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Abstract

Neural architectures are prominent in the con-
struction of language models (LMs). How-
ever, word-level prediction is typically agnos-
tic of subword-level information (characters
and character sequences) and operates over
a closed vocabulary, consisting of a limited
word set. Indeed, while subword-aware mod-
els boost performance across a variety of NLP
tasks, previous work did not evaluate the abil-
ity of these models to assist next-word predic-
tion in language modeling tasks. Such subword-
level informed models should be particularly
effective for morphologically-rich languages
(MRLs) that exhibit high type-to-token ratios.
In this work, we present a large-scale LM study
on 50 typologically diverse languages cover-
ing a wide variety of morphological systems,
and offer new LM benchmarks to the commu-
nity, while considering subword-level informa-
tion. The main technical contribution of our
work is a novel method for injecting subword-
level information into semantic word vectors,
integrated into the neural language modeling
training, to facilitate word-level prediction. We
conduct experiments in the LM setting where
the number of infrequent words is large, and
demonstrate strong perplexity gains across our
50 languages, especially for morphologically-
rich languages. Our code and data sets are pub-
licly available.

1 Introduction

Language Modeling (LM) is a key NLP task, serving
as an important component for applications that re-
quire some form of text generation, such as machine
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translation (Vaswani et al., 2013), speech recognition
(Mikolov et al., 2010), dialogue generation (Serban et
al., 2016), or summarisation (Filippova et al., 2015).

A traditional recurrent neural network (RNN) LM
setup operates on a limited closed vocabulary of
words (Bengio et al., 2003; Mikolov et al., 2010).
The limitation arises due to the model learning pa-
rameters exclusive to single words. A standard train-
ing procedure for neural LMs gradually modifies the
parameters based on contextual/distributional infor-
mation: each occurrence of a word token in train-
ing data contributes to the estimate of a word vector
(i.e., model parameters) assigned to this word type.
Low-frequency words therefore often have incorrect
estimates, not having moved far from their random
initialisation. A common strategy for dealing with
this issue is to simply exclude the low-quality param-
eters from the model (i.e., to replace them with the
<unk> placeholder), leading to only a subset of the
vocabulary being represented by the model.

This limited vocabulary assumption enables the
model to bypass the problem of unreliable word es-
timates for low-frequency and unseen words, but it
does not resolve it. The assumption is far from ideal,
partly due to the Zipfian nature of each language
(Zipf, 1949), and its limitation is even more pro-
nounced for morphologically-rich languages (MRLs):
these languages inherently generate a plethora of
words by their morphological systems. As a conse-
quence, there will be a large number of words for
which a standard RNN LM cannot guarantee a reli-
able word estimate.

Since gradual parameter estimation based on con-
textual information is not feasible for rare phenomena
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in the full vocabulary setup (Adams et al., 2017), it
is of crucial importance to construct and enable tech-
niques that can obtain these parameters in alternative
ways. One solution is to draw information from ad-
ditional sources, such as characters and character
sequences. As a consequence, such character-aware
models should facilitate LM word-level prediction in
a real-life LM setup which deals with a large amount
of low-frequency or unseen words.

Efforts into this direction have yielded exciting
results, primarily on the input side of neural LMs. A
standard RNN LM architecture relies on two word
representation matrices learned during training for
its input and next-word prediction. This effectively
means that there are two sets of per-word specific pa-
rameters that need to be trained. Recent work shows
that it is possible to generate a word representation
on-the-fly based on its constituent characters, thereby
effectively solving the problem for the parameter set
on the input side of the model (Kim et al., 2016; Lu-
ong and Manning, 2016; Miyamoto and Cho, 2016;
Ling et al., 2015). However, it is not straightforward
how to advance these ideas to the output side of the
model, as this second set of word-specific parameters
is directly responsible for the next-word prediction:
it has to encode a much wider range of information,
such as topical and semantic knowledge about words,
which cannot be easily obtained from its characters
alone (Jozefowicz et al., 2016).

While one solution is to directly output characters
instead of words (Graves, 2013; Miyamoto and Cho,
2016), a recent work from Jozefowicz et al. (2016)
suggests that such purely character-based architec-
tures, which do not reserve parameters for informa-
tion specific to single words, cannot attain state-of-
the-art LM performance on word-level prediction.

In this work, we combine the two worlds and pro-
pose a novel LM approach which relies on both word-
level (i.e., contextual) and subword-level knowledge.
In addition to training word-specific parameters for
word-level prediction using a regular LM objective,
our method encourages the parameters to also re-
flect subword-level patterns by injecting knowledge
about morphology. This information is extracted in
an unsupervised manner based on already available
information in convolutional filters from earlier net-
work layers. The proposed method leads to large
improvements in perplexity across a wide spectrum
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of languages: 22 in English, 144 in Hebrew, 378
in Finnish, 957 in Korean on our LM benchmarks.
We also show that the gains extend to another mul-
tilingual LM evaluation set, compiled recently for 7
languages by Kawakami et al. (2017).

We conduct a systematic LM study on 50 typo-
logically diverse languages, sampled to represent a
variety of morphological systems. We discuss the im-
plications of typological diversity on the LM task,
both theoretically in Section 2, and empirically in
Section 7; we find a clear correspondence between
performance of state-of-the art LMs and structural
linguistic properties. Further, the consistent perplex-
ity gains across the large sample of languages suggest
wide applicability of our novel method.

Finally, this article can also be read as a com-
prehensive multilingual analysis of current LM ar-
chitectures on a set of languages which is much
larger than the ones used in recent LM work
(Botha and Blunsom, 2014; Vania and Lopez, 2017,
Kawakami et al., 2017). We hope that this article
with its new datasets, methodology and models,
all available online at http://people.ds.cam.
ac.uk/dsg40/1lmmrl.html, will pave the way
for true multilingual research in language modeling.

2 LM Data and Typological Diversity

A language model defines a probability distribution
over sequences of tokens, and is typically trained to
maximise the likelihood of token input sequences.
Formally, the LM objective is expressed as follows:
P(ty, ..tn) = [[ Pltilts, . ti1). (1)
7
t; is a token with the index ¢ in the sequence. For
word-level prediction a token corresponds to one
word, whereas for character-level (also termed char-
level) prediction it is one character.

LMs are most commonly tested on Western Eu-
ropean languages. Standard LM benchmarks in En-
glish include the Penn Treebank (PTB) (Marcus et
al., 1993), the 1 Billion Word Benchmark (BWB)
(Chelba et al., 2014), and the Hutter Prize data (Hut-
ter, 2012). English datasets extracted from BBC
News (Greene and Cunningham, 2006) and IMDB
Movie Reviews (Maas et al., 2011) are also used for
LM evaluation (Wang and Cho, 2016; Miyamoto and



Cho, 2016; Press and Wolf, 2017).

Regarding multilingual LM evaluation, Botha and
Blunsom (2014) extract datasets for other languages
from the sets provided by the 2013 Workshop on
Statistical Machine Translation (WMT) (Bojar et al.,
2013): they experiment with Czech, French, Span-
ish, German and Russian. A recent work of Kim
et al. (2016) reuses these datasets and adds Arabic.
Ling et al. (2015) evaluate on English, Portuguese,
Catalan, German and Turkish datasets extracted from
Wikipedia. Verwimp et al. (2017) use a subset of the
Corpus of Spoken Dutch (Oostdijk, 2000) for Dutch
LM. Kawakami et al. (2017) evaluate on 7 European
languages using Wikipedia data, including Finnish.

Perhaps the largest and most diverse set of lan-
guages used for multilingual LM evaluation so far is
the one of Vania and Lopez (2017). Their study in-
cludes 10 languages in total representing several mor-
phological types (fusional, e.g., Russian, and aggluti-
native, e.g., Finnish), as well as languages with par-
ticular morphological phenomena (root-and-pattern
in Hebrew and reduplication in Malay). In this work,
we provide LM evaluation datasets for 50 typologi-
cally diverse languages, with their selection guided
by structural properties.

Language Selection Aiming for a comprehensive
multilingual LM evaluation, we include languages
for all possible types of morphological systems. Our
starting point is the Polyglot Wikipedia (PW) (Al-
Rfou et al., 2013). While at first PW seems com-
prehensive and quite large already (covering 40 lan-
guages), the majority of the PW languages are simi-
lar from both a genealogical perspective (26/40 are
Indo-European) and a geographic perspective (28/40
Western European). As a consequence, they share
many patterns and are not a representative sample of
the world’s languages.

In order to quantitatively analyse global trends and
cross-linguistic generalisations across a large set of
languages, we propose to test on all PW languages
and source additional data from the same domain,
Wikipedia', considering candidates in descending
order of corpus size and morphological type. Tradi-
tionally, languages have been grouped into the four

'Chinese, J apanese, and Thai are sourced from Wikipedia
and processed with the Polyglot tokeniser since we found their
preprocessing in the PW is not adequate for language modeling.
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Char-CNN-LSTM LM Fine-tuning
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Figure 1: An illustration of the Char-CNN-LSTM
LM and our fine-tuning post-processing method. Af-
ter each epoch we adapt word-level vectors in the
softmax embedding M ™ using samples based on fea-
tures from the char-level convolutional filters. The
figure follows the model flow bottom to the top.

main types: isolating, fusional, introflexive and ag-
glutinative, based on their position along a spectrum
measuring their preference on breaking up concepts
in many words (on one extreme) or rather compose
them into single words (on the other extreme).

However, even languages belonging to the same
type display different out-of-vocabulary rates and
type-token ratios. This happens because languages
specify different subsets of grammatical categories
(such as tense for verbs, or number for nouns) and
values (such as future for tense, plural for number).
The amount of grammatical categories expressed in a
language determines its inflectional synthesis (Bickel
and Nichols, 2013).

In our final sample of languages, we select lan-
guages belonging to morphological types different
from the fusional one, which is over-represented in
the PW. In particular, we include new isolating (Min
Nan, Burmese, Khmer), agglutinative (Basque, Geor-
gian, Kannada, Tamil, Mongolian, Javanese), and
introflexive languages (Amharic).



3 Underlying LM: Char-CNN-LSTM

As the underlying model we opt for the state-of-the-
art neural LM architecture of Kim et al. (2016): it has
been shown to work across a number of languages
and in a large-scale setup (Jozefowicz et al., 2016). It
already provides a solution for the input side param-
eters of the model by building word vectors based
on the word’s constituent character sequences. How-
ever, its output side still operates with a standard
word-level matrix within the closed and limited vo-
cabulary assumption. We refer to this model as Char-
CNN-LSTM and describe its details in the following.
Figure 1 (left) illustrates the model architecture.
Char-CNN-LSTM constructs input word vectors
based on the characters in each word using a convo-
lutional neural network (CNN) (LeCun et al., 1989),
then processes the input word-level using a LSTM
(Hochreiter and Schmidhuber, 1997). The next word
is predicted using word embeddings, a large number
of parameters which have to be trained specifically
to represent the semantics of single words. We refer
to this space of word representations as M™.
Formally, for the input layer the model trains a
look-up matrix C' € RIVI*de_ corresponding to one
d.-dimensional vector per character ¢ in the char
vocabulary V¢. For each input, it takes a sequence
of characters of a fixed length m, [c1, ...c;,], Where
m is the maximum length of all words in the word
vocabulary V%, and the length of each word is | < m.
Looking up all characters of a word yields a se-
quence of char representations in R%*!, which is
zero-padded to fit the fixed length m. For each
word one gets a sequence of char representations
C" € R%*™ passed through a 1D convolution:

i =tanh((C", H;) + b). (2)

H; € R%r.i%sijgq filter or kernel of size/width s; and
(A, B) = Tr(ABT) is the Frobenius inner product.
The model has multiple filters, H;, with kernels of
different width, s;, and dimensionality dy ;, 7 is used
to index filters. Since the model performs a convo-
lution over char embeddings, s; corresponds to the
char window the convolution is operating on: e.g., a
filter of width s; = 3 and d3; = 150 could be seen
as learning 150 features for detecting 3-grams.

By learning kernels of different width, s;, the
model can learn subword-level features for charac-
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ter sequences of different lengths. f;* is the output
of taking the convolution with filter H; for word
w. Since f;” can get quite large, its dimensional-
ity is reduced using max-over-time (1D) pooling:
yi¥ = max; f;"[j]. Here, j indexes the dimensions
dy,; of the filter f, and y;" € R, This corre-
sponds to taking the maximum value for each feature
of H;, with the intuition that the most informative
feature would have the highest activation. The out-
put of all max-pooling operations y;" is concatenated
to form a word vector 4 € R%, where d, is the
number of all features for all H;:

o U]

This vector is passed through a highway network
(Srivastava et al., 2015) to give the network the pos-
sibility to reweigh or transform the features: b =
Highway(y"). So far all transformations were done
per word; after the highway transformation word rep-
resentations are processed in a sequence by an LSTM
(Hochreiter and Schmidhuber, 1997):

3)

y* = concat([y},

0% = LSTM ([hep, , .- Prw,_,])- 4)

The LSTM yields one output vector oy per word
in the sequence, given all previous time steps
[Ywy s +-Yw,_, ] To predict the next word w;41, one
takes the dot product of the vector o’ € R with
a lookup matrix M* e R4*IV"l where d; corre-
sponds to the LSTM hidden state size. The vector
pes1 € RVl s normalised to contain values be-
tween 0 and 1, representing a probability distribution
over the next word. This corresponds to calculating
the softmax function for every word &k in V'*:

e(ot‘mk)
Zk/EVw e(Ot‘mk/)
where P(w;+1 = k|o) is the probability of the next

word w1 being k given oy, and my is the output
embedding vector taken from M™.

®)

p(wi1 = klog) =

Word-Level Vector Space: M The model pa-
rameters in M™ can be seen as the bottleneck of
the model, as they need to be trained specifically
for single words, leading to unreliable estimates for
infrequent words. As an analysis of the corpus statis-
tics later in Section 7 reveals, the Zipfian effect and
its influence on word vector estimation cannot be
fully resolved even with a large corpus, especially



taking into account how flexible MRLs are in terms
of word formation and combination. Yet, having a
good estimate for the parameters in M* is essential
for the final LM performance, as they are directly
responsible for the next-word prediction.

Therefore, our aim is to improve the quality of rep-
resentations in M, focusing on infrequent words. To
achieve this, we turn to another source of information:
character patterns. In other words, since M™ does
not have any information about character patterns
from lower layers, we seek a way to: a) detect words
with similar subword structures (i.e., “morpheme”-
level information), and b) let these words share their
semantic information.

4 Character-Aware Vector Space

The CNN part of Char-CNN-LSTM, see Eq. (3), in
fact provides information about such subword-level
patterns: the model constructs a word vector y* on-
the-fly based on the word’s constituent characters.
We let the model construct y* for all words in the vo-
cabulary, resulting in a character-aware word vector
space M¢ € RIV"1%dp_The construction of the space
is completely unsupervised and independent of the
word’s context; only the first (CNN) network layers
are activated. Our core idea is to leverage this in-
formation obtained from M € to influence the output
matrix M™, and consequently the network prediction,
and extend the model to handle unseen words.

We first take a closer look at the character-aware
space M€, and then describe how to improve and
expand the semantic space M™ based on the infor-
mation contained in M ¢ (Section 5). Each vocabulary
entry in M€ encodes character n-gram patterns about
the represented word, for 1 > n < 7. The n-gram
patterns arise through filters of different lengths, and
their maximum activation is concatenated to form
each individual vector y*. The matrix M€ is of di-
mensionality |V*| x 1100, where each of the 1,100
dimensions corresponds to the activation of one ker-
nel feature. In practice, dimensions [0,1,.. : 50]
correspond to single-character features, [50 : 150]
to character 2-grams, [150 : 300] to 3-grams. The
higher-order n-grams get assigned 200 dimensions
each, up to dimensions [900 : 1100] for 7-grams.

Drawing an analogy to work in computer vision
(Zeiler and Fergus, 2014; Chatfield et al., 2014), we
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s; Pattern Max Activations

ZH 1 FE, R BN, B, EA, L AW, AU, ARG
1 AR AH, &N, ZB, L, A, HR
1 Caps In, Ebru, VIC,...FAT, MW, MIT

TR 3 mu- .., mutfaginin, muharebe, muhtelif

6  Universite .., Universitesi’nin, iiniversitelerde

Table 1: Each CNN filter tends to have high acti-
vations for a small number of subword patterns. s;
denotes the filter size.

Word Nearest Neighbours

Urspriinglichkeit
DE Mittelwert

urspriingliche, Urstoff, urspriinglichen
Mittelwerten,Regelwerkes,Mittelweser

effektiv Effekt,Perfekt Effekte,perfekten,Respekt
K3 K, KA, REEK, K%, KEF

JA A7 INAL, XA T, F AT, Ny T
1725 1825, 1625, 1524mm, 1728
Magenta Maplet, Maya, Management

Table 2: Nearest neighbours for vocabulary words,
based on the character-aware vector space M°.

delve deeper into the filter activations and analyse the
key properties of the vector space M ©. The qualitative
analysis reveals that many features are interpretable
by humans, and indeed correspond to frequent sub-
word patterns, as illustrated in Table 1. For instance,
tokenised Chinese data favours short words: conse-
quently short filters activate strongly for one or two
characters. The first two filters (width 1) are highly
active for two common single characters each: one
filter is active for 5 (again, more), /> (not), and the
other for % (now), X (time period). Larger filters
(width 5-7) do not show interpretable patterns in Chi-
nese, since the vocabulary largely consists of short
words (length 1-4).

Agglutinative languages show a tendency towards
long words. We find that medium-sized filters (width
3-5) are active for morphemes or short common sub-
word units, and the long filters are activated for dif-
ferent surface realisations of the same root word. In
Turkish, one filter is highly active on various forms
of the word iiniversite (university). Further, in MRLs
with the Latin alphabet short filters are typically ac-
tive on capitalisation or special chars.

Table 2 shows examples of nearest neighbours
based on the activations in M€. The space seems
to be arranged according to shared subword patterns



based on the CNN features. It does not rely only on
a simple character overlap, but also captures shared
morphemes. This property is exploited to influence
the LM output word embedding matrix M* in a com-
pletely unsupervised way, as illustrated on the right
side of Figure 1.

5 Fine-Tuning the LM Prediction

While the output vector space M™ captures word-
level semantics, M¢ arranges words by subword
features. A model which relies solely on character-
level knowledge (similar to the information stored in
M*®) for word-level prediction cannot fully capture
word-level semantics and even hurts LM performance
(Jozefowicz et al., 2016). However, shared subword
units still provide useful evidence of shared semantics
(Cotterell et al., 2016; Vuli¢ et al., 2017): injecting
this into the space M™ to additionally reflect shared
subword-level information should lead to improved
word vector estimates, especially for MRLs.

5.1 Fine-Tuning and Constraints

We inject this information into M™ by adapting re-
cent fine-tuning (often termed retrofitting or special-
isation) methods for vector space post-processing
(Faruqui et al., 2015; Wieting et al., 2015; Mrksi¢ et
al., 2017; Vuli¢ et al., 2017, i.a.). These models enrich
initial vector spaces by encoding external knowledge
provided in the form of simple linguistic constraints
(i.e., word pairs) into the initial vector space.

There are two fundamental differences between
our work and previous work on specialisation. First,
previous models typically use rich hand-crafted lexi-
cal resources such as WordNet (Fellbaum, 1998) or
the Paraphrase Database (Ganitkevitch et al., 2013),
or manually defined rules (Vuli¢ et al., 2017) to ex-
tract the constraints, while we generate them directly
using the implicit knowledge coded in M €. Second,
our method is integrated into a language model: it per-
forms updates after each epoch of the LM training.?
In Section 5.2, we describe our model for fine-tuning
M™ based on the information provided in M€.

Our fine-tuning approach relies on constraints:
positive and negative word pairs (x;,x;), where

2We have also experimented with a variant which performs
only a post-hoc single update of the M matrix after the LM
training, but a variant which performs continuous per-epoch
updates is more beneficial for the final LM performance.
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x;, xj € VY. Iterating over each cue word x,, € V¥
we find a set of positive word pairs F,, and nega-
tive word pairs IV, their extraction is based on their
(dis)similarity with x,, in M €. Positive pairs (2, zp)
contain words x,, yielding the highest cosine similar-
ity to the x,, (=nearest neighbors) in M €. Negative
pairs (x,,, Z,,) are constructed by randomly sampling
words x,, from the vocabulary. Since M€ gets up-
dated during the LM training, we (re)generate the
sets P, and NN, after each epoch.

5.2 Attract-Preserve

We now present a method for fine-tuning the out-
put matrix M™ within the Char-CNN-LSTM LM
framework. As said, the fine-tuning procedure runs
after each epoch of the standard log-likelihood LM
training (see Figure 1). We adapt a variant of a state-
of-the-art post-processing specialisation procedure
(Wieting et al., 2015; MrkSi¢ et al., 2017). The idea
of the fine-tuning method, which we label Attract-
Preserve (AP), is to pull the positive pairs closer
together in the output word-level space, while push-
ing the negative pairs further away.

Let v; denote the word vector of the word x;. The
AP cost function has two parts: attract and preserve.
In the attract term, using the extracted sets P,, and
Ny, we push the vector of z,, to be closer to z,, by a
similarity margin § than to its negative sample x,,:

attr(Py, Ny) = Z Re LU (64yyvp—0y0p).

(Tw,Tp) € Pu,

(Zw,Zn ) ENw
ReLU (z) is the standard rectified linear unit (Nair
and Hinton, 2010). The § margin is set to 0.6 in all
experiments as in prior work (Mrksi¢ et al., 2017)
without any subsequent fine-tuning.

The preserve cost acts as a regularisation pulling

the “fine-tuned” vector back to its initial value:

pres(Pw,Nw) = Z )\regH{/w - Uw||2- (6)
Ty EVW
Areg = 1079 is the Lo-regularisation constant

(Mrksic et al., 2017); vy, is the original word vec-
tor before the procedure. This term tries to preserve
the semantic content present in the original vector
space, as long as this information does not contradict
the knowledge injected by the constraints. The final
cost function adds the two costs: cost = attr + pres.



6 Experiments

Datasets We use the Polyglot Wikipedia (Al-Rfou
et al., 2013) for all available languages except for
Japanese, Chinese, and Thai, and add these and fur-
ther languages using Wikipedia dumps. The Wiki
dumps were cleaned and preprocessed by the Poly-
glot tokeniser. We construct similarly-sized datasets
by extracting 46K sentences for each language from
the beginning of each dump, filtered to contain only
full sentences, and split into train (40K), validation
(3K), and test (3K). The final list of languages along
with standard language codes (ISO 639-1 standard,
used throughout the paper) and statistics on vocabu-
lary and token counts are provided in Table 4.

Evaluation Setup We report perplexity scores (Ju-
rafsky and Martin, 2017, Chapter 4.2.1) using the
full vocabulary of the respective LM dataset. This
means that we explicitly decide to retain also in-
frequent words in the modeled data. Replacing in-
frequent words by a placeholder token <unk> is a
standard technique in LM to obtain equal vocabu-
lary sizes across different datasets. Motivated by the
observation that infrequent words constitute a sig-
nificant part of the vocabulary in MRLs, and that
vocabulary sizes naturally differ between languages,
we have decided to avoid the <unk> placeholder for
low-frequency words, and run all models on the full
vocabulary (Adams et al., 2017; Grave et al., 2017).
We believe that this full-vocabulary setup offers
additional insight into the standard LM techniques,
leading to evaluation which pinpoints crucial limita-
tions of current word-based models with regard to
morphologically-rich languages. In our setup the vo-
cabulary contains all words occurring at least once in
the training set. To ensure a fair comparison between
all neural models, words occurring only in the test
set are mapped to a random vector with the same
technique for all neural models, as described next.

Sampling Vectors of Unseen Words Since zero-
shot semantic vector estimation at test time is an
unresolved problem, we seek an alternative way to
compare model predictions at test time. We report
all results with unseen test words being mapped to
one randomly sampled <unk> vector. The <unk>
vector is part of the vocabulary at training time, but
remains untrained and at its random initialization
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Character embedding size 15

Word embedding size 650
Number of RNN layers 2
Number of highway layers 2
Dropout value 0.5
Optimizer SGD
Learning rate 1.0
Learning rate decay 0.5
Parameter init: rand uniform [-0.05, 0.05]
Batch size 20

RNN sequence length 35

Max grad norm 5.0

Max word length dynamic
Max epochs 15 or 30
AP margin (9) 0.6

AP optimizer Adagrad
AP learning rate 0.05

AP gradient clip 2
AP regularization constant 107°
AP rare words frequency threshold 5

Table 3: Hyper-parameters.

since it never occurs in the training data. Therefore,
we sample a random <unk> vector at test time from
the same part of the space as the trained vectors,
using a normal distribution with the mean and the
variance of M™ and the same fixed random seed
for all models. We employ this methodology for all
neural LM models, and thereby ensure that results
are comparable.

Training Setup and Parameters We reproduce
the standard LM setup of Zaremba et al. (2015) and
parameter choices of Kim et al. (2016), with batches
of 20 and a sequence length of 35, where one step
corresponds to one token. The maximum word length
is chosen dynamically based on the longest word in
the corpus. The corpus is processed continuously, and
the RNN hidden state resets occur at the beginning of
each epoch. Parameters are optimised with stochastic
gradient descent. The gradient is averaged over the
batch size and sequence length. We then scale the
averaged gradient by the sequence length (=35) and
clip to 5.0 for more stable training. The learning rate
is 1.0, decayed by 0.5 after each epoch if the valida-
tion perplexity does not improve. We train all models
for 15 epochs on the smaller corpora, and for 30 on
the large ones, which is typically sufficient for model
convergence.

Our AP fine-tuning method operates on the whole



M™ space, but we only allow words more frequent
than 5 as cue words z,, (see Section 5 again), while
there are no restrictions on z,, and z,,.> Our prelimi-
nary analysis on the influence of the number of near-
est neighbours in M€ shows that this parameter has
only a moderate effect on the final LM scores. We
thus fix it to 3 positive and 3 negative samples for
each x,, without any tuning. AP is optimised with
Adagrad (Duchi et al., 2011) and a learning rate of
0.05, the gradients are clipped to +2.* A full sum-
mary of all hyper-parameters and their values is pro-
vided in Table 3.

(Baseline) Language Models The availability of
LM evaluation sets in a large number of diverse lan-
guages, described in Section 2, now provides an op-
portunity to perform a full-fledged multilingual anal-
ysis of representative LM architectures. At the same
time, these different architectures serve as the base-
lines for our novel model which fine-tunes the output
matrix M™.

As mentioned, the traditional LM setup is to
use words both on the input and on the output
side (Goodman, 2001; Bengio et al., 2003; De-
schacht and Moens, 2009) relying on n-gram word
sequences. We evaluate a strong model from the
n-gram family of models from the KenLM pack-
age (https.//github.com/kpu/kenlm): it is based on 5-
grams with extended Kneser-Ney smoothing (KNS5)
(Kneser and Ney, 1995; Heafield et al., 2013) 5. The
rationale behind including this non-neural model is
to also probe the limitations of such n-gram-based
LM architectures on a diverse set of languages.

Recurrent neural networks (RNNs), especially
Long-Short-Term Memory networks (LSTMs), have
taken over the LM universe recently (Mikolov et al.,
2010; Sundermeyer et al., 2015; Chen et al., 2016,
i.a.). These LMs map a sequence of input words
to embedding vectors using a look-up matrix. The
embeddings are passed to the LSTM as input, and

3This choice has been motivated by the observation that rare
words tend to have other rare words as their nearest neighbours.
Note that vectors of words from positive and negative examples,
and not only cue words, also get updated by the AP method.

*All scores with neural models are produced with our own
implementations in TensorFlow (Abadi et al., 2016).

SWe evaluate the default setup for this model using the option
-interpolate_unigrams=1 which avoids assigning zero-
probability to unseen words.
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the model is trained in an autoregressive fashion to
predict the next word from the pre-defined vocabu-
lary given the current context. As a strong baseline
from this LM family, we train a standard LSTM LM
(LSTM-Word) relying on the setup from Zaremba
et al. (2015) (see Table 3).

Finally, a recent strand of LM work uses characters
on the input side while retaining word-level predic-
tion on the output side. A representative architecture
from this group, also serving as the basis in our work
(Section 3), is Char CNN-LSTM (Kim et al., 2016).

All neural models operate on exactly the same vo-
cabulary and treat out-of-vocabulary (OOV) words
in exactly the same way. As mentioned, we include
KNS5 as a strong (non-neural) baseline to give per-
spective on how this more traditional model performs
across 50 typologically diverse languages. We have
selected the setup for the KNS5 model to be as close as
possible to that of neural LMs, However, due to the
different nature of the models, we note that the results
between KNS5 and other models are not comparable.

In KNS5 discounts are added for low-frequency
words, and unseen words at test time are regarded
as outliers and assigned low probability estimates.
In contrast, for all neural models we sample unseen
word vectors to lie in the space of trained vectors
(see before). We find the latter setup to better reflect
our intuition that especially in MRLs unseen words
are not outliers but often arise due to morphological
complexity.

7 Results and Discussion

In this section, we present the main empirical find-
ings of our work. The focus is on: a) the results of our
novel language model with the AP fine-tuning proce-
dure, and its comparison to other language models in
our comparison; b) the analysis of the LM results in
relation to typological features and corpus statistics.

Table 4 that lists all 50 test languages along with
their language codes and provides the key statistics
of our 50 LM evaluation benchmarks. The statistics
include the number of word types in training data,
the number of word types occurring in test data but
unseen in training, as well as the total number of
word tokens in both training and test data, and type-
to-token ratios.

Table 4 also shows the results for KN5, LSTM-



Data Stats Baseline Models Ours: Fine-Tuning M™

Language (code) Vocab New Number Number Type / KNS5 LSTM Char- +AP A +AP
Size Test Tokens  Tokens  Token CNN-
(Train)  Vocab (Train)  (Test) (Train) LSTM

X Ambaric (am) 89749 4805 511K 39.2K 0.18 1252 1535 981 817 164
X Arabic (ar) 89089 5032 722K 54.7K 0.12 2156 2587 1659 1604 55
[0 Bulgarian (bg) 71360 3896 670K 49K 0.11 610 651 415 409 6
[0 Catalan (ca) 61033 2562 788K 59.4K 0.08 358 318 241 238 3
[ Czech (cs) 86783 4300 641K 49.6K 0.14 1658 2200 1252 1131 121
[J Danish (da) 72468 3618 663K 50.3K 0.11 668 710 466 442 24
[0 German (de) 80741 4045 682K 51.3K 0.12 930 903 602 551 51
O Greek (el) 76264 3767 744K 56.5K 0.10 607 538 405 389 16
O English (en) 55521 2480 783K 59.5K 0.07 533 494 371 349 22
O Spanish (es) 60196 2721 781K 57.2K 0.08 415 366 275 270 5
% Estonian (et) 94184 3907 556K 38.6K 0.17 1609 2564 1478 1388 90
% Basque (eu) 81177 3365 647K 47.3K 0.13 560 533 347 309 38
[ Farsi (fa) 52306 2041 738K 54.2K 0.07 355 263 208 205 3
% Finnish (fi) 115579 6489 585K 44.8K 0.20 2611 4263 2236 1858 378
[0 French (fr) 58539 2575 769K 57.1K 0.08 350 294 231 220 11
X Hebrew (he) 83217 3862 717K 54.6K 0.12 1797 2189 1519 1375 144
[J Hindi (hi) 50384 2629 666K 49.1K 0.08 473 426 326 299 27
O Croatian (hr) 86357 4371 620K 48.1K 0.14 1294 1665 1014 906 108
% Hungarian (hu) 101874 5015 672K 48.7K 0.15 1151 1595 929 819 110
> Indonesian (id) 49125 2235 702K 52.2K 0.07 454 359 286 263 23
[0 Ttalian (it) 70194 2923 787K 59.3K 0.09 567 493 349 350 -1
% Japanese (ja) 44863 1768 729K 54.6K 0.06 169 156 136 125 11
% Javanese (jv) 65141 4292 622K 52K 0.10 1387 1443 1158 1003 155
% Georgian (ka) 80211 3738 580K 41.1K 0.14 1370 1827 1097 939 158
> Khmer (km) 37851 1303 579K 37.4K 0.07 586 637 522 535 -13
% Kannada (kn) 94660 4604 434K 29.4K 0.22 2315 5310 2558 2265 293
% Korean (ko) 143794 8275 648K 50.6K 0.22 5146 10063 4778 3821 957
[J Lithuanian (It) 81501 3791 554K 41.7K 0.15 1155 1415 854 827 27
O Latvian (lv) 75294 4564 587K 45K 0.13 1452 1967 1129 969 160
> Malay (ms) 49385 2824 702K 54.1K 0.07 776 725 525 513 12
% Mongolian (mng) 73884 4171 629K 50K 0.12 1392 1716 1165 1091 74
> Burmese (my) 20574 755 576K 46.1K 0.04 209 212 182 180 2
> Min-Nan (nan) 33238 1404 1.2M 65.6K 0.03 61 43 39 38 1
O Dutch (nl) 60206 2626 708K 53.8K 0.08 397 340 267 248 19
[0 Norwegian (no) 69761 3352 674K 47.8K 0.10 534 513 379 346 33
O Polish (pl) 97325 4526 634K 47.7K 0.15 1741 2641 1491 1328 163
O Portuguese (pt) 56167 2394 780K 59.3K 0.07 342 272 214 202 12
[J Romanian (ro) 68913 3079 743K 52.5K 0.09 384 359 256 247 9
[ Russian (ru) 98097 3987 666K 48.4K 0.15 1128 1309 812 715 97
[ Slovak (sk) 88726 4521 618K 45K 0.14 1560 2062 1275 1151 124
[0 Slovene (sl) 83997 4343 659K 49.2K 0.13 1114 1308 776 733 43
[0 Serbian (sr) 81617 3641 628K 46.7K 0.13 790 961 582 547 35
O Swedish (sv) 77499 4109 688K 50.4K 0.11 843 832 583 543 40
Y Tamil (ta) 106403 6017 507K 39.6K 0.21 3342 6234 3496 2768 728
> Thai (th) 30056 1300 628K 49K 0.05 233 241 206 199 7
> Tagalog (tl) 72416 3791 972K 66.3K 0.07 379 298 219 211 8
% Turkish (tr) 90840 4608 627K 45K 0.14 1724 2267 135 1290 60
[0 Ukranian (uk) 89724 4983 635K 47K 0.14 1639 1893 1283 1091 192
> Vietnamese (vi) 32055 1160 754K 61.9K 0.04 197 190 158 165 -7
> Chinese (zh) 43672 1653 746K 56.8K 0.06 1064 826 797 762 35
> Isolating (avg) 40930 1825 759K 54K 0.05 440 392 326 318 8
O Fusional (avg) 73499 3532 689K 51.3K 0.11 842 969 618 566 52
X Introflexive (avg) 87352 4566 650K 49.5K 0.14 1735 2104 1386 1265 121
* Agglutinative (avg) 91051 4687 603K 45K 0.16 1898 3164 1727 1473 254

Table 4: Test perplexities for 50 languages (ISO 639-1 codes sorted alphabetically) in the full-vocabulary
prediction LM setup; Left: Basic statistics of our evaluation data. Middle: Results with the Baseline LMs.
Note that the absolute scores in the KNS5 column are not comparable to the scores obtained with neural models
(see Section 6). Right: Results with Char-CNN-LSTM and our AP fine-tuning strategy. A is indicating the
difference in performance over the original Char-CNN-LSTM model. The best scoring neural baseline is
underlined. The overall best performing neural model for each language is in bold.

Word, Char-CNN-LSTM, and our model with the AP 7.1 Fine-Tuning the Output Matrix
fine-tuning. Furthermore, a visualisation of the Char-  girot we test the impact of our AP fine-tuning
CNN-LSTM+AP model as a function of type/token  pehod. As the main finding, the inclusion of fine-

ratio is shown in Figure 2. tuning into Char-CNN-LSTM (this model is termed
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+AP) yields improvements on a large number of test
languages. The model is better than both strong neu-
ral baseline language models for 47/50 languages,
and it improves over the original Char-CNN-LSTM
LM for 47/50 languages. The largest gains are indi-
cated for the subset of agglutinative MRLs (e.g., 950
perplexity points in Korean, large gains also marked
for FI, HE, KA, HU, TA, ET). We also observe large
gains for the three introflexive languages included in
our study (Ambharic, Arabic, Hebrew).

While these large absolute gains may be partially
attributed to the exponential nature of the perplexity
measure, one cannot ignore the substantial relative
gains achieved by our models: e.g., EU (APPL=38)
improves more than a fusional language like DA
(APPL=24) even with a lower baseline perplex-
ity. This suggests that injecting subword-level infor-
mation is more straightforward for the former: in
agglutinative languages, the mapping between mor-
phemes and meanings is less ambiguous. Moreover,
the number of words that benefit from the injection
of character-based information is larger for aggluti-
native languages, because they also tend to display
the highest inflectional synthesis.

For the opposite reasons, we do not surpass Char-
CNN-LSTM in a few fusional (IT) and isolating lan-
guages (KM, VI). We also observe improvements
for Slavic languages with rich morphology (RU, HR,
PL). The gains are also achieved for some isolating
and fusional languages with smaller vocabularies and
a smaller number of rare words, e.g., in Tagalog, En-
glish, Catalan, and Swedish. This suggests that our
method for fine-tuning the LM prediction is not re-
stricted to MRLs only, and has the ability to improve
the estimation for rare words in multiple typologi-
cally diverse languages.

7.2 Language Models, Typological Features,
and Corpus Statistics

In the next experiment, we estimate correlation
strength of all perplexity scores with a series of inde-
pendent variables. The variables are 1) type-token ra-
tio in the train data; 2) new word types in the test data;
3) the morphological type of the language among iso-
lating, fusional, introflexive, and agglutinative, cap-
turing different aspects related to the morphological
richness of a language.

Results with Pearson’s p (numerical) and 7? in
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Figure 2: Perplexity results with Char-CNN-
LSTM+AP (y-axis) in relation to type/token ratio
(x-axis). For language codes, see Table 4.

one-way ANOVA (categorical) are shown in Table 5.
Significance tests show p-values < 172 for all combi-
nations of models and independent variables, demon-
strating all of them are good performance predictors.
Our main finding indicates that linguistic categories
and data statistics both correlate well (= 0.35 and
~ (.82, respectively) with the performance of lan-
guage models.

For the categorical variables we compare the mean
values per category with the numerical dependent
variable. As such, n? can be interpreted as the amount
of variation explained by the model - the resulting
high correlations suggest that perplexities tend to be
homogeneous for languages of a same morphological
type, especially so for state-of-the-art models.

This is intuitively evident in Figure 2, where per-
plexity scores of Char-CNN-LSTM+AP are plot-
ted against type/token ratio. Isolating languages are
placed on the left side of the spectrum as expected,
with low type/token ratio and good performance (e.g.,
VI, ZH). As for fusional languages, sub-groups be-
have differently. We find that Romance and Germanic
languages display roughly the same level of perfor-
mance as isolating languages, despite their overall
larger type/token ratio. Balto-Slavic languages (e.g.
CS, LV) instead show both higher perplexities and
higher type/token ratio. These differences may be
explained in terms of different inflectional synthesis.

Introflexive and agglutinative languages can be



Variables

Independent Dependent Statistical Test Models
KNS5 LSTM +Char-CNN  ++AP
Train type/token PPL Pearson’s p 0.833  0.813 0.823 0.831
Test new types PPL Pearson’s p 0.860 0.803 0.818 0.819
Morphology PPL one-way ANOVA n?  0.354 0.338 0.369 0.374
LSTM vs +CharCNN  +CharCNN vs ++AP
Train type/token A PPL Pearson’s p 0.729 0.778
Morphology A PPL one-way ANOVA 7? 0.308 0.284

Table 5: Correlations between model performance and language typology as well as with corpus statistics
(type/token ratio and new word types in test data). All variables are good performance predictions.

found mostly on the right side of the spectrum in
terms of performance (see Figure 2). Although the
languages with highest absolute perplexity scores are
certainly classified as agglutinative (e.g., Dravidian
languages such as KN and TA), we also find some
outliers in the agglutinative languages (EU) with re-
markably low perplexity scores.

7.3 Corpus Size and Type/Token Ratio

Building on the strong correlation between
type/token ratio and model performance from
Section 7.2, we now further analyse the results
in light of corpus size and type/token statistics.
The LM datasets for our 50 languages are similar
in size to the widely used English PTB dataset
(Marcus et al., 1993). As such, we hope that these
evaluation datasets can help guide multilingual
language modeling research across a wide spectrum
of languages.

However, our goal now is to verify that type/token
ratio and not absolute corpus size is the deciding
factor when unraveling the limitations of standard
LM architectures across different languages. To this
end, we conduct additional experiments on all lan-
guages of the recent Multilingual Wikipedia Corpus
(MWC) (Kawakami et al., 2017) for language mod-
eling, using the same setup as before (see Table 3).
The corpus provides datasets for 7 languages from
the same domain as our benchmarks (Wikipedia),
and comes in two sizes. We choose the larger corpus
variant for each language, which provides about 3-5
times as many tokens as contained in our data sets
from Table 4.

The results on the MWC evaluation data along
with corpus statistics are summarised in Table 6. As
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one important finding, we observe that the gains in
perplexity using our fine-tuning AP method extend
also to these larger evaluation datasets. In particular,
we find improvements of the same magnitude as in
the PTB-sized data sets over the strongest baseline
model (Char-CNN-LSTM) for all MWC languages.
For instance, perplexity is reduced from 1781 to 1578
for Russian, and from 365 to 352 for English. We also
observe a gain for French and Spanish with perplexity
reduced from 282 to 272 and 255 to 243 respectively.
In addition, we test on samples of the Europarl
corpus (Koehn, 2005; Tiedemann, 2012) which con-
tains approximately 10 times more tokens than our
PTB-sized evaluation data: we use 400K sentences
from Europarl for training and testing. However, this
data comes from a much narrower domain of parlia-
mentary proceedings: this property yields a very low
type/token ratio as visible from Table 6. In fact, we
find the type/token ratio in this corpus to be on the
same level or even smaller than isolating languages
(compare with the scores in Table 4): 0.02 for Dutch
and 0.03 for Czech. This leads to similar perplexi-
ties with and without +AP for these two selected test
languages. The third EP test language, Finnish, has a
slightly higher type/token ratio. Consequently, we do
observe an improvement of 10 points in perplexity. A
more detailed analysis of this phenomenon follows.
Table 7 displays the overall type/token ratio in
the training set of these copora. We observe that the
MWC has comparable or even higher type/token
ratios than the smaller sets despite its increased
size. The corpus has been constructed by sampling
the data from a variety of different Wikipedia cate-
gories (Kawakami et al., 2017): it can therefore be
regarded as more diverse and challenging to model.



Lang Corpus # Vocab # Tokens Type/Token Char-CNN-LSTM  +AP
train  test  train  test train

nl EP 197K 200K 10M 255K 0.02 62 63
cs EP 265K 268K 79M 193K 0.03 180 186
en MWC 310K 330K 5.0M 0.5M 0.06 365 352
es MWC 258K 277K 3.7M 04M 0.07 255 243
fr MWC 260K 278K 4.0M 0.5M 0.07 282 272
fi EP 459K 465K 6.8M 163K 0.07 515 505
de MWC 394K 420K 3.8M 0.3M 0.10 710 665
ru MWC 372K 399K 2.5M 0.3M 0.15 1781 1578
cs MWC 241K 258K 1.5M 0.2M 0.16 2396 2159
fi MWC 320K 343K 15M 0.IM 0.21 5300 4911

Table 6: Results on the larger MWC data set (Kawakami et al., 2017) and on a subset of the Europarl (EP)
corpus. Improvements with +AP are not dependent on corpus size, but rather they strongly correlate with the

type/token ratio of the corpus.

Type/Token Ratio
Language OurData MWC  Europarl

Czech 0.13 0.16 0.03
German 0.12 0.10 -
English 0.06 0.06

Spanish 0.07 0.07 -
Finnish 0.20 0.21 0.07
French 0.07 0.07 -
Russian 0.14 0.15 -
Dutch 0.09 - 0.02

Table 7: Comparison of type/token ratios in the cor-
pora used for evaluation. The ratio is not dependent
only on the corpus size but also on the language and
domain of the corpus.

Europarl on the other hand shows substantially lower
type/token ratios, presumably due to its narrower do-
main and more repetitive nature.

In general, we find that although the type/token
ratio decreases with increasing corpus size, the de-
creasing rate slows down dramatically at a certain
point (Herdan, 1960; Heaps, 1978). This depends
on the typology of the language and domain of the
corpus. Figure 3 shows the empirical proof of this
intuition. We show the variation of type/token ratios
in Wikipedia and Europarl with increasing corpus
size. We can see that in a very large corpus of 800K
sentences, the type/token ratio in MRLs such as Ko-
rean or Finnish stays close to 0.1, a level where we
still expect an improvement in perplexity with the
proposed AP fine-tuning method applied on top of
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Figure 3: Type/token ratio values vs. corpus
size. A domain-specifc corpus (Europarl) has a
lower type/token ratio than a more general corpus
(Wikipedia), regardless of the absolute corpus size.

Char-CNN-LSTM.

In order to isolate and verify the effect of the
type/token ratio, we now present results on synthet-
ically created data sets where the ratio is controlled
explicitly. We experiment with subsets of the German
Wikipedia with equal number of sentences (25K)°,
comparable number of tokens, but varying type/token
ratio. We generate these controlled data sets by clus-
tering sparse bag-of-words sentence vectors with the
k-means algorithm, sampling from different clusters,

SWe split the data into 20K training, 2.5K validation and
2.5K test sentences



Clusters # Vocab # Tokens Type/Token Char-CNN-LSTM +AP
train test train  test train

2 48K 52K 382K 47K 0.13 225 217

2,4 69K 75K 495K 62K 0.14 454 420

2459 78K 84K 494K 62K 0.16 605 547

5,9 84K 91K 492K 62K 0.17 671 612

5 66K 72K 372K 46K 0.18 681 598

Table 8: Results on German with data sets of comparable size and increasing type/token ratio.
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Figure 4: Visualisation of results from Table 8. The
AP method is especially helpful for corpora with high
type/token ratios.

and then selecting the final combinations according
to their type/token ratio and the number of tokens.
Corpora statistics along with corresponding perplex-
ity scores are shown in Table 8, and plotted in Fig-
ure 4. These results clearly demonstrate and verify
that the effectiveness of the AP method increases for
corpora with higher type/token ratios. This finding
also further supports the usefulness of the proposed
method for morphologically-rich languages in partic-
ular, where such high type/token ratios are expected.

8 Conclusion

We have presented a comprehensive language mod-
eling study over a set of 50 typologically diverse
languages. The languages were carefully selected to
represent a wide spectrum of different morphological
systems that are found among the world’s languages.
Our comprehensive study provides new benchmarks
and language modeling baselines which should guide
the development of next-generation language models
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focused on the challenging multilingual setting.

One particular LM challenge is an effective learn-
ing of parameters for infrequent words, especially
for morphologically-rich languages (MRLs). The
methodological contribution of this work is a new
neural approach which enriches word vectors at the
LM output with subword-level information to cap-
ture similar character sequences and consequently to
facilitate word-level LM prediction. Our method has
been implemented as a fine-tuning step which grad-
ually refines word vectors during the LM training,
based on subword-level knowledge extracted in an
unsupervised manner from character-aware CNN lay-
ers. Our approach yields gains for 47/50 languages
in the challenging full-vocabulary setup, with largest
gains reported for MRLs such as Korean or Finnish.
We have also demonstrated that the gains extend to
larger training corpora, and are well correlated with
the type-to-token ratio in the training data.

In future work we plan to deal with the open vocab-
ulary LM setup and extend our framework to also han-
dle unseen words at test time. One interesting avenue
might be to further fine-tune the LM prediction based
on additional evidence beyond purely contextual in-
formation. In summary, we hope that this article will
encourage further research into learning semantic
representations for rare and unseen words, and steer
further developments in multilingual language model-
ing across a large number of diverse languages. Code
and data are available online: http://people.
ds.cam.ac.uk/dsg40/1lmmrl.html.
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