors form
the “context”—that is, a tuple of annotation vectors
C = (h1,h2, ...,hT). The recurrent activation

6ixa2.si.ehu.es/ukb. Strictly speaking, this is the
only genuine WSD method, as the two previous ones pertain
to sense induction rather than disambiguation. However, for
simplicity, we will refer to all of them as WSD.
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functions
−→
φ and

←−
φ are either long short-term

memory units (LSTM) or gated recurrent units
(GRU).

The decoder RNN maintains an internal hidden
state zt′ . After each time step t′, it first uses the
attention mechanism to weight the annotation vec-
tors in the context tuple C. The attention mecha-
nism takes as input the previous hidden state of
the decoder and one of the annotation vectors, and
returns a relevance score et′,t = fATT(zt′−1,ht).
These scores are normalized to obtain attention
scores:

αt′,t = exp(et′,t)/
T∑

k=1

exp(et′,k) (4)

These scores serve to compute a weighted sum of
annotation vectors ct′ =

∑T
t=1 αt′,tht, which are

used by the decoder to update its hidden state:

zt′ = φz(zt′−1,yt′−1, ct′) (5)

Similarly to the encoder, φz is implemented as
either an LSTM or GRU and yt′−1 is the target-
side word embedding vector corresponding to
word wy.

3.2 Sense-aware Neural MT Models
To model word senses for NMT, we concate-
nate the embedding of each token with a vector
representation of its sense, either obtained from
one of the clustering methods presented in §2,
or learned during encoding, as we will explain.
In other words, the new vector w′i represent-
ing each source token wi consists of two parts:
w′i = [wi ; µi], where wi is the word embed-
ding learned by the NMT, and µi is the sense em-
bedding obtained from WSD or learned by the
NMT. To represent these senses, we create two
dictionaries, one for words and the other one for
sense labels, which will be embedded in a low-
dimensional space, before the encoder. We pro-
pose several models for using and/or generating
sense embeddings for NMT, named and defined as
follows.

Top Sense (TOP). In this model, we directly
use the sense selected for each token by one of
the WSD systems above, and use the embeddings
of the respective sense as generated by NMT after
training.

Weighted Average of Senses (AVG). Instead
of fully trusting the decision of a WSD sys-
tem (even one adapted to MT), we consider all

listed senses and the respective cluster centroids
learned by the WSD system. Then we convert the
distances dl between the input token vector and
the centroid of each sense Sl into a normalized
weight distribution either by a linear or a logistic
normalization:

ωj =
1− dj∑
1≤l≤k dl

or ωj =
e−d

2
j∑

1≤l≤k e
−d2l

(6)

where k is the total number of senses of token wi.
The sense embedding for each token is computed
as the weighted average of all sense embeddings:

µi =
∑

1≤j≤k
ωjµij (7)

Attention-Based Sense Weights (ATT). In-
stead of obtaining the weight distribution from the
centroids computed by WSD, we also propose to
dynamically compute the probability of related-
ness to each sense based on the current word and
sense embeddings during encoding, as follows.
Given a token wi, we consider all the other tokens
in the sentence (w1, . . . , wi−1, wi+1, . . . , wL) as
the context of wi, where L is the length of the sen-
tence. We define the context vector of wi as the
mean of all the embeddings uj of the words wj ,
that is, ui = (

∑
l 6=i ul)/(L − 1). Then, we com-

pute the similarity f(ui,µij) between each sense
embedding µij and the context vector ui using an
additional attention layer in the network, with two
possibilities that will be compared empirically:

f(ui,µij) = υT tanh(Wui + Uµij) (8)

or
f(ui,µij) = uT

i Wµij (9)

The weights ωj are now obtained through the
following softmax normalization:

ωj =
ef(ui,µij)∑

1≤l≤k e
f(ui,µil)

(10)

Finally, the average sense embedding is obtained
as in Equation (7), and is concatenated to the word
vector ui.

ATT Model with Initialization of Embed-
dings (ATTini ). The fourth model is similar to
the ATT model, with the difference that we initial-
ize the embeddings of the source word dictionary
using the word2vec vectors of the word types, and
the embeddings of the sense dictionary using the
centroid vectors obtained from k-means.
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TL Train Dev Test
Labels

Words
Nouns Verbs

FR
0.5M 5k 50k 3,910 1,627 2,006
5.3M 4,576 6,003 8,276 3,059 3,876

DE
0.5M 5k 50k 3,885 1,576 1,976
4.5M 3,000 5,172 7,520 1,634 3,194

ES
0.5M 5k 50k 3,862 1,627 1,987
3.9M 4,576 6,003 7,549 2,798 3,558

ZH 0.5M 5K 50K 3,844 1,475 1,915
NL 0.5M 5K 50K 3,915 1,647 2,210

Table 1: Size of data sets used for machine translation
from English to five different target languages (TL).
FR = French; DE = German; ES = Spanish; ZH =
Chinese; NL = Dutch.

4 Data, Metrics, and Implementation

Data Sets. We train and test our sense-aware
MT systems on the data shown in Table 1: the
UN Corpus7 (Rafalovitch and Dale, 2009) and the
Europarl Corpus8 (Koehn, 2005). We first exper-
iment with our models using the same data set
and protocol as in our previous work (Pu et al.,
2017), to enable comparisons with phrase-based
statistical MT systems, for which the sense of each
ambiguous source word was modeled as a factor.
Moreover, in order to make a better comparison
with other related approaches, we train and test
our sense-aware NMT models on large data sets
from Workshop on Statistical Machine Transla-
tion (WMT) shared tasks over three language pairs
(EN/DE, EN/ES, and EN/FR).

The data set used in our previous work con-
sists of 500k parallel sentences for each language
pair, 5k for development and 50k for testing. The
data originates from UN for EN/ZH, and from
Europarl for the other pairs. The source sides of
these sets contain around 2,000 different English
word forms (after lemmatization) that have more
than one sense in WordNet. Our WSD system gen-
erates ca. 3.8K different noun labels and 1.5K verb
labels for these word forms.

The WMT data sets additionally used in this pa-
per are the following ones. First, we use the com-
plete EN/DE set from WMT 2016 (Bojar et al.,
2016) with a total of ca. 4.5M sentence pairs. In
this case, the development set is NewsTest 2013,
and the testing set is made of NewsTest 2014 and

7www.uncorpora.org.
8www.statmt.org/europarl.

2015. Second, for EN/FR and EN/ES, we use
data from WMT 2014 (Bojar et al., 2014)9 with
5.3M sentences for EN/FR and 3.8M sentences for
EN/ES. Here, the development sets are NewsTest
2008 and 2009, and the testing sets are NewsTest
2012 and 2013 for both language pairs. The source
sides of these larger additional sets contain around
3,500 unique English word forms with more than
one sense in WordNet, and our system generates
ca. 8K different noun labels and 2.5K verb labels
for each set.

Finally, for comparison purposes and model se-
lection, we use the WIT3 Corpus10 (Cettolo et al.,
2012), a collection of transcripts of TED talks. We
use 150K sentence pairs for training, 5K for devel-
opment and 50K for testing.

Pre-processing. Before assigning sense la-
bels, we tokenize all the texts and identify the
parts of speech using the Stanford POS tagger.11

Then, we filter out the stopwords and the nouns
that are proper names according to the Stanford
Name Entity Recognizer.11 Furthermore, we con-
vert the plural forms of nouns to their singular forms
and the verb forms to infinitives using the stemmer
and lemmatizer from NLTK,12 which is essential
because WordNet has description entries only for
base forms. The pre-processed text is used for as-
signing sense labels to each occurrence of a noun
or verb that has more than one sense in WordNet.

K-means Settings. Unless otherwise stated,
we adopt the following settings in the k-means
algorithm, with the implementation provided in
Scikit-learn (Pedregosa et al., 2011). We use the
definition of each sense for initializing the cen-
troids, and later compare this choice with the use
of examples. We set kt, the initial number of clus-
ters, to the number of WordNet senses of each am-
biguous word typeWt, and set the window size for
the context surrounding each occurrence to c = 8.

Neural MT. We build upon the attention-
based neural translation model (Bahdanau et al.,
2015) from the OpenNMT toolkit (Klein et al.,
2017).13 We use LSTM and not GRU. For the
proposed ATT and ATT ini models, we add an

9We selected the data from different years of WMT be-
cause the EN/FR and EN/ES pairs were only available in
WMT 2014.

10wit3.fbk.eu.
11nlp.stanford.edu/software.
12www.nltk.org.
13www.opennmt.net.
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external attention layer before the encoder, but
do not otherwise alter the internals of the NMT
model.

We set the source and target vocabulary sizes
to 50,000 and the dimension of word embeddings
to 500, which is recommended for OpenNMT,
so as to reach a strong baseline. For the ATT ini

model, because the embeddings from word2vec
used for initialization have only 300 dimensions,
we randomly pick up a vector with 200 dimen-
sions within range [−0.1,0.1] and concatenate it
with the vector from word2vec to reach the re-
quired number of dimensions, ensuring a fair
comparison.

It takes around 15 epochs (25–30 hours on
Idiap’s GPU cluster) to train each of the five NMT
models: the baseline and our four proposals. The
AVG model takes more time for training (around
40 hours) because we use additional weights and
senses for each token. In fact, we limit the number
of senses for AVG to 5 per word type, after ob-
serving that in WordNet there are fewer than 100
words with more than 5 senses.

Evaluation Metrics. For the evaluation of in-
trinsic WSD performance, we use the V -score,
the F1-score, and their average, as used for in-
stance at SemEval 2010 (Manandhar et al., 2010).
The V -score is the weighted harmonic mean of
homogeneity and completeness (favoring systems
generating more clusters than the reference), and
the F1-score measures the classification perfor-
mance (favoring systems generating fewer clus-
ters). Therefore, the ranking metric for SemEval
2010 is the average of the two.

We select the optimal model configuration
based on MT performance on development sets,
as measured with the traditional multi-bleu score
(Papineni et al., 2002). Moreover, to estimate the
impact of WSD on MT, we also measure the actual
impact on the nouns and verbs that have several
WordNet senses, by counting how many of them
are translated exactly as in the reference transla-
tion. To quantify the difference with the baseline,
we use the following coefficient. First, for a cer-
tain set of tokens in the source data, we note as
Nimproved the number of tokens that are translated
by our system with the same token as in the ref-
erence translation, but are translated differently
by the baseline system. Conversely, we note as
Ndegraded the number of tokens that are translated
by the baseline system as in the reference, but dif-

ferently by our system.14 We use the normalized
coefficient ρ = (Nimproved−Ndegraded)/T , where
T is the total number of tokens, as a metric to
specifically evaluate the translation of words sub-
mitted to WSD.

For all tables we mark in bold the best score per
condition. For MT scores in Tables 5, 7, and 8,
we show the improvement over the baseline and its
significance based on two confidence levels: either
p < 0.05 (indicated with a ‘†’) or p < 0.01 (‘‡’).
Any p-values larger than 0.05 are treated as not
significant and are left unmarked.

5 Optimal Values of the Parameters

5.1 Best WSD Method Based on BLEU
We first select the optimal clustering method and
its initialization settings, in a series of experiments
with statistical MT over the WIT3 corpus, ex-
tending and confirming our previous results (Pu
et al., 2017). In Table 2, we present the BLEU and
ρ scores of our previous WSD+SMT system for
the three clustering methods, initialized with vec-
tors either from the WordNet definitions or from
examples, for two language pairs. We also pro-
vide BLEU scores of baseline systems and of ora-
cle ones (i.e., using correct senses as factors). The
best method is k-means and the best initialization
is with the vectors of definitions. All values of
ρ show improvements over the baseline, with up
to 4% for k-means on DE/EN.

Moreover, we found that random initializations
underperform with respect to definitions or exam-
ples. For a fair comparison, we set the number of
clusters equal either to the number of synsets with
definitions or with examples, for each word type,
and obtained BLEU scores on EN/ZH of 15.34 and
15.27, respectively—hence lower than 15.54 and
15.41 in Table 2. We investigated earlier (Pu et al.,
2017) the effect of the context window surround-
ing each ambiguous token, and found with the
WSD+SMT factored system on EN/ZH WIT3 data
that the optimal size was 8, which we use here as well.

5.2 Best WSD Method Based on V/F1 Scores
Table 3 shows our WSD results in terms of V -
score and F1-score, comparing our methods (six

14The values of Nimproved and Ndegraded are obtained
using automatic word alignment. They do not capture, of
course, the intrinsic correctness of a candidate translation, but
only its identity or not with one reference translation.
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Pair Initialization BLEU ρ (%)
Baseline Graph CRP k-means Oracle Graph CRP k-means

EN/ZH Definitions 15.23 15.31 15.31 15.54 16.24 +0.20 +0.27 +2.25
Examples 15.28 15.41 15.85 +0.13 +1.60

EN/DE Definitions 19.72 19.74 19.69 20.23 20.99 −0.07 −0.19 +3.96
Examples 19.74 19.87 20.45 −0.12 +2.15

Table 2: Performance of the WSD+SMT factored system for two language pairs from WIT3, with three clustering
methods and two initializations.

System V-score F1-score Average CAll Nouns Verbs All Nouns Verbs All Nouns Verbs
UoY 15.70 20.60 8.50 49.80 38.20 66.60 32.75 29.40 37.50 11.54
KCDC-GD 6.90 5.90 8.50 59.20 51.60 70.00 33.05 28.70 39.20 2.78
Duluth-Mix-Gap 3.00 2.90 3.00 59.10 54.50 65.80 31.05 29.70 34.40 1.61
k-means+definitions 13.65 14.70 12.60 56.70 53.70 59.60 35.20 34.20 36.10 4.45
k-means+examples 11.35 11.00 11.70 53.25 47.70 58.80 32.28 29.30 35.25 3.58
CRP + definitions 1.45 1.50 1.45 64.80 56.80 72.80 33.13 29.15 37.10 1.80
CRP + examples 1.20 1.30 1.10 64.75 56.80 72.70 32.98 29.05 36.90 1.66
Graph + definitions 11.30 11.90 10.70 55.10 52.80 57.40 33.20 32.35 34.05 2.63
Graph + examples 9.05 8.70 9.40 50.15 45.20 55.10 29.60 26.96 32.25 2.08

Table 3: WSD results from three SemEval 2010 systems and our six systems, in terms of V -score, F1 score, and
their average. C = the average number of clusters. The adaptive k-means using definitions outperforms the others
on the average of V and F1, when considering both nouns and verbs, or nouns only. The SemEval systems are UoY
(Korkontzelos and Manandhar, 2010); KCDC-GD (Kern et al., 2010); and Duluth-Mix-Gap (Pedersen, 2010).

lines at the bottom) with other significant systems
that participated in the SemEval 2010 shared task
(Manandhar et al., 2010).15 The adaptive k-means
initialized with definitions has the highest average
score (35.20) and ranks among the top systems
for most of the metrics individually. Moreover,
the adaptive k-means method finds on average 4.5
senses per word type, which is very close to the
ground-truth value of 4.46. Overall, we observed
that k-means infers fewer senses per word type
than WordNet. These results show that k-means
WSD is effective and provides competitive per-
formance against other weakly supervised alter-
natives (CRP or Random Walk) and even against
SemEval WSD methods, but using additional
knowledge not available to SemEval participants.

5.3 Selection of WSD+NMT Model

To compare several options of the WSD+NMT
systems, we trained and tested them on a sub-
set of EN/FR Europarl (a smaller data set short-
ened the training times). The results are shown

15We provide comparisons with more systems from
SemEval in our previous paper (Pu et al., 2017).

System and settings BLEU
Baseline 29.55
TOP 29.63 (+0.08)
AVG with linear norm. in Eq. (6) 29.67 (+0.12)
AVG with logistic norm. in Eq. (6) 30.15 (+0.60)
ATT with NULL label 29.80 (+0.33)
ATT with word used as label 30.23 (+0.68)
ATTini with uT

i Wµij in Eq. (8) 29.94 (+0.39)
ATTini with tanh in Eq. (8) 30.61 (+1.06)

Table 4: Performance of various WSD+NMT configu-
rations on a EN/FR subset of Europarl, with variations
with respect to baseline. We select the settings with the
best performance (bold) for our final experiments in
§6.

in Table 4. For the AVG model, the logistic normal-
ization in Equation (6) works better than the linear
one. For the ATT model, we compared two dif-
ferent labeling approaches for tokens that do not
have multiple senses: Either use the same NULL

label for all tokens, or use the word itself as a label
for its sense; the second option appeared to be the
best. Finally, for the ATT ini model, we compared
the two options for the attention function in Equa-
tion (8), and found that the formula with tanh is
the best. In what follows, we use these settings for
the AVG and ATT systems.
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EN/FR EN/DE EN/ZH EN/ES EN/NL
SMT baseline 31.96 20.78 23.25 39.95 23.56
Graph 32.01 (+.05) 21.17 (+.39) 23.47 (+.22) 40.15 (+.20) 23.74 (+.18)
CRP 32.08 (+.12) 21.19 (+.41) † 23.55 (+.29) 40.14 (+.19) 23.79 (+.23)
k-means 32.20 (+.24) 21.32 (+.54) † 23.69 (+.44) † 40.37 (+.42) † 23.84 (+.26)
NMT baseline 34.60 25.80 27.07 44.09 24.79
k-means + TOP 34.52 (−.08) 25.84 (+.04) 26.93 (−.14) 44.14 (+.05) 24.71 (−.08)
k-means + AVG 35.17 (+.57) † 26.47 (+.67) † 27.44 (+.37) 45.05 (+.97) ‡ 25.04 (+.25)
None + ATT 35.32 (+.72) ‡ 26.50 (+.70) ‡ 27.56 (+.49) † 44.93 (+.84) ‡ 25.36 (+.57) †
k-means + ATTini 35.78 (+1.18) ‡ 26.74 (+.94) ‡ 27.84 (+.77) ‡ 45.18 (+1.09) ‡ 25.65 (+.86) ‡

Table 5: BLEU scores of our sense-aware NMT systems over five language pairs: ATTini is the best one among
SMT and NMT systems. Significance testing is indicated by † for p < 0.05 and ‡ for p < 0.01.

6 Results

We first evaluate our sense-aware models with
smaller data sets (ca. 500K lines) for five language
pairs with English as source. We evaluate them
through both automatic measures and human as-
sessment. Later on, we evaluate our sense-aware
NMT models with larger WMT data sets to enable
a better comparison with other related approaches.

BLEU scores. Table 5 displays the perfor-
mance of both sense-aware phrase-based and neu-
ral MT systems with the training sets of 500K
lines listed in Table 1 on five language pairs.
Specifically, we compare several approaches that
integrate word sense information in SMT and
NMT. The best hyper-parameters are those found
above, for each of the WSD+NMT combina-
tion strategies, in particular the k-means method
for WSD+SMT, and the ATT ini method for
WSD+NMT—that is, the attention-based model
of senses initialized with the output of k-means
clustering.

Comparisons with Baselines. Table 5 shows
that our WSD+NMT systems perform consistently
better than the baselines, with the largest improve-
ments achieved by NMT on EN/FR and EN/ES.
The neural systems outperform the phrase-
based statistical ones (Pu et al., 2017), which are
shown for comparison in the upper part of the
table.

We compare our proposal to the recent system
proposed by Yang et al. (2017), on the 500K-line
EN/FR Europarl data set (the differences between
their system and ours are listed in §7). We care-
fully implemented their model by following their
paper, since their code is not available. Using the
sense embeddings of the multi-sense skip-gram
model (MSSG) (Neelakantan et al., 2014) as they

do, and training for six epochs as in their study,
our implementation of their model reaches only
31.05 BLEU points. When increasing the train-
ing stage until convergence (15 epochs), the best
BLEU score is 34.52, which is still below our
NMT baseline of 34.60. We also found that the ini-
tialization of embeddings with MSSG brings less
than 1 BLEU point improvement with respect to
random initializations (which scored 30.11 over
six epochs and 33.77 until convergence), while
Yang et al. found a 1.3–2.7 increase on two dif-
ferent test sets. In order to better understand the
difference, we tried several combinations of their
model with ours. We obtain a BLEU score of
35.02 by replacing their MSSG sense specifica-
tion model with our adaptive k-means approach,
and a BLEU score of 35.18 by replacing our
context calculation method (averaging word em-
beddings within one sentence) with their context
vector generation method, which is computed
from the output of a bi-directional RNN. In the
end, the best BLEU score on this EN/FR data set
(35.78 as shown in Table 5, column 1, last line) is
reached by our system with its best options.

Lexical Choice. Using word alignment, we
assess the improvement brought by our systems
with respect to the baseline in terms of the number
of words—here, WSD-labeled nouns and verbs—
that are translated exactly as in the reference trans-
lation (modulo alignment errors). These numbers
can be arranged in a confusion matrix with four
values: the words translated correctly (i.e., as in
the reference) by both systems, those translated
correctly by one system but incorrectly by the
other one, and vice versa, and those translated
incorrectly by both.

Table 6 shows the confusion matrix for our
sense-aware NMT with the ATT ini model versus
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Baselines
EN/FR EN/ES

Correct Incorrect Correct Incorrect
WSD+ C. 134,552 17,145 146,806 16,523
NMT I. 10,551 101,228 8,183 58,387
WSD+ C. 124,759 13,408 139,800 11,194
SMT I. 9,676 115,633 7,559 71,346

Table 6: Confusion matrix for our WSD+NMT
(ATTini ) system and our WSD+SMT system against
their respective baselines (NMT and SMT), over the
Europarl test data, for two language pairs.

the NMT baseline over the Europarl test data.
The net improvement (i.e., the fraction of words
improved by our system minus those degraded16)
appears to be +2.5% for EN/FR and +3.6% for
EN/ES. For comparison, we show the results of
the WSD+SMT system versus the SMT baseline
in the lower part of Table 6: The improvement
is smaller, at +1.4% for EN/FR and +1.5% for
EN/ES. Therefore, the ATT ini NMT model brings
higher benefits over the NMT baseline than the
WSD+SMT factored model, although the NMT base-
line is stronger than the SMT one (see Table 5).

Human Assessment. To compare our systems
against baselines, we also consider a human eval-
uation of the translation of words with multiple
senses (nouns or verbs). The goal is to capture
more precisely the correct translations that are,
however, different from the reference.

Given the cost of the procedure, one evaluator
with good knowledge of EN and FR rated the trans-
lations of four word types that appear frequently in
the test set and have multiple possible senses and
translations into French. These words are: deal
(101 tokens), face (84), mark (20), and subject (58).
Two translations of deal are exemplified in §1.

For each occurrence, the evaluator sees the
source sentence, the reference translation, and the
outputs of the NMT baseline and the ATT ini in
random order, so that the system cannot be identi-
fied. The two translations of the considered word
are rated as good, acceptable, or wrong. We sub-
mit only cases in which the two translations differ,
to minimize the annotation effort with no impact
on the comparison between systems.

16Explicitly, improvements are (system-correct &
baseline-incorrect) minus (system-incorrect & baseline-
correct), and degradations the converse difference.
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(a) System ratings. (b) Comparative scores.

Figure 1: Human comparison of the EN/FR transla-
tions of four word types. (a) Proportion of good (light
gray), acceptable (middle gray), and wrong (dark gray)
translations per word and system (baseline left, ATTini

right, for each word). (b) Proportion of translations in
which ATT ini is better (light gray), equal (middle gray),
or worse (dark gray) than the baseline.

Firstly, Figure 1(a) shows that ATT ini has a
higher proportion of good translations, and a lower
proportion of wrong ones, for all four words. The
largest difference is for subject, where ATT ini

has 75% good translations and the baseline only
46%; moreover, the baseline has 22% errors and
ATT ini has only 9%. Secondly, Figure 1(b) shows
the proportions of tokens, for each type, for which
ATT ini was respectively better, equal, or worse
than the baseline. Again, for each of the four
words, there are far more improvements brought
by ATT ini than degradations. On average, 40% of
the occurrences are improved and only 10% are
degraded.

Results on WMT Data Sets. To demonstrate
that our findings generalize to larger data sets, we
report results on three data sets provided by the
WMT conference (see §4), namely, for EN/DE,
EN/ES and EN/FR. Tables 7 and 8 show the results
of our proposed NMT models on these test sets.
The results in Table 7 confirm that our sense-aware
NMT models improve significantly the transla-
tion quality also on larger data sets, which permit
stronger baselines. Comparing these results with
the ones from Table 5, we even conclude that our
models trained on larger, mixed-domain data sets
achieve higher improvements than the models trained
on smaller, domain-specific data sets (Europarl).
This clearly shows that our sense-aware NMT
models are beneficial on both narrow and broad
domains.

Finally, we compare our model with several
recent NMT models that make use of contex-
tual information, thus sharing a similar overall
goal to our study. Indeed, the model proposed by
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EN/FR EN/ES
NT12 NT13 NT12 NT13

Baseline 29.09 29.60 32.66 29.57
None + ATT 29.47 (+.38) 30.21 (+.61) † 33.15 (+.49) † 30.27 (+.70) ‡
k-means + ATTini 30.26 (+1.17) ‡ 30.95 (+.1.35) ‡ 34.14 (+1.48) ‡ 30.67 (+1.1) ‡

Table 7: BLEU scores on WMT NewsTest 2012 and 2013 (NT) test sets for two language pairs. Significance
testing is indicated by † for p < 0.05 and ‡ for p < 0.01.

NMT model NT14 NT15
Context-dependent (Choi et al., 2017) - 21.99
Context-aware (Zhang et al., 2017) 22.57 -
Self-attentive (Werlen et al., 2018) 23.2 25.5
Baseline 22.79 24.94
None + ATT 23.34 † 25.28
k-means + ATTini 23.85 (+1.14) ‡ 25.71 (+0.77) ‡

Table 8: BLEU score on English-to-German translation over the WMT NewsTest (NT) 2014 and 2015 test sets.
Significance testing is indicated by † for p < 0.05 and ‡ for p < 0.01. The highest score per column is in bold.

Choi et al. (2017) attempts to improve NMT by
integrating context vectors associated to source
words into the generation process during decod-
ing. The model proposed by Zhang et al. (2017) is
aware of previous attended words on the source
side in order to better predict which words will
be attended in future. The self-attentive residual
decoder designed by Werlen et al. (2018) lever-
ages the contextual information from previously
translated words on the target side. BLEU scores
on the English–German pair shown in Table 8
demonstrate that our baseline is strong and that our
model is competitive with respect to recent mod-
els that leverage contextual information in differ-
ent ways.

7 Related Work

Word sense disambiguation aims to identify the
sense of a word appearing in a given context
(Agirre and Edmonds, 2007). Resolving word
sense ambiguities should be useful, in particular,
for lexical choice in MT. An initial investigation
found that a statistical MT system that makes use
of off-the-shelf WSD does not yield significantly
better quality translations than an SMT system not
using it (Carpuat and Wu, 2005). However, sev-
eral studies (Cabezas and Resnik, 2005; Vickrey
et al., 2005; Carpuat and Wu, 2007; Chan et al.,
2007) reformulated the task of WSD for SMT
and showed that integrating the ambiguity infor-
mation generated from modified WSD improved

SMT by 0.15–0.57 BLEU points compared with
baselines.

Recently, Tang et al. (2016) used only the super-
senses from WordNet (coarse-grained semantic
labels) for automatic WSD, using maximum en-
tropy classification or sense embeddings learned
using word2vec. When combining WSD with
SMT using a factored model, Tang et al. improved
BLEU scores by 0.7 points on average, though
with large differences between their three test sub-
sets (IT Q&A pairs).

Although these reformulations of the WSD task
proved helpful for SMT, they did not determine
whether actual source-side senses are helpful or
not for end-to-end SMT. Xiong and Zhang (2014)
attempted to answer this question by performing
self-learned word sense induction instead of us-
ing pre-specified word senses as traditional WSD
does. However, they created the risk of discover-
ing sense clusters that do not correspond to the
senses of words actually needed for MT. Hence,
they left open an important question, namely,
whether WSD based on semantic resources such
as WordNet (Fellbaum, 1998) can be successfully
integrated with SMT.

Several studies integrated sense information as
features to SMT, either obtained from the sense
graph provided by WordNet (Neale et al., 2016)
or generated from both sides of word dependen-
cies (Su et al., 2015). However, apart from the
sense graph, WordNet also provides textual infor-
mation such as sense definitions and examples,
which should be useful for WSD, but were not
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used in these studies. In previous work (Pu et al.,
2017), we used this information to perform sense
induction on source-side data using k-means and
demonstrated improvement with factored phrase-
based SMT but not NMT.

Neural MT became the state of the art
(Sutskever et al., 2014; Bahdanau et al., 2015).
Instead of working directly at the discrete sym-
bol level as SMT, it projects and manipulates the
source sequence of discrete symbols in a continu-
ous vector space. However, NMT generates only
one embedding for each word type, regardless
of its possibly different senses, as analyzed, for
example, by Hill et al. (2017). Several studies pro-
posed efficient nonparametric models for mono-
lingual word sense representation (Neelakantan
et al., 2014; Li and Jurafsky, 2015; Bartunov
et al., 2016; Liu et al., 2017), but left open the
question whether sense representations can help
neural MT by reducing word ambiguity. Recent
studies integrate the additional sense assignment
with neural MT based on these approaches, either
by adding such sense assignments as additional
features (Rios et al., 2017) or by merging the con-
text information on both sides of parallel data for
encoding and decoding (Choi et al., 2017).

Yang et al. (2017) recently proposed to add
sense information by using weighted sense em-
beddings as input to neural MT. The sense labels
were generated by a MSSG model (Neelakantan
et al., 2014), and the context vector used for sense
weight generation was computed from the out-
put of a bidirectional RNN. Finally, the weighted
average sense embeddings were used in place
of the word embedding for the NMT encoder.
The numerical results given in §6 show that
our options for using sense embeddings outper-
form Yang et al.’s proposal. In fact, their ap-
proach even performed worse than the NMT
baseline on our EN/FR data set. We conclude that
adaptive k-means clustering is better than MSSG
for use in NMT, and that concatenating the word
embedding and its sense vector as input for the
RNN encoder is better than just using the sense
embedding for each token. In terms of efficiency,
Yang et al. (2017) need an additional bidirectional
RNN to generate the context vector for each input
token, whereas we compute the context vector by
averaging the embeddings of the neighboring to-
kens. This slows down the training of the encoder
by a factor of 3, which may explain why they only
trained their model for six epochs.

8 Conclusion

We presented a neural MT system enhanced with
an attention-based method to represent multi-
ple word senses, making use of a larger con-
text to disambiguate words that have various
possible translations. We proposed several adap-
tive context-dependent clustering algorithms for
WSD and combined them in several ways with
NMT—following our earlier experiments with
SMT (Pu et al., 2017)—and found that they had
competitive WSD performance on data from the
SemEval 2010 shared task.

For NMT, the best-performing method used the
output of k-means to initialize the sense embed-
dings that are learned by our system. In partic-
ular, it appeared that learning sense embeddings
for NMT is better than using embeddings learned
separately by other methods, although such em-
beddings may be useful for initialization. Our ex-
periments with five language pairs showed that our
sense-aware NMT systems consistently improve
over strong NMT baselines, and that they specifi-
cally improve the translation of words with multi-
ple senses.

In the future, our approach to sense-aware
NMT could be extended to other NMT architec-
tures such as the Transformer network proposed
by Vaswani et al. (2017). As was the case with
the LSTM-based architecture studied here, the
Transformer network does not explicitly model
or utilize the sense information of words, and,
therefore, we hypothesize that its performance
could also be improved by using our sense in-
tegration approaches. To encourage further re-
search in sense-aware NMT, our code is made
available at https://github.com/idiap/
sense_aware_NMT.
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