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Abstract

Word embeddings are ubiquitous in NLP and
information retrieval, but it is unclear what
they represent when the word is polysemous.
Here it is shown that multiple word senses re-
side in linear superposition within the word
embedding and simple sparse coding can re-
cover vectors that approximately capture the
senses. The success of our approach, which
applies to several embedding methods, is
mathematically explained using a variant of
the random walk on discourses model (Arora
et al., 2016). A novel aspect of our tech-
nique is that each extracted word sense is ac-
companied by one of about 2000 “discourse
atoms” that gives a succinct description of
which other words co-occur with that word
sense. Discourse atoms can be of indepen-
dent interest, and make the method potentially
more useful. Empirical tests are used to verify
and support the theory.

1 Introduction

Word embeddings are constructed using Firth’s hy-
pothesis that a word’s sense is captured by the distri-
bution of other words around it (Firth, 1957). Clas-
sical vector space models (see the survey by Tur-
ney and Pantel (2010)) use simple linear algebra
on the matrix of word-word co-occurrence counts,
whereas recent neural network and energy-based
models such as word2vec use an objective that in-
volves a nonconvex (thus, also nonlinear) function
of the word co-occurrences (Bengio et al., 2003;
Mikolov et al., 2013a; Mikolov et al., 2013b).

This nonlinearity makes it hard to discern how
these modern embeddings capture the different
senses of a polysemous word. The monolithic view
of embeddings, with the internal information ex-
tracted only via inner product, is felt to fail in cap-
turing word senses (Griffiths et al., 2007; Reisinger
and Mooney, 2010; Iacobacci et al., 2015). Re-
searchers have instead sought to capture polysemy
using more complicated representations, e.g., by in-
ducing separate embeddings for each sense (Murphy
et al., 2012; Huang et al., 2012). These embedding-
per-sense representations grow naturally out of
classic Word Sense Induction or WSI (Yarowsky,
1995; Schutze, 1998; Reisinger and Mooney, 2010;
Di Marco and Navigli, 2013) techniques that per-
form clustering on neighboring words.

The current paper goes beyond this mono-
lithic view, by describing how multiple senses
of a word actually reside in linear superposi-
tion within the standard word embeddings (e.g.,
word2vec (Mikolov et al., 2013a) and GloVe (Pen-
nington et al., 2014)). By this we mean the follow-
ing: consider a polysemous word, say tie, which can
refer to an article of clothing, or a drawn match, or a
physical act. Let’s take the usual viewpoint that tie
is a single token that represents monosemous words
tie1, tie2, .... The theory and experiments in this
paper strongly suggest that word embeddings com-
puted using modern techniques such as GloVe and
word2vec satisfy:

vtie ≈ α1 vtie1 + α2 vtie2 + α3 vtie3 + · · · (1)

where coefficients αi’s are nonnegative and
vtie1, vtie2, etc., are the hypothetical embeddings of
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the different senses—those that would have been
induced in the thought experiment where all oc-
currences of the different senses were hand-labeled
in the corpus. This Linearity Assertion, whereby
linear structure appears out of a highly nonlinear
embedding technique, is explained theoretically in
Section 2, and then empirically tested in a couple of
ways in Section 4.

Section 3 uses the linearity assertion to show how
to do WSI via sparse coding, which can be seen as
a linear algebraic analog of the classic clustering-
based approaches, albeit with overlapping clusters.
On standard testbeds it is competitive with earlier
embedding-for-each-sense approaches (Section 6).
A novelty of our WSI method is that it automat-
ically links different senses of different words via
our atoms of discourse (Section 3). This can be
seen as an answer to the suggestion in (Reisinger
and Mooney, 2010) to enhance one-embedding-per-
sense methods so that they can automatically link
together senses for different words, e.g., recognize
that the “article of clothing” sense of tie is connected
to shoe, jacket, etc.

This paper is inspired by the solution of word
analogies via linear algebraic methods (Mikolov et
al., 2013b), and use of sparse coding on word em-
beddings to get useful representations for many NLP
tasks (Faruqui et al., 2015). Our theory builds
conceptually upon the random walk on discourses
model of Arora et al. (2016), although we make
a small but important change to explain empirical
findings regarding polysemy. Our WSI procedure
applies (with minor variation in performance) to
canonical embeddings such as word2vec and GloVe
as well as the older vector space methods such as
PMI (Church and Hanks, 1990). This is not surpris-
ing since these embeddings are known to be interre-
lated (Levy and Goldberg, 2014; Arora et al., 2016).

2 Justification for Linearity Assertion

Since word embeddings are solutions to nonconvex
optimization problems, at first sight it appears hope-
less to reason about their finer structure. But it be-
comes possible to do so using a generative model for
language (Arora et al., 2016) — a dynamic versions
by the log-linear topic model of (Mnih and Hinton,
2007)—which we now recall. It posits that at every

point in the corpus there is a micro-topic (“what is
being talked about”) called discourse that is drawn
from the continuum of unit vectors in ℜd. The pa-
rameters of the model include a vector vw ∈ ℜd for
each word w. Each discourse c defines a distribution
over words Pr[w | c] ∝ exp(c · vw). The model as-
sumes that the corpus is generated by the slow geo-
metric random walk of c over the unit sphere in ℜd :
when the walk is at c, a few words are emitted by
i.i.d. samples from the distribution (2), which, due to
its log-linear form, strongly favors words close to c
in cosine similarity. Estimates for learning parame-
ters vw using MLE and moment methods correspond
to standard embedding methods such as GloVe and
word2vec (see the original paper).

To study how word embeddings capture word
senses, we’ll need to understand the relationship be-
tween a word’s embedding and those of words it
co-occurs with. In the next subsection, we pro-
pose a slight modification to the above model and
shows how to infer the embedding of a word from
the embeddings of other words that co-occur with it.
This immediately leads to the Linearity Assertion,
as shown in Section 2.2.

2.1 Gaussian Walk Model
As alluded to before, we modify the random walk
model of (Arora et al., 2016) to the Gaussian ran-
dom walk model. Again, the parameters of the model
include a vector vw ∈ ℜd for each word w. The
model assumes the corpus is generated as follows.
First, a discourse vector c is drawn from a Gaussian
with mean 0 and covariance Σ. Then, a window of
n words w1, w2, . . . , wn are generated from c by:

Pr[w1, w2, . . . , wn| c] =

n∏

i=1

Pr[wi| c], (2)

Pr[wi | c] = exp(c · vwi)/Zc, (3)

where Zc =
∑

w exp(⟨vw, c⟩) is the partition func-
tion. We also assume the partition function concen-
trates in the sense that Zc ≈ Z exp(∥c∥2) for some
constant Z. This is a direct extension of (Arora
et al., 2016, Lemma 2.1) to discourse vectors with
norm other than 1, and causes the additional term
exp(∥c∥2).1

1The formal proof of (Arora et al., 2016) still applies in this
setting. The simplest way to informally justify this assumption
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Theorem 1. Assume the above generative model,
and let s denote the random variable of a window
of n words. Then, there is a linear transformation A
such that vw ≈ A E

[
1
n

∑
wi∈s vwi | w ∈ s

]
.

Proof. Let cs be the discourse vector for the whole
window s. By the law of total expectation, we have

E [cs | w ∈ s]

=E [E[cs | s = w1 . . . wj−1wwj+1 . . . wn] | w ∈ s] .
(4)

We evaluate the two sides of the equation.
First, by Bayes’ rule and the assumptions on the

distribution of c and the partition function, we have:

p(c|w) ∝ p(w|c)p(c)

∝ 1

Zc
exp(⟨vw, c⟩) · exp

(
−1

2
c⊤Σ−1c

)

≈ 1

Z
exp

(
⟨vw, c⟩ − c⊤

(
1

2
Σ−1 + I

)
c

)
.

So c | w is a Gaussian distribution with mean

E [c | w] ≈ (Σ−1 + 2I)−1vw. (5)

Next, we compute E[c|w1, . . . , wn]. Again using
Bayes’ rule and the assumptions on the distribution
of c and the partition function,

p(c|w1, . . . , wn)

∝ p(w1, . . . , wn|c)p(c)

∝ p(c)
n∏

i=1

p(wi|c)

≈ 1

Zn
exp

(
n∑

i=1

v⊤
wi

c− c⊤
(

1

2
Σ−1 + nI

)
c

)
.

So c|w1 . . . wn is a Gaussian distribution with mean

E[c|w1, . . . , wn] ≈
(
Σ−1 + 2nI

)−1
n∑

i=1

vwi . (6)

Now plugging in equation (5) and (6) into equa-
tion (4), we conclude that

(Σ−1 + 2I)−1vw ≈ (Σ−1 + 2nI)−1E

[
n∑

i=1

vwi
| w ∈ s

]
.

is to assume vw are random vectors, and then Zc can be shown
to concentrate around exp(∥c∥2). Such a condition enforces
the word vectors to be isotropic to some extent, and makes the
covariance of the discourse identifiable.

Re-arranging the equation completes the proof with
A = n(Σ−1 + 2I)(Σ−1 + 2nI)−1.

Note: Interpretation. Theorem 1 shows that there
exists a linear relationship between the vector of a
word and the vectors of the words in its contexts.
Consider the following thought experiment. First,
choose a word w. Then, for each window s contain-
ing w, take the average of the vectors of the words
in s and denote it as vs. Now, take the average of vs

for all the windows s containing w, and denote the
average as u. Theorem 1 says that u can be mapped
to the word vector vw by a linear transformation that
does not depend on w. This linear structure may also
have connections to some other phenomena related
to linearity, e.g., Gittens et al. (2017) and Tian et al.
(2017). Exploring such connections is left for future
work.

The linear transformation is closely related to Σ,
which describes the distribution of the discourses.
If we choose a coordinate system such that Σ is
a diagonal matrix with diagonal entries λi, then A
will also be a diagonal matrix with diagonal en-
tries (n + 2nλi)/(1 + 2nλi). This is smoothing the
spectrum and essentially shrinks the directions cor-
responding to large λi relatively to the other direc-
tions. Such directions are for common discourses
and thus common words. Empirically, we indeed
observe that A shrinks the directions of common
words. For example, its last right singular vector
has, as nearest neighbors, the vectors for words like
“with”, “as”, and “the.” Note that empirically, A is
not a diagonal matrix since the word vectors are not
in the coordinate system mentioned.
Note: Implications for GloVe and word2vec.
Repeating the calculation in Arora et al. (2016)
for our new generative model, we can show that
the solutions to GloVe and word2vec training ob-
jectives solve for the following vectors: v̂w =(
Σ−1 + 4I

)−1/2
vw. Since these other embeddings

are the same as vw’s up to linear transformation,
Theorem 1 (and the Linearity Assertion) still holds
for them. Empirically, we find that

(
Σ−1 + 4I

)−1/2

is close to a scaled identity matrix (since ∥Σ−1∥2 is
small), so v̂w’s can be used as a surrogate of vw’s.
Experimental note: Using better sentence em-
beddings, SIF embeddings. Theorem 1 implicitly
uses the average of the neighboring word vectors as
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an estimate (MLE) for the discourse vector. This
estimate is of course also a simple sentence em-
bedding, very popular in empirical NLP work and
also reminiscent of word2vec’s training objective.
In practice, this naive sentence embedding can be
improved by taking a weighted combination (often
tf-idf) of adjacent words. The paper (Arora et al.,
2017) uses a simple twist to the generative model
in (Arora et al., 2016) to provide a better estimate of
the discourse c called SIF embedding, which is bet-
ter for downstream tasks and surprisingly compet-
itive with sophisticated LSTM-based sentence em-
beddings. It is a weighted average of word em-
beddings in the window, with smaller weights for
more frequent words (reminiscent of tf-idf). This
weighted average is the MLE estimate of c if above
generative model is changed to:

p(w|c) = αp(w) + (1− α)
exp(vw · c)

Zc
,

where p(w) is the overall probability of word w in
the corpus and α > 0 is a constant (hyperparameter).

The theory in the current paper works with SIF
embeddings as an estimate of the discourse c; in
other words, in Theorem 1 we replace the average
word vector with the SIF vector of that window. Em-
pirically we find that it leads to similar results in test-
ing our theory (Section 4) and better results in down-
stream WSI applications (Section 6). Therefore, SIF
embeddings are adopted in our experiments.

2.2 Proof of Linearity Assertion

Now we use Theorem 1 to show how the Linear-
ity Assertion follows. Recall the thought experiment
considered there. Suppose word w has two distinct
senses s1 and s2. Compute a word embedding vw for
w. Then hand-replace each occurrence of a sense of
w by one of the new tokens s1, s2 depending upon
which one is being used. Next, train separate embed-
dings for s1, s2 while keeping the other embeddings
fixed. (NB: the classic clustering-based sense induc-
tion (Schutze, 1998; Reisinger and Mooney, 2010)
can be seen as an approximation to this thought ex-
periment.)

Theorem 2 (Main). Assuming the model of Sec-
tion 2.1, embeddings in the thought experiment
above will satisfy ∥vw − v̄w∥2 → 0 as the corpus

length tends to infinity, where v̄w ≈ αvs1 + βvs2 for

α =
f1

f1 + f2
, β =

f2

f1 + f2
,

where f1 and f2 are the numbers of occurrences of
s1, s2 in the corpus, respectively.

Proof. Suppose we pick a random sample of N win-
dows containing w in the corpus. For each window,
compute the average of the word vectors and then
apply the linear transformation in Theorem 1. The
transformed vectors are i.i.d. estimates for vw, but
with high probability about f1/(f1 + f2) fraction of
the occurrences used sense s1 and f2/(f1 +f2) used
sense s2, and the corresponding estimates for those
two subpopulations converge to vs1 and vs2 respec-
tively. Thus by construction, the estimate for vw is a
linear combination of those for vs1 and vs2 .

Note. Theorem 1 (and hence the Linearity Asser-
tion) holds already for the original model in Arora
et al. (2016) but with A = I, where I is the iden-
tity transformation. In practice, we find inducing the
word vector requires a non-identity A, which is the
reason for the modified model of Section 2.1. This
also helps to address a nagging issue hiding in older
clustering-based approaches such as Reisinger and
Mooney (2010) and Huang et al. (2012), which iden-
tified senses of a polysemous word by clustering the
sentences that contain it. One imagines a good rep-
resentation of the sense of an individual cluster is
simply the cluster center. This turns out to be false
— the closest words to the cluster center sometimes
are not meaningful for the sense that is being cap-
tured; see Table 1. Indeed, the authors of Reisinger
and Mooney (2010) seem aware of this because they
mention “We do not assume that clusters correspond
to traditional word senses. Rather, we only rely
on clusters to capture meaningful variation in word
usage.” We find that applying A to cluster centers
makes them meaningful again. See also Table 1.

3 Towards WSI: Atoms of Discourse

Now we consider how to do WSI using only word
embeddings and the Linearity Assertion. Our ap-
proach is fully unsupervised, and tries to induce
senses for all words in one go, together with a vector
representation for each sense.
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center 1
before and provide providing a
after providing provide opportunities provision

center 2
before and a to the
after access accessible allowing provide

Table 1: Four nearest words for some cluster cen-
ters that were computed for the word “access” by
applying 5-means on the estimated discourse vec-
tors (see Section 2.1) of 1000 random windows from
Wikipedia containing “access”. After applying the
linear transformation of Theorem 1 to the center, the
nearest words become meaningful.

Given embeddings for all words, it seems un-
clear at first sight how to pin down the senses of
tie using only (1) since vtie can be expressed in in-
finitely many ways as such a combination, and this
is true even if αi’s were known (and they aren’t).
To pin down the senses we will need to interrelate
the senses of different words, for example, relate the
“article of clothing” sense tie1 with shoe, jacket, etc.
To do so we rely on the generative model of Sec-
tion 2.1 according to which unit vector in the em-
bedding space corresponds to a micro-topic or dis-
course. Empirically, discourses c and c′ tend to look
similar to humans (in terms of nearby words) if their
inner product is larger than 0.85, and quite different
if the inner product is smaller than 0.5. So in the dis-
cussion below, a discourse should really be thought
of as a small region rather than a point.

One imagines that the corpus has a “clothing” dis-
course that has a high probability of outputting the
tie1 sense, and also of outputting related words such
as shoe, jacket, etc. By (2) the probability of be-
ing output by a discourse is determined by the inner
product, so one expects that the vector for “clothing”
discourse has a high inner product with all of shoe,
jacket, tie1, etc., and thus can stand as surrogate for
vtie1 in (1)! Thus it may be sufficient to consider the
following global optimization:

Given word vectors {vw} in ℜd and two inte-
gers k, m with k < m, find a set of unit vectors
A1, A2, . . . , Am such that

vw =

m∑

j=1

αw,jAj + ηw (7)

where at most k of the coefficients αw,1, . . . , αw,m

are nonzero, and ηw’s are error vectors.

Here k is the sparsity parameter, and m is the
number of atoms, and the optimization minimizes
the norms of ηw’s (the ℓ2-reconstruction error):

∑

w

∥∥∥∥vw −
m∑

j=1

αw,jAj

∥∥∥∥
2

2

. (8)

Both Aj’s and αw,j’s are unknowns, and the opti-
mization is nonconvex. This is just sparse coding,
useful in neuroscience (Olshausen and Field, 1997)
and also in image processing, computer vision, etc.

This optimization is a surrogate for the desired ex-
pansion of vtie as in (1), because one can hope that
among A1, . . . , Am there will be directions corre-
sponding to clothing, sports matches, etc., that will
have high inner products with tie1, tie2, etc., re-
spectively. Furthermore, restricting m to be much
smaller than the number of words ensures that the
typical Ai needs to be reused to express multiple
words.

We refer to Ai’s, discovered by this procedure, as
atoms of discourse, since experimentation suggests
that the actual discourse in a typical place in text
(namely, vector c in (2)) is a linear combination of a
small number, around 3-4, of such atoms. Implica-
tions of this for text analysis are left for future work.
Relationship to Clustering. Sparse coding is
solved using alternating minimization to find the
Ai’s that minimize (8). This objective function re-
veals sparse coding to be a linear algebraic analogue
of overlapping clustering, whereby the Ai’s act as
cluster centers and each vw is assigned in a soft way
to at most k of them (using the coefficients αw,j , of
which at most k are nonzero). In fact this clustering
viewpoint is also the basis of the alternating mini-
mization algorithm. In the special case when k = 1,
each vw has to be assigned to a single cluster, which
is the familiar geometric clustering with squared ℓ2

distance.
Similar overlapping clustering in a traditional

graph-theoretic setup —clustering while simultane-
ously cross-relating the senses of different words—
seems more difficult but worth exploring.

4 Experimental Tests of Theory

4.1 Test of Gaussian Walk Model: Induced
Embeddings

Now we test the prediction of the Gaussian walk
model suggesting a linear method to induce embed-
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#paragraphs 250k 500k 750k 1 million
cos similarity 0.94 0.95 0.96 0.96

Table 2: Fitting the GloVe word vectors with aver-
age discourse vectors using a linear transformation.
The first row is the number of paragraphs used to
compute the discourse vectors, and the second row
is the average cosine similarities between the fitted
vectors and the GloVe vectors.

dings from the context of a word. Start with the
GloVe embeddings; let vw denote the embedding
for w. Randomly sample many paragraphs from
Wikipedia, and for each word w′ and each occur-
rence of w′ compute the SIF embedding of text in
the window of 20 words centered around w′. Aver-
age the SIF embeddings for all occurrences of w′ to
obtain vector uw′ . The Gaussian walk model says
that there is a linear transformation that maps uw′ to
vw′ , so solve the regression:

argminA

∑

w

∥Auw − vw∥22. (9)

We call the vectors Auw the induced embeddings.
We can test this method of inducing embeddings by
holding out 1/3 words randomly, doing the regres-
sion (9) on the rest, and computing the cosine sim-
ilarities between Auw and vw on the heldout set of
words.

Table 2 shows that the average cosine similar-
ity between the induced embeddings and the GloVe
vectors is large. By contrast the average similar-
ity between the average discourse vectors and the
GloVe vectors is much smaller (about 0.58), illus-
trating the need for the linear transformation. Sim-
ilar results are observed for the word2vec and SN
vectors (Arora et al., 2016).

4.2 Test of Linearity Assertion

We do two empirical tests of the Linearity Assertion
(Theorem 2).
Test 1. The first test involves the classic artificial
polysemous words (also called pseudowords). First,
pre-train a set W1 of word vectors on Wikipedia with
existing embedding methods. Then, randomly pick
m pairs of non-repeated words, and for each pair,
replace each occurrence of either of the two words

m pairs 10 103 3 · 104

relative error
SN 0.32 0.63 0.67

GloVe 0.29 0.32 0.51

cos similarity
SN 0.90 0.72 0.75

GloVe 0.91 0.91 0.77

Table 3: The average relative errors and cosine sim-
ilarities between the vectors of pseudowords and
those predicted by Theorem 2. m pairs of words are
randomly selected and for each pair, all occurrences
of the two words in the corpus is replaced by a pseu-
doword. Then train the vectors for the pseudowords
on the new corpus.

with a pseudoword. Third, train a set W2 of vectors
on the new corpus, while holding fixed the vectors
of words that were not involved in the pseudowords.
Construction has ensured that each pseudoword has
two distinct “senses”, and we also have in W1 the
“ground truth” vectors for those senses.2 Theorem 2
implies that the embedding of a pseudoword is a lin-
ear combination of the sense vectors, so we can com-
pare this predicted embedding to the one learned in
W2.3

Suppose the trained vector for a pseudoword w
is uw and the predicted vector is vw, then the
comparison criterion is the average relative error
1

|S|
∑

w∈S
∥uw−vw∥2

2

∥vw∥2
2

where S is the set of all the
pseudowords. We also report the average cosine
similarity between vw’s and uw’s.

Table 3 shows the results for the GloVe and
SN (Arora et al., 2016) vectors, averaged over 5
runs. When m is small, the error is small and the co-
sine similarity is as large as 0.9. Even if m = 3 ·104

2Note that this discussion assumes that the set of pseu-
dowords is small, so that a typical neighborhood of a pseu-
doword does not consist of other pseudowords. Otherwise the
ground truth vectors in W1 become a bad approximation to the
sense vectors.

3Here W2 is trained while fixing the vectors of words not
involved in pseudowords to be their pre-trained vectors in W1.
We can also train all the vectors in W2 from random initializa-
tion. Such W2 will not be aligned with W1. Then we can learn
a linear transformation from W2 to W1 using the vectors for the
words not involved in pseudowords, apply it on the vectors for
the pseudowords, and compare the transformed vectors to the
predicted ones. This is tested on word2vec, resulting in relative
errors between 20% and 32%, and cosine similarities between
0.86 and 0.92. These results again support our analysis.
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vector type GloVe skip-gram SN
cosine 0.72 0.73 0.76

Table 4: The average cosine of the angles between
the vectors of words and the span of vector represen-
tations of its senses. The words tested are those in
the WSI task of SemEval 2010.

(i.e., about 90% of the words in the vocabulary are
replaced by pseudowords), the cosine similarity re-
mains above 0.7, which is significant in the 300 di-
mensional space. This provides positive support for
our analysis.
Test 2. The second test is a proxy for what would
be a complete (but laborious) test of the Linearity
Assertion: replicating the thought experiment while
hand-labeling sense usage for many words in a cor-
pus. The simpler proxy is as follows. For each
word w, WordNet (Fellbaum, 1998) lists its vari-
ous senses by providing definition and example sen-
tences for each sense. This is enough text (roughly
a paragraph’s worth) for our theory to allow us to
represent it by a vector —specifically, apply the SIF
sentence embedding followed by the linear transfor-
mation learned as in Section 4.1. The text embed-
ding for sense s should approximate the ground truth
vector vs for it. Then the Linearity Assertion pre-
dicts that embedding vw lies close to the subspace
spanned by the sense vectors. (Note that this is a
nontrivial event: in 300 dimensions a random vector
will be quite far from the subspace spanned by some
3 other random vectors.) Table 4 checks this predic-
tion using the polysemous words appearing in the
WSI task of SemEval 2010. We tested three stan-
dard word embedding methods: GloVe, the skip-
gram variant of word2vec, and SN (Arora et al.,
2016). The results show that the word vectors are
quite close to the subspace spanned by the senses.

5 Experiments with Atoms of Discourse

The experiments use 300-dimensional embeddings
created using the SN objective in (Arora et al., 2016)
and a Wikipedia corpus of 3 billion tokens (Wikime-
dia, 2012), and the sparse coding is solved by stan-
dard k-SVD algorithm (Damnjanovic et al., 2010).
Experimentation showed that the best sparsity pa-
rameter k (i.e., the maximum number of allowed

senses per word) is 5, and the number of atoms m
is about 2000. For the number of senses k, we
tried plausible alternatives (based upon suggestions
of many colleagues) that allow k to vary for differ-
ent words, for example to let k be correlated with the
word frequency. But a fixed choice of k = 5 seems
to produce just as good results. To understand why,
realize that this method retains no information about
the corpus except for the low dimensional word em-
beddings. Since the sparse coding tends to express
a word using fairly different atoms, examining (7)
shows that

∑
j α2

w,j is bounded by approximately
∥vw∥22. So if too many αw,j’s are allowed to be
nonzero, then some must necessarily have small co-
efficients, which makes the corresponding compo-
nents indistinguishable from noise. In other words,
raising k often picks not only atoms corresponding
to additional senses, but also many that don’t.

The best number of atoms m was found to be
around 2000. This was estimated by re-running
the sparse coding algorithm multiple times with dif-
ferent random initializations, whereupon substantial
overlap was found between the two bases: a large
fraction of vectors in one basis were found to have
a very close vector in the other. Thus combining
the bases while merging duplicates yielded a basis of
about the same size. Around 100 atoms are used by
a large number of words or have no close-by words.
They appear semantically meaningless and are ex-
cluded by checking for this condition.4

The content of each atom can be discerned by
looking at the nearby words in cosine similarity.
Some examples are shown in Table 5. Each word is
represented using at most five atoms, which usually
capture distinct senses (with some noise/mistakes).
The senses recovered for tie and spring are shown
in Table 6. Similar results can be obtained by using
other word embeddings like word2vec and GloVe.

We also observe sparse coding procedures assign
nonnegative values to most coefficients αw,j’s even
if they are left unrestricted. Probably this is because
the appearances of a word are best explained by what
discourse is being used to generate it, rather than
what discourses are not being used.

4We think semantically meaningless atoms —i.e., unex-
plained inner products—exist because a simple language model
such as ours cannot explain all observed co-occurrences due to
grammar, stopwords, etc. It ends up needing smoothing terms.
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Atom 1978 825 231 616 1638 149 330
drowning instagram stakes membrane slapping orchestra conferences
suicides twitter thoroughbred mitochondria pulling philharmonic meetings
overdose facebook guineas cytosol plucking philharmonia seminars
murder tumblr preakness cytoplasm squeezing conductor workshops
poisoning vimeo filly membranes twisting symphony exhibitions
commits linkedin fillies organelles bowing orchestras organizes
stabbing reddit epsom endoplasmic slamming toscanini concerts
strangulation myspace racecourse proteins tossing concertgebouw lectures
gunshot tweets sired vesicles grabbing solti presentations

Table 5: Some discourse atoms and their nearest 9 words. By Equation (2), words most likely to appear in
a discourse are those nearest to it.

tie spring
trousers season scoreline wires operatic beginning dampers flower creek humid
blouse teams goalless cables soprano until brakes flowers brook winters
waistcoat winning equaliser wiring mezzo months suspension flowering river summers
skirt league clinching electrical contralto earlier absorbers fragrant fork ppen
sleeved finished scoreless wire baritone year wheels lilies piney warm
pants championship replay cable coloratura last damper flowered elk temperatures

Table 6: Five discourse atoms linked to the words tie and spring. Each atom is represented by its nearest 6
words. The algorithm often makes a mistake in the last atom (or two), as happened here.

Relationship to Topic Models. Atoms of discourse
may be reminiscent of results from other automated
methods for obtaining a thematic understanding of
text, such as topic modeling, described in the sur-
vey by Blei (2012). This is not surprising since the
model (2) used to compute the embeddings is re-
lated to a log-linear topic model by Mnih and Hinton
(2007). However, the discourses here are computed
via sparse coding on word embeddings, which can
be seen as a linear algebraic alternative, resulting in
fairly fine-grained topics. Atoms are also reminis-
cent of coherent “word clusters” detected in the past
using Brown clustering, or even sparse coding (Mur-
phy et al., 2012). The novelty in this paper is a clear
interpretation of the sparse coding results as atoms
of discourse, as well as its use to capture different
word senses.

6 Testing WSI in Applications

While the main result of the paper is to reveal the
linear algebraic structure of word senses within ex-
isting embeddings, it is desirable to verify that this
view can yield results competitive with earlier sense
embedding approaches. We report some tests be-

low. We find that common word embeddings per-
form similarly with our method; for concreteness we
use induced embeddings described in Section 4.1.
They are evaluated in three tasks: word sense induc-
tion task in SemEval 2010 (Manandhar et al., 2010),
word similarity in context (Huang et al., 2012), and
a new task we called police lineup test. The results
are compared to those of existing embedding based
approaches reported in related work (Huang et al.,
2012; Neelakantan et al., 2014; Mu et al., 2017).

6.1 Word Sense Induction
In the WSI task in SemEval 2010, the algorithm is
given a polysemous word and about 40 pieces of
texts, each using it according to a single sense. The
algorithm has to cluster the pieces of text so that
those with the same sense are in the same cluster.
The evaluation criteria are F-score (Artiles et al.,
2009) and V-Measure (Rosenberg and Hirschberg,
2007). The F-score tends to be higher with a smaller
number of clusters and the V-Measure tends to be
higher with a larger number of clusters, and fair eval-
uation requires reporting both.

Given a word and its example texts, our algorithm
uses a Bayesian analysis dictated by our theory to
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compute a vector uc for each piece of text c and
and then applies k-means on these vectors, with the
small twist that sense vectors are assigned to near-
est centers based on inner products rather than Eu-
clidean distances. Table 7 shows the results.
Computing vector uc. For word w we start by com-
puting its expansion in terms of atoms of discourse
(see (8) in Section 3). In an ideal world the nonzero
coefficients would exactly capture its senses, and
each text containing w would match to one of these
nonzero coefficients. In the real world such deter-
ministic success is elusive and one must reason us-
ing Bayes’ rule.

For each atom a, word w and text c there is a joint
distribution p(w, a, c) describing the event that atom
a is the sense being used when word w was used in
text c. We are interested in the posterior distribution:

p(a|c, w) ∝ p(a|w)p(a|c)/p(a). (10)

We approximate p(a|w) using Theorem 2, which
suggests that the coefficients in the expansion of vw

with respect to atoms of discourse scale according to
probabilities of usage. (This assertion involves ig-
noring the low-order terms involving the logarithm
in the theorem statement.) Also, by the random walk
model, p(a|c) can be approximated by exp(⟨va, vc⟩)
where vc is the SIF embedding of the context. Fi-
nally, since p(a) = Ec[p(a|c)], it can be empirically
estimated by randomly sampling c.

The posterior p(a|c, w) can be seen as a soft de-
coding of text c to atom a. If texts c1, c2 both contain
w, and they were hard decoded to atoms a1, a2 re-
spectively then their similarity would be ⟨va1 , va2⟩.
With our soft decoding, the similarity can be defined
by taking the expectation over the full posterior:

similarity(c1, c2)

= Eai∼p(a|ci,w),i∈{1,2}⟨va1 , va2⟩, (11)

=

⟨∑

a1

p(a1|c1, w)va1 ,
∑

a2

p(a2|c2, w)va2

⟩
.

At a high level this is analogous to the Bayesian
polysemy model of Reisinger and Mooney (2010)
and Brody and Lapata (2009), except that they in-
troduced separate embeddings for each sense clus-
ter, while here we are working with structure already
existing inside word embeddings.

Method V-Measure F-Score
(Huang et al., 2012) 10.60 38.05

(Neelakantan et al., 2014) 9.00 47.26
(Mu et al., 2017), k = 2 7.30 57.14
(Mu et al., 2017), k = 5 14.50 44.07

ours, k = 2 6.1 58.55
ours, k = 3 7.4 55.75
ours, k = 4 9.9 51.85
ours, k = 5 11.5 46.38

Table 7: Performance of different vectors in the WSI
task of SemEval 2010. The parameter k is the num-
ber of clusters used in the methods. Rows are di-
vided into two blocks, the first of which shows the
results of the competitors, and the second shows
those of our algorithm. Best results in each block
are in boldface.

The last equation suggests defining the vector uc

for the text c as

uc =
∑

a

p(a|c, w)va, (12)

which allows the similarity between two text pieces
to be expressed via the inner product of their vectors.
Results. The results are reported in Table 7. Our
approach outperforms the results by Huang et al.
(2012) and Neelakantan et al. (2014). When com-
pared to Mu et al. (2017), for the case with 2 centers,
we achieved better V-measure but lower F-score,
while for 5 centers, we achieved lower V-measure
but better F-score.

6.2 Word Similarity in Context

The dataset consists of around 2000 pairs of words,
along with the contexts the words occur in and the
ground-truth similarity scores. The evaluation cri-
terion is the correlation between the ground-truth
scores and the predicted ones. Our method computes
the estimated sense vectors and then the similarity as
in Section 6.1. We compare to the baselines that sim-
ply use the cosine similarity of the GloVe/skip-gram
vectors, and also to the results of several existing
sense embedding methods.
Results. Table 8 shows that our result is better
than those of the baselines and Mu et al. (2017),
but slightly worse than that of Huang et al. (2012).
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Method Spearman coefficient
GloVe 0.573

skip-gram 0.622
(Huang et al., 2012) 0.657

(Neelakantan et al., 2014) 0.567
(Mu et al., 2017) 0.637

ours 0.652

Table 8: The results for different methods in the task
of word similarity in context. The best result is in
boldface. Our result is close to the best.

Note that Huang et al. (2012) retrained the vectors
for the senses on the corpus, while our method de-
pends only on senses extracted from the off-the-shelf
vectors. After all, our goal is to show word senses
already reside within off-the-shelf word vectors.

6.3 Police Lineup

Evaluating WSI systems can run into well-known
difficulties, as reflected in the changing metrics over
the years (Navigli and Vannella, 2013). Inspired by
word-intrusion tests for topic coherence (Chang et
al., 2009), we proposed a new simple test, which has
the advantages of being easy to understand, and ca-
pable of being administered to humans.

The testbed uses 200 polysemous words and their
704 senses according to WordNet. Each sense is
represented by 8 related words, which were col-
lected from WordNet and online dictionaries by col-
lege students, who were told to identify most rele-
vant other words occurring in the online definitions
of this word sense as well as in the accompany-
ing illustrative sentences. These are considered as
ground truth representation of the word sense. These
8 words are typically not synonyms. For example,
for the tool/weapon sense of axe they were “handle,
harvest, cutting, split, tool, wood, battle, chop.”

The quantitative test is called police lineup. First,
randomly pick one of these 200 polysemous words.
Second, pick the true senses for the word and then
add randomly picked senses from other words so
that there are n senses in total, where each sense is
represented by 8 related words as mentioned. Fi-
nally, the algorithm (or human) is given the polyse-
mous word and a set of n senses, and has to identify
the true senses in this set. Table 9 gives an example.

word senses

bat

1 navigate nocturnal mouse wing cave sonic fly dark
2 used hitting ball game match cricket play baseball
3 wink briefly shut eyes wink bate quickly action
4 whereby legal court law lawyer suit bill judge
5 loose ends two loops shoelaces tie rope string
6 horny projecting bird oral nest horn hard food

Table 9: An example of the police lineup test with
n = 6. The algorithm (or human subject) is given
the polysemous word “bat” and n = 6 senses each of
which is represented as a list of words, and is asked
to identify the true senses belonging to “bat” (high-
lighted in boldface for demonstration).

Algorithm 1 Our method for the police lineup test
Input: Word w, list S of senses (each has 8 words)
Output: t senses out of S

1: Heuristically find inflectional forms of w.
2: Find 5 atoms for w and each inflectional form. Let

U denote the union of all these atoms.
3: Initialize the set of candidate senses Cw ← ∅, and

the score for each sense L to score(L)← −∞
4: for each atom a ∈ U do
5: Rank senses L ∈ S by

score(a, L)=s(a, L)−sL
A + s(w, L)− sL

V

6: Add the two senses L with highest score(a, L) to
Cw, and update their scores

score(L)← max{score(L), score(a, L)}
7: Return the t senses L ∈ Cs with highest score(L)

Our method (Algorithm 1) uses the similarities
between any word (or atom) x and a set of words
Y , defined as s(x, Y ) = ⟨vx, vY ⟩ where vY is the
SIF embedding of Y . It also uses the average simi-
larities:

sY
A =

∑
a∈A s(a, Y )

|A| , sY
V =

∑
w∈V s(w, Y )

|V |
where A are all the atoms, and V are all the words.
We note two important practical details. First, while
we have been using atoms of discourse as a proxy
for word sense, these are too coarse-grained: the to-
tal number of senses (e.g., WordNet synsets) is far
greater than 2000. Thus the score(·) function uses
both the atom and the word vector. Second, some
words are more popular than the others—i.e., have
large components along many atoms and words—
which seems to be an instance of the smoothing
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Figure 1: Precision and recall in the police lineup test. (A) For each polysemous word, a set of n = 20 senses
containing the ground truth senses of the word are presented. Human subjects are told that on average each
word has 3.5 senses and were asked to choose the senses they thought were true. The algorithms select t
senses for t = 1, 2, . . . , 6. For each t, each algorithm was run 5 times (standard deviations over the runs are
too small to plot). (B) The performance of our method for t = 4 and n = 20, 30, . . . , 70.

phenomenon alluded to in Footnote 4. The penalty
terms sL

A and sL
V lower the scores of senses L con-

taining such words. Finally, our algorithm returns t
senses where t can be varied.
Results. The precision and recall for different n and
t (number of senses the algorithm returns) are pre-
sented in Figure 1. Our algorithm outperforms the
two selected competitors. For n = 20 and t = 4,
our algorithm succeeds with precision 65% and re-
call 75%, and performance remains reasonable for
n = 50. Giving the same test to humans5 for n = 20
(see the left figure) suggests that our method per-
forms similarly to non-native speakers.

Other word embeddings can also be used in the
test and achieved slightly lower performance. For
n = 20 and t = 4, the precision/recall are lower by
the following amounts: GloVe 2.3%/5.76%, NNSE
(matrix factorization on PMI to rank 300 by Murphy
et al. (2012)) 25%/28%.

7 Conclusions

Different senses of polysemous words have been
shown to lie in linear superposition inside standard
word embeddings like word2vec and GloVe. This
has also been shown theoretically building upon

5Human subjects are graduate students from science or engi-
neering majors at major U.S. universities. Non-native speakers
have 7 to 10 years of English language use/learning.

previous generative models, and empirical tests of
this theory were presented. A priori, one imagines
that showing such theoretical results about the in-
ner structure of modern word embeddings would
be hopeless since they are solutions to complicated
nonconvex optimization.

A new WSI method is also proposed based upon
these insights that uses only the word embeddings
and sparse coding, and shown to provide very com-
petitive performance on some WSI benchmarks.
One novel aspect of our approach is that the word
senses are interrelated using one of about 2000 dis-
course vectors that give a succinct description of
which other words appear in the neighborhood with
that sense. Our method based on sparse coding can
be seen as a linear algebraic analog of the cluster-
ing approaches, and also gives fine-grained thematic
structure reminiscent of topic models.

A novel police lineup test was also proposed for
testing such WSI methods, where the algorithm is
given a word w and word clusters, some of which
belong to senses of w and the others are distractors
belonging to senses of other words. The algorithm
has to identify the ones belonging to w. We con-
jecture this police lineup test with distractors will
challenge some existing WSI methods, whereas our
method was found to achieve performance similar to
non-native speakers.
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