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Abstract

Given a knowledge base or KB containing
(noisy) facts about common nouns or gener-
ics, such as “all trees produce oxygen” or
“some animals live in forests”, we consider the
problem of inferring additional such facts at
a precision similar to that of the starting KB.
Such KBs capture general knowledge about
the world, and are crucial for various appli-
cations such as question answering. Differ-
ent from commonly studied named entity KBs
such as Freebase, generics KBs involve quan-
tification, have more complex underlying reg-
ularities, tend to be more incomplete, and vio-
late the commonly used locally closed world
assumption (LCWA). We show that existing
KB completion methods struggle with this
new task, and present the first approach that
is successful. Our results demonstrate that ex-
ternal information, such as relation schemas
and entity taxonomies, if used appropriately,
can be a surprisingly powerful tool in this set-
ting. First, our simple yet effective knowledge
guided tensor factorization approach achieves
state-of-the-art results on two generics KBs
(80% precise) for science, doubling their size
at 74%-86% precision. Second, our novel tax-
onomy guided, submodular, active learning
method for collecting annotations about rare
entities (e.g., oriole, a bird) is 6x more effec-
tive at inferring further new facts about them
than multiple active learning baselines.

1 Introduction

We consider the problem of completing a partial
knowledge base (KB) containing facts about gener-

∗This work was done while the author was affiliated with
the Allen Institute for Artificial Intelligence.

ics or common nouns, represented as a third-order
tensor of (source, relation, target) triples, such as
(butterfly, pollinate, flower) and (thermometer, mea-
sure, temperature). Such facts capture common
knowledge that humans have about the world. They
are arguably essential for intelligent agents with
human-like conversational abilities as well as for
specific applications such as question answering.
We demonstrate that state-of-the-art KB completion
methods perform poorly when faced with gener-
ics, while our strategies for incorporating external
knowledge as well as obtaining additional annota-
tions for rare entities provide the first successful so-
lution to this challenging new task.

Since generics represent classes of similar indi-
viduals, the truth value yi of a generics triple xi =
(s, r, t) depends on the quantification semantics one
associates with s and t. Indeed, the semantics of
generics statements can be ambiguous, even self-
contradictory, due to cultural norms. As Leslie
(2008) points out, ‘ducks lay eggs’ is generally con-
sidered true while ‘ducks are female’, which is true
for a broader set of ducks than the former statement,
is generally considered false.

To avoid deep philosophical issues, we fix a par-
ticular mathematical semantics that is especially rel-
evant for noisy facts derived automatically from text:
associate s with a categorical quantification from
{all, some, none} and associate t (implicitly) with
some. For instance, “all butterflies pollinate (some)
flower” and “some animals live in (some) forest”.
When presenting such triples to humans, they are
phrased as: is it true that all butterflies pollinate
some flower? As a notational shortcut, we treat the
quantification of s as the categorical label yi for the
triple xi. For example, (butterfly, pollinate, flower)

197

Transactions of the Association for Computational Linguistics, vol. 6, pp. 197–210, 2018. Action Editor: Hinrich Schütze.
Submission batch: 6/2017; Revision batch: 9/2017; Published 4/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



is labeled all while (animal, live in, forest) is labeled
some. Given a noisy KB of such labeled triples, the
task is to infer more triples.

Tensor factorization and graph based methods
have both been found to be very effective for ex-
panding knowledge bases, but have focused on
named entity KBs such as Freebase (Bollacker et al.,
2008) involving relations with clear semantics such
as liveIn and isACityIn, and disambiguated entities
such as Barack Obama or Hawaii. Completing KBs
that involve facts about generics, however, brings up
new challenges, as evidenced by our empirical re-
sults when using existing methods.

It has been observed that Horn clauses often reli-
ably connect predicates in the named-entity setting.
For instance, for any person x, city y, and country
z, (x, liveIn, y) & (y, isACityIn, z) ⇒ (x, liveIn, z).
With generics, however, clear patterns or reliable
first-order logic rules are rare, in part due to each
generic representing a collection of individuals that
often have similarities with respect to some relations
and differences with respect to others. For instance,
(x, liveIn, mountain) is true for many cats and cari-
bou, but there is little tangible similarity between the
two animals and it is unclear what, if anything, can
be carried over from one to the other. On the other
hand, if we take two animals that share a ‘parent’ in
some taxonomy (e.g., reindeer and deer), then the
likelihood of knowledge transfer increases.

We propose to make use of additional rich back-
ground knowledge complementing the information
present in the KB itself, such as a taxonomic hi-
erarchy of entities (available from sources such as
WordNet (Miller, 1995)) and the corresponding en-
tity types and relation schema. Our key insight is
that, if used appropriately, taxonomic and schema
information can be surprisingly effective in making
tensor factorization methods vastly more effective
for generics for deriving high precision facts.

Intuitively, for generics, many properties of inter-
est are themselves generic (e.g., living in forests, as
opposed to living in a specific forest) and tend to be
shared by siblings in a taxonomy (e.g., finch, oriole,
and hummingbird). In contrast, siblings of named
entities (e.g., various people) often differ substan-
tially in the properties we typically care about and
model (e.g., who they are married to, where they
live, etc.). Methods that use type information are

thus more promising for generics than for classical
NLP tasks involving named entities. We propose
three ways of using this information and empirically
demonstrate the effectiveness of each on two vari-
ants of a KB of elementary level science facts (Dalvi
et al., 2017).1

First, we observe that simply imposing schema
consistency (Section 3.1) on derived facts can sig-
nificantly boost state-of-the-art methods such as
Holographic Embeddings (HolE) (Nickel et al.,
2016b) from nearly no new facts at 80% precision to
over 10,000 new facts, starting with a generics KB
of a similar size. Other embedding methods, such
as TransE (Bordes et al., 2013), RESCAL (Nickel
et al., 2011), and SICTF (Nimishakavi et al., 2016)
(which uses schema information as well), also pro-
duced no new facts at 80% precision. Graph-based
completion methods did not scale to our densely
connected tensors.2

Second, one can further boost performance by
transferring knowledge up and down the taxonomic
hierarchy, using the quantification semantics of
generics (Section 3.2). We show that expanding the
starting tensor this way before applying tensor fac-
torization is complementary and results in a statis-
tically significantly higher precision (86.4% as op-
posed to 82%) over new facts at the same yield.

Finally, we propose a novel limited-budget tax-
onomy guided active learning method to address
the challenge of significant incompleteness in gener-
ics KBs, by quantifying uncertainty via siblings
(Section 4). Dalvi et al. (2017) have observed that,
when using information extraction methods, it is
much harder to derive reliable facts about generics
than about named entities. This makes generics KBs
vastly incomplete, with no or very little information
about certain entities such as caribou or oriole.

1We are unaware of other large generics KBs. Our method
does not employ rules or choices specific to this dataset and is
expected to generalize to other generics KBs, as and when they
become available.

2On the smaller Animals tensor (to be described later),
PRA (Lao et al., 2011) generated very few high-precision facts
after 30 hours. SFE (Gardner and Mitchell, 2015) was unable to
finish training a classifier for any relation after a day, in part due
to the high connectivity of generics like animal. On the other
hand, HolE is trained in a couple of minutes even on the larger
Science tensor, and can be made even faster using the method
of Hayashi and Shimbo (2017).
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Our active learning approach addresses the fol-
lowing question: Given a new entity3 ẽ and a budget
B, what is a good set Q of B queries about ẽ to
annotate (via humans) such that expanding the orig-
inal tensor with Q helps a KB completion method
infer many more high precision facts about ẽ?

We propose to define a correlation based measure
of the uncertainty of each unannotated triple (i.e.,
a potential query) involving ẽ, based on how fre-
quently the corresponding triple is true for ẽ’s sib-
lings in the taxonomic hierarchy (Section 4.1). We
then develop a submodular objective function, and a
corresponding greedy (1 − 1/e)-approximation, to
search for a small subset of triples to annotate that
optimally balances diversity with coverage (Sec-
tion 4.2). We demonstrate that annotating this bal-
anced subset makes tensor factorization derive sub-
stantially more new and interesting facts compared
to several active learning baselines. For example,
with a budget to annotate 100 queries about a new
entity oriole, random queries lead to no new true
facts at all (via annotation followed by tensor fac-
torization), imposing schema consistency results in
83 new facts, and our proposed method ends up with
483 new facts. This demonstrates that well-designed
intelligent queries can be substantially more effec-
tive in gathering facts about the new entity.

In summary, this work tackles, for the first
time, the challenging task of knowledge comple-
tion for generics, by imposing consistency with ex-
ternal knowledge. Our efficient sibling-guided ac-
tive learning approach addresses the paucity of facts
about certain entities, successfully inferring a sub-
stantial number of new facts about them.

1.1 Related Work
KB completion approaches fall into two main
classes: graph-based methods and those employ-
ing low-dimensional embeddings via matrix or ten-
sor factorization. The former uses graph traversal
techniques to complete the KB, by learning which
types of paths or transitions are indicative of which
relation between the start and end points (Lao et
al., 2011; Gardner and Mitchell, 2015). This class
of solutions, unfortunately, does not scale well to

3Unless otherwise stated, we will henceforth use entity to
refer to a singular common noun that represents a class or group
of individuals, such as animal, hummingbird, forest, etc.

our setting (cf. Footnote 2). This appears due, at
least in part, to different connectivity characteris-
tics of generics tensors compared to named entity
ones such as FB15k (Bordes et al., 2013). Ad-
vances in the latter set of methods have led to several
embedding-based methods that are highly successful
at KB completion for named entities (Nickel et al.,
2011; Riedel et al., 2013; Dong et al., 2014; Trouil-
lon et al., 2016; Nickel et al., 2016a). We compare
against many of these, including variants of HolE,
TransE, and RESCAL.

Recent work on incorporating entity type and re-
lation schema in tensor factorization (Krompaß et
al., 2014; Krompaß et al., 2015; Xie et al., 2016b)
has focused on factual databases about named enti-
ties, which, as discussed earlier, have very different
characteristics than generics tensors. Nimishakavi
et al. (2016) use entity type information as a ma-
trix in the context of non-negative RESCAL for
schema induction on medical research documents.
As a byproduct, they complete missing entries in the
tensor in a schema-compatible manner. We show
that our proposal performs better on generics tensors
than their method, SICTF. SICTF, in turn, is meant
to be an improvement over the TRESCAL system of
Chang et al. (2014), which also incorporates types in
RESCAL in a similar manner. Recently, Schütze et
al. (2017) proposed a neural model for fine-grained
entity typing and for robustly using type information
to improve relation extraction, but this is targeted for
Freebase style named entities.

For schema-aware discriminative training of em-
beddings, Xie et al. (2016b) use a flexible ratio of
negative samples from both schema consistent and
schema inconsistent triples. Their combined ideas,
however, do not improve upon vanilla HolE (one of
our baselines) on the standard FB15k (Bordes et al.,
2013) dataset. They also consider imposing hierar-
chical types for Freebase, as entities may have dif-
ferent meanings when they have different types—
an issue that typically does not apply to generics
KBs. Komninos and Manandhar (2017) use type
information along with additional textual evidence
for knowledge base completion on the FB15k237
dataset. They learn embeddings for types, along
with entities and relations, and show that this way
of incorporating type information has a (small) con-
tribution towards improving performance. Incorpo-
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rating given first order logic rules has been explored
for the simpler case of matrix factorization (Rock-
taschel et al., 2015; Demeester et al., 2016). Exist-
ing first order logic rule extraction methods, how-
ever, struggle to find meaningful rules for generics,
making this approach not yet viable in our setting.

Xie et al. (2016a) consider inferring facts about
a new entity ẽ given a ‘description’ of that entity.
They use Convolutional Neural Networks (CNNs) to
encode the description, deriving an embedding for ẽ.
Such a description in our context would correspond
to knowing some factual triples about ẽ, which is a
restricted version of our active learning setting.

Krishnamurthy and Singh (2013) consider active
learning for a particular kind of tensor decomposi-
tion, namely CP or Candecomp/Parafac decomposi-
tion into a low dimensional space. They start with an
empty tensor and look for the most informative slices
and columns to fill completely to achieve optimal
sample complexity. Their framework builds upon
the incoherence assumption on the column space,
which does not apply to generics KB.

Hegde and Talukdar (2015) use an entity-centric
information extraction (IE) approach for obtaining
new facts about entities of interest. Narasimhan et
al. (2016) use a reinforcement learning approach to
issue search queries to acquire additional evidence
for a candidate fact. Both of these works, and others
along similar lines, are advanced IE techniques that
operate via a search for new documents and extrac-
tion of facts from them. This is different from the
KB completion task, where the only source of infor-
mation is the starting KB and possibly some details
about the involved entities and relations.

2 Tensors of Generics

We consider knowledge expressed in terms of
(source, relation, target) triples, abbreviated as
(s, r, t). Such a triple may refer to (subject, pred-
icate, object) style facts commonly used in infor-
mation extraction. Each source and target is an en-
tity that is a generic noun, e.g., animals, habitats, or
food items. Examples of relations include foundIn,
eat, etc. As mentioned earlier, with each generics
triple (s, r, t), we associate a categorical truth value
q ∈ {all, some, none}, defining the quantification
semantics “q s r (some) t”. For instance, “some an-

imals live in (some) forest” and “all dogs eat (some)
bone”. Given a set K of such triples with annotated
truth values, the task is to predict additional triples
K ′ that are also likely to be true.

In addition to a list of triples, we assume access to
background information in the form of entity types
and the corresponding relation schema, as well as a
taxonomic hierarchy.4 Let ET denote the set of pos-
sible entity types. For each relation r, the relation
schema imposes a type constraint on the entities that
may appear as its source or target. Specifically, us-
ing [`] to denote the set {1, 2, . . . , `}, the schema for
r is a collection Sr = {(D(i)

r ,R(i)
r ) ⊆ ET × ET |

i ∈ [`]} of domain-range pairs with the following
property: the truth value of (s, r, t) is none when-
ever for every i ∈ [`] it is the case that s /∈ D(i)

r or
t /∈ R(i)

r . For example, the relation foundIn may be
associated with the schema SfoundIn = {(animal, lo-
cation), (insect, animal), (plant, habitat), . . . }. Sim-
ilarly, the taxonomic hierarchy defines a partial or-
der H over all entities that captures the “isa” rela-
tion, with direct links such as isa(dog, mammal) or
isa(gerbil, rodent). We use this information to ex-
tract “siblings” of a given entity, i.e., entities that
share a common parent (this may be easily general-
ized to any common ancestor).

3 Guided Knowledge Completion

We begin with an overview of tensor factorization
for KB completion for generics. Let (s, r, t) be a
generics triple associated with a categorical quantifi-
cation label q ∈ {all, some, none}. For example,
((cat, havePart, whiskers), all), ((cat, liveIn, homes),
some), and ((cat, eat, bear), none). Predicting such
labels is thus a multi-class classification problem.
Given a set K of labeled triples, the goal of tensor
factorization is to learn a low-dimensional embed-
ding h for each entity and relation such that some
function f of h best captures the given labels. Given
a new triple, we can then use f and the learned h
to predict the probability of each label for it. K of-
ten contains only “positive” triples, i.e., those with
label all or some. A common step in discriminative
training for h is thus negative sampling, i.e., gen-
erating additional triples that (are expected to) have

4We do not assume that the schema or taxonomy is perfect,
and instead rely on these only for heuristic guidance.

200



label none.
With [m] denoting the set {1, 2, . . . ,m} as be-

fore, let K = {(xi, yi), i ∈ [m]} be a set of
triples xi = (si, ri, ti) and corresponding labels
yi ∈ {1, 2, 3} equivalent to categorical quantifica-
tion label qi ∈ {all, some, none}. We learn entity
and relation embeddings Θ that minimize the multi-
nomial logistic loss defined as:

min
Θ

m∑

i=1

3∑

k=1

−1{yi = k} log Pr(yi = k | xi,Θ)

= min
Θ

m∑

i=1

3∑

k=1

−1{yi = k} log σ(yi f(hr, hs, ht))

(1)

where hr, hs, ht ∈ Rd denote the learned embed-
dings (latent vectors) for s, r, t, respectively, and
σ(·) is the sigmoid function defined as σ(z) =

1
1+exp(−z) .

If the all categorical label for generics is un-
available,5 we can simplify the label space to
{some, none}, modeled as yi ∈ {±1}, and reduce
the model to binary classification:

min
Θ

m∑

i=1

log [1 + exp [−yi f(hr, hs, ht)]] . (2)

We remark that while this generics task with only
two labels appears superficially similar to the stan-
dard KB completion task for named entities, the un-
derlying challenges and solutions are different. For
instance, the approach of using taxonomic informa-
tion (as opposed to just entity types) as a guide is
uniquely suited to generics KBs; the reason being
that a generic entity refers to a set of individuals,
with a natural subset/superset relation forming a tax-
onomy, whereas in standard KBs an entity refers
to one specific individual. This prevents taxonomy
based rules from providing useful information for
standard KBs, while our results demonstrate their
high value when reasoning with generics. Differ-
ences like this lead to differences in what is success-
ful in each setting and what is not.

5This happens to be the case for current generics KBs, but
is expected to change with increasing interest in the research
community. A step in this direction is a recent version of the
Aristo Tuple KB, http://allenai.org/data/aristo-tuple-kb, which
includes most as a quantification label, in addition to some.

While all our proposed schemes are embedding
oblivious, for concreteness, we describe and eval-
uate them for the Holographic Embedding or
HolE (Nickel et al., 2016b) which models the label
probability as:

f(hr, hs, ht) = h>r (hs ◦ ht) (3)

where ◦ : Rd × Rd → Rd denotes circular correla-
tion defined as:

[a ◦ b]k =
d−1∑

i=0

aib(i+k) mod d . (4)

Intuitively, the k-th dimension of circular correlation
captures how related a is to b when the dimensions
of the latter are shifted (circularly, via the mod op-
eration) by k. In particular [a ◦ b]0 is simply the
dot product of a and b. As can be deduced from
Eqns. (3)-(4), this model resembles circular convo-
lution, but can capture, to some extent, relations that
are asymmetric among the source and target entities.
This is because [a ◦ b] is not the same as [b ◦a] but is
rather “flipped” ([a◦b]k = [b◦a]d−k). If we consider
the d × d matrix Mab of element-wise relationships
between a and b, the HolE embedding of a relation r
between a and b defines a weighted sum of circular
anti-diagonals of Mab.

Circular correlation can be computed using the
fast Fourier transform (FFT), making HolE quite
efficient in practice. Hayashi and Shimbo (2017)
recently showed that HolE and complex embed-
dings (Trouillon et al., 2016), which is another state-
of-the-art method for KB completion, are equivalent
and differ only in terms of constraints on initial val-
ues. Further, they proposed a linear time computa-
tion for HolE by staying fully within the frequency
domain of FFT.

3.1 Incorporating Types and Relation Schema
(ITRS)

As described earlier, relation schema Sr imposes
a restriction on sources and targets that may occur
with a relation r. We can incorporate this knowl-
edge both at training and at test times. Doing this
at test time simply translates to relabeling schema-
inconsistent predicted triples as none. Incorporat-
ing this knowledge at training time can be done as
a constraint on the random negative samples that
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the method generates to complement the given, typ-
ically positive, triples for training.

In general, the ratio of random negative samples
from the entire tensor T and random negative sam-
ples from the schema consistent portion T ′ of T is
a parameter that should be tuned such that the re-
sulting negative samples mimic the true distribution
of labels. It is worth noting that whether the locally
closed world assumption (LCWA) holds or not plays
an important role in determining this ratio. How-
ever, the idea of mixing the two kinds of negative
samples has been used in the literature without con-
sidering the nature of the dataset, resulting in some
seemingly contradicting empirical results on the op-
timal ratio (Li et al., 2016; Xie et al., 2016b; Shi
and Weninger, 2017; Xie et al., 2017). As discussed
later, we found sampling from T to work best on our
datasets.

3.2 Incorporating Entity Taxonomy (IET)
It is challenging to come up with complex Horn or
first order logic rules for generics, as each entity rep-
resents a class of individuals that may not all be-
have identically. However, we can derive simple yet
highly effective rules based on categorical quantifi-
cation labels, leveraging the fact that entities come
from different levels in a taxonomy hierarchy.

Let p be the parent entity for entity set {ci}. Note
that ci itself is a generic, that is, a class of individu-
als rather than a single individual. This allows one to
make meaningful existential statements such as: if a
property holds for all or most members of even one
class ci, then it holds for some (reasonable number
of) members of its parent class p. We use the fol-
lowing rules:6

((p, rj , tj), all)⇒ ∀i ((ci, rj , tj), all)

∀i ((ci, rj , tj), all)⇒ ((p, ej , tj), all)

∃i ((ci, rj , tj), all)⇒ ((p, ej , tj), some)

∃i ((ci, rj , tj), some)⇒ ((p, ej , tj), some)

We apply these rules to address sparsity of gener-
ics tensors, making tensor factorization more robust.
Specifically, given initial triples K, we use appli-
cable rules to derive additional triples K ′, perform

6The last rule may not be appropriate for KBs where some
may refer to the extreme case of a single individual. This is not
the case for the KBs we use for our evaluation.

tensor factorization on K ∪K ′, and then revisit the
triples in K ′ using their predicted label probabili-
ties. Note that this approach allows us to be robust
to taxonomic errors: instead of assuming each triple
in K ′ is true, we use this only as a prior and let ten-
sor factorization determine the final prediction based
on global patterns it finds.

4 Active Learning for New or Rare Entities

To address the incomplete nature of generics KBs,
we consider rare entities for which we have very few
facts, or new entities which are present in the taxon-
omy but for which we have no facts in the KB. The
goal is to use tensor factorization to generate high
quality facts about such entities.

For instance, consider the task of inferring facts
about oriole, where all we know is that it is a bird.
We assume a restricted budget on the number of
facts we can query (for human annotation) about ori-
ole, using which we would like to predict many more
high-quality facts about it.

Given a fixed query budget B, what is the opti-
mal set of queries we should generate for human an-
notation about a new or rare entity ẽ for this task?
We view this as an active learning problem and pro-
pose a two-step algorithm. First, we use taxonomy
guided uncertainty sampling to propose a list L to
potentially query. Next, we describe a submodular
objective function and a corresponding linear time
algorithm to choose an optimal subset L̂ ⊆ L satis-
fying |L̂| = B. We then use L̂ for human annota-
tion, append the result to the original KB, and per-
form tensor factorization to predict additional new
facts about ẽ. For notational simplicity and without
loss of generality, throughout this section, we con-
sider the case where ẽ appears as the source entity in
the triple; the ideas apply equally when ẽ appears as
the target entity in the triple.

4.1 Knowledge Guided Uncertainty
Quantification

We now discuss the active learning and specifically
uncertainty sampling method we use to propose a
list of triples to query. Uncertainty sampling consid-
ers the uncertainty for each possible triple (ẽ, ri, ei),
defined as how far away from 0.5 the conditional
probability is of this fact, given the facts we already
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know from the KB (Settles, 2012). The question is
how to model this conditional probability. A sim-
ple baseline is to consider Random queries, i.e., r, e
are selected randomly from the list of relations and
entities in the tensor, respectively.

To infer information about ẽ, we propose the fol-
lowing approximation for the conditional probabil-
ity of a new fact about ẽ given the KB. Let Ẽẽ =
{e | corr(ẽ, e) > 0} be the set of entities that are
correlated with ẽ, Ω = {((ei, ri, e′i), yi) | ei ∈ Ẽẽ}
be the set of known facts about such entities, and yi
be the label for the triple (ei, ri, e

′
i). We have:

Pr(f(hri , hẽ, he′i)) '
1

|Ω|
∑

ei∈Ẽẽ

corr(ẽ, ei) yi. (5)

However, in practice, we cannot measure corr(ẽ, ei)
for every entry in the KB as we do not have complete
information about ẽ. One simple idea is to consider
that every entity is correlated with ẽ: corr(ẽ, ei) =
1 ∀ei ∈ E. We will refer to this as Schema Consis-
tent query proposal as this relates to summing over
all possible (hence schema consistent) facts.

Since we have access to taxonomy information,
we can do a more precise, Sibling Guided, approx-
imation.7 We propose the following approximation
for corr(ẽ, ei) for ei ∈ E:

corr(ẽ, ei) =

{
1 if ei ∈ sibling(ẽ)
0 otherwise

. (6)

Eqns. (5) and (6) can be used to infer uncertain
triples: if every sibling of ẽ has relationship r with
an entity e′, we can infer for “free” that this is the
case for ẽ as well. On the other hand, when sib-
lings disagree in this respect, there is more uncer-
tainty about (ẽ, r, e′) (according to (5) and (6)), mak-
ing this triple a good candidate to query. In our ex-
ample of oriole, the siblings are the birds that exist
in the tensor, e.g., hummingbird, finch, woodpecker,
etc. All of them (eat, insect) and hence we infer this
for oriole. But there is no agreement on (appearIn,
farm) and hence this is added to the query list.

7One may also define corr based on entity similarity in a
distributional space. One challenge here is that such similarity
generally doesn’t preserve types. For example, dog may co-
occur more often with and thus be “closer” to bone or barking
in a distributional space, than to siblings such as cat or other pet
animals, which are more helpful in our setting.

Algorithm 1: Active Learning for Query Pro-
posal

input new entity ẽ, KB, taxonomy, lower bound
κM on agreement, lower bound τL on
uncertainty, upper bound τU on uncertainty

1: extract list Sẽ of sibling(ẽ) using taxonomy
2: for each ei ∈ Sẽ, add all facts about ei to Ω
3: for (ẽ, ri, e

′
i) ∈ Ω do

4: use (5)-(6) to estimate Pr(f(hri , hẽ, he′i))
5: if p ≥ κM then add (ẽ, ri, e

′
i) to M

6: if τL ≤ p ≤ τU then add (ẽ, ri, e
′
i) to L

output L, M

Algorithm 1 formalizes this process. Setting some
upper (τU ) and lower (τL) bounds on the conditional
probability (Eqn. (5)) which quantifies the uncer-
tainty, we reach a set L = {(ẽ, ri, ei), i ∈ I} of
triples to query. Using another high threshold κM >
τU , we also infer the set M = {(ẽ, rj , ej), j ∈ J}
of triples that a large majority of siblings agree upon,
and hence ẽ is expected to agree with as well. Triples
whose conditional probability estimate is between
κM and τU are considered neither certain enough to
include in M nor uncertain enough to justify adding
to L for human annotation in hopes of learning from
it. Similarly, triples with a conditional probability
estimate lower than τL are discarded. The output of
Algorithm 1 is the list L to query and the list M to
add directly to the knowledge base.

4.2 Efficient Subset Selection

Given the list L as above (Algorithm 1), which we
can write in short as L = {(ri, ei), i ∈ I}, the prob-
lem is to find the “best” subset L̂. A baseline for
such a selection is to choose the top k queries. We
will refer to this as TK subset selection.

Viewing subset selection as a combinatorial prob-
lem, we devise an objective F that models several
natural properties of this subset. We then prove that
F is submodular, that is, the marginal gain inF(L)
obtained by adding one more item to L decreases as
L grows.8 Importantly, this implies that there is a
simple known greedy algorithm that can efficiently
compute a worst-case (1 − 1/e)-approximation of

8Formally, for L′′ ⊆ L′ ⊆ L and for l = (rl, el) ∈ L \ L′,
we have F(L′′ ∪ l)−F(L′′) ≥ F(L′ ∪ l)−F(L′).
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the global optimum of F (Nemhauser et al., 1978).
We refer to this as SM subset selection.

Since queried samples will eventually be fed into
tensor factorization, we would like L̂ to cover en-
tities (for the other argument of the triple) and re-
lations as much as possible. In addition, we would
like L̂ to be diverse, i.e., prioritize relations and en-
tities that are more varied.9 At the same time, we
would also want to minimize redundancy, i.e., avoid
choosing relations (entities) that are too similar. Let
F(L̂, R

L̂
, E

L̂
) denote our objective, where R

L̂
, E

L̂

is the set of relations and entities in L̂, respectively.
We decompose it as:

F(L̂, R
L̂
, E

L̂
) = wCC(L̂, RL̂

, E
L̂

) (7)

+ wDD(L̂, R
L̂
, E

L̂
)− wRR(L̂, R

L̂
, E

L̂
)

where the terms in RHS correspond to cover-
age, diversity, and redundancy, respectively, and
wC , wD, wR are the corresponding non-negative
weights. Next, we propose functional forms for
these terms. Note that any function that captures the
described properties can be used instead, as long as
the objective remains submodular.

Let R and E denote the set of relations and en-
tities in the KB, respectively. The coverage simply
captures the fraction of entity and relations that we
have included in L̂:

C(L̂, R
L̂
, E

L̂
) =
|R

L̂
|

|R| +
|E

L̂
|

|E| .

The diversity for L̂ is the sum of the diversity mea-
sure of the entities and relations included in the set:

D(L̂, R
L̂
, E

L̂
) =

∑

(r,e)∈L̂

[Vr + Ve] ,

Vr =
|ESr |+ |ETr |

|E| , Ve =
|Re|+ |ESe |
|R|+ |E| .

Here Vr and Ve represent the diversity measure of re-
lation r and entity e, respectively. We use ESr , ETr

to denote the set of sources and targets that appear
9This agrees with the sampling method of Chen et al. (2014)

for factorizing coherent matrices with missing values, which
chooses samples with probability proportional to their local co-
herence.

Algorithm 2: Query Subset Selection
input KB, budget B, query list L from Alg. 1.

1: ∀(r, e) ∈ L, compute the diversity measure
Vr, Ve

2: L̂← ∅
3: for j = 1 to B do
4: ∀l ∈ L \ L̂ : G(l) = F(L̂ ∪ l)−F(L̂),

for F in (7)
5: Select l∗ = arg max

L\L̂ G(l)

6: Add l∗ to L̂
output L̂

for relation r in the KB, Re as the set of relations in
the KB that have e as their target, and ESe as the set
of entities that appear as the first entity when e is the
second entity of the triple in the KB. The diversity
measure for each relation r is defined as the ratio of
the number of entities that appear in the KB as its
source or target, over the total number of entities.
Similarly, for an entity e, its diversity is defined as
the ratio of the number of relations involving e plus
the number of source entities that co-occur with e
in a relation, over the total number of relations and
entities. Note that the diversity measure is an in-
trinsic characteristic of each entity and relationship,
dictated by the KB and independent of the set L, and
can thus be computed in advance.

As described above, redundancy is a measure of
similarity between relations(entities) in L̂. Ten-
sor factorization yields an embedding for each re-
lation(entity) given the facts they participated in.
Therefore, the learned embeddings are one of the
best options for capturing similarities. Let he (and
hr) denote the learned embedding for entity e (and
relation r, resp.). We define

R(L̂, R
L̂
, E

L̂
) =

∑

r1,r2∈L̂

‖hr1 − hr2‖

+
∑

e1,e2∈L̂

‖he1 − he2‖.

This completes the definition of all pieces of our
objective function, F , from Eqn. (7). In Algo-
rithm 2, we present our efficient greedy method to
select a subset of L that approximately optimizes F .

Despite being a greedy approach that simply adds
the currently most valuable single query to L̂ and
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repeats, the submodular nature of F , which we will
prove shortly, guarantees that Algorithm 2 provides
an approximation that, even in the worse case, is no
worse than a factor of 1 − 1/e from the (unknown)
true optimum of F . This is formalized in the fol-
lowing theorem. Since addition preserves submodu-
larity and the weights wC , wD, wR are non-negative,
we will show that each of the three terms in F is
submodular.

Theorem 1. Given a tensor KB, a budget B, and
a candidate query list L, the quality F(L̂, R

L̂
, E

L̂
)

of the output L̂ of Algorithm 2 is a (1 − 1/e)-
approximation of the global optimum of F .

Proof. In order to prove the result, it suffices to
show that F(L̂, R

L̂
, E

L̂
) in Equation (7) is submod-

ular (Nemhauser et al., 1978). To this end, we show
that for L′′ ⊆ L′ ⊆ L and for l = (rl, el) ∈ L \ L′,

F(L′′ ∪ l)−F(L′′) ≥ F(L′ ∪ l)−F(L′).

Since addition preserves submodularity and the
weights wC , wD, wR are non-negative, it suffices to
show that each term in F is submodular.

First, consider the coverage term, C(L̂, R
L̂
, E

L̂
).

In order to prove that it is submodular, we verify:

(|RL′′∪l| − |RL′′ |)
|R| ≥ (|RL′∪l| − |RL′ |)

|R| ,

(|EL′′∪l| − |EL′′ |)
|E| ≥ (|EL′∪l| − |EL′ |)

|E| .

Note that for the numerators of each of the above
lines, the difference can be either +1 or 0. Since
L′′ ⊂ L′, LHS is, by definition, never less than RHS
and the inequalities holds.

Next, consider the diversity term, D(L̂, R
L̂
, E

L̂
).

The above argument directly applies here as well.
Finally, consider the redundancy term. In order to

show that −R(L̂, R
L̂
, E

L̂
) is submodular, note that

when taking the difference between R(L′′ ∪ l) and
R(L′′) the terms that correspond to both entities (or
both relations) being in L′′ cancel out. The same
holds forR(L′ ∪ l)−R(L′). We thus have:

R(L′′ ∪ l)−R(L′′) =
∑

rl∈l,r2∈L′′

‖hr1 − hr2‖+
∑

el∈l,e2∈L′′

‖he1 − he2‖

R(L′ ∪ l)−R(L′) =
∑

rl∈l,r2∈L′

‖hr1 − hr2‖+
∑

el∈l,e2∈L′

‖he1 − he2‖.

Since L′′ ⊆ L′ and norms are non-negative,

R(L′′ ∪ l)−R(L′′) ≤ R(L′ ∪ l)−R(L′).

The reverse inequality holds for the negation of both
sides, proving that −R(L̂, R

L̂
, E

L̂
) is submodular.

Combining the three items concludes the proof. �
We will complement this theoretical guarantee in

the experiments section (cf. Table 3) by empirically
comparing the performance of our query proposal
and subset selection methods with baselines.

5 Experiments

We begin with a description of the datasets and the
general setup, then evaluate the effectiveness of our
guided KB completion approach, and end with an
evaluation of our active learning method.10

5.1 Dataset and Setup

To assess the quality of our guided KB completion
method, we consider the only large existing knowl-
edge bases about generics that we are aware of:

1. A Science tensor containing facts about vari-
ous scientific activities, entities (e.g., animals,
instruments, body parts), units, locations, occu-
pations, etc. (Dalvi et al., 2017).11 This starting
tensor has a precision of about 80% and acts as
a valuable resource for challenging tasks such
as question answering. Our goal is to start with
this tensor and infer more scientific facts at a
similar or higher level of precision.

2. An Animals sub-tensor of the Science tensor,
which focuses on facts about animals and also
has a similar starting precision. Again, the goal
is to infer more facts about animals.

The mainstream approach for KB completion is
to focus on entities that are mentioned sufficiently
often. For instance, the commonly used FB15K
dataset guarantees that every entity appears at least
100 times. As a milder version of this, we focus on
the subset of the starting tensors where every entity
appears at least 20 times. The resulting statistics of
the tensors we use here are shown in Table 1.

10Data and code available from the authors.
11Aristo Tuple KB v0, http://allenai.org/data/aristo-tuple-kb.
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Dataset # Entities # Relations # Triples

Animals 224 129 10,604
Science 1,255 1,513 66,643

Table 1: Datasets, with a 3/1/1 train/validation/test split.

This data, which is the only one we are aware of
with generics, does not include ((s, r, t), all) style
triples. We therefore use the objective function in
Eqn. (2) rather than the multi-class one in Eqn. (1).
Despite this limitation of the dataset and its superfi-
cial similarity to the binary classification task under-
lying standard (non-generics) KB completion, our
results reveal that extending a generics KB is sur-
prisingly difficult for existing methods.

Dalvi et al. (2017) use a pipeline consisting of
Open IE (Banko et al., 2007) extractions, aggrega-
tion, and clean up via crowd-sourcing to generate
the Science tensor. These facts come with a rele-
vant WordNet (Miller, 1995) based taxonomy, entity
types (derived from WordNet ‘synsets’), and rela-
tion schema. Our method capitalizes on this addi-
tional information12 to perform high quality knowl-
edge completion.

Our evaluation metric is the accuracy of the top
k triples generated by various KB completion meth-
ods. We also visualize entire precision-recall curves,
where possible. While this metric requires human
annotation and is thus more cumbersome than fully-
automatic metrics, it is arguably more suitable for
evaluating generative tasks with a massive output
space, such as KB completion. In this setting, eval-
uation against a relatively small held out test set
can be misleading—a method may be highly ac-
curate at generating thousands of valid and useful
triples even if it does not necessarily classify spe-
cific held out instances accurately. While measures
such MAP and MRR have been used in the past
to alleviate this, they provide only a partial solu-
tion to the inherent difficulty of evaluating genera-
tive systems. Annotation-efficient evaluation meth-
ods have recently been proposed to address this chal-
lenge (Sabharwal and Sedghi, 2017).

12In order to limit potential error propagation, we collapse
the taxonomy to the top two levels in our experiments.
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Figure 1: Precision-yield curves for various embedding-
based methods on the Animals tensor. State-of-the-art
named-entity inspired approaches (black, pink) have low
precision even at a low yield. TransE is omitted due to
its very low precision here, around 10%. Our method
(HolE+ITRS+IET, green) doubles the size of the starting
tensor at a precision of 86.4%.

5.2 Guided KB Completion

We first compare our method (Section 3) with exist-
ing KB completion techniques on the Animals ten-
sor, and then demonstrate that its effectiveness car-
ries over scalably to the larger Science tensor as
well. In what follows, T denotes the tensor under
consideration.

We examine two alternatives for generating nega-
tive samples: given a triple (s, r, t) ∈ T , replace s
with (1) any entity s′ or (2) an entity s′ of the same
type as s. The resulting perturbed triple (s′, r, t) is
then treated as a negative sample if it is not present
in T . We also considered a weighted combination
of (1) and (2), and found random sampling to be the
most reliable on our datasets. This complies with the
commonly used LCWA assumption not being appli-
cable to these tensors.

As baselines, we consider extensions of three
state-of-the-art embedding-based KB completion
methods: HolE, TransE, and RESCAL. As men-
tioned earlier, two leading graph-based methods,
SFE and PRA, did not scale well. Both vanilla
TransE and RESCAL resulted in poor performance;
we thus report numbers only for their extensions.
Specifically, we consider 3 baselines: (1) HolE,
(2) TransE+Schema, and (3) SICTF which extends
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HolE SICTF HolE+ITRS+IET
farm,join,farm penguin,has part,tooth salmon,thrive in,water
family,join,family mosquito,spread,parasite animal,give birth to,animal
tree,resemble,tree spider,has part,skin duck,feed in,water
water,is known as,water elephant,eat,fish fish,migrate to,water
virus,attract,virus shark,has part,skin fish,thrive in,water
animal,resemble,animal crab,eat,insect turtle,swim in,water
tree,is known as,tree snake,eat,fish salmon,swim in,water
habitat,is known as,habitat otter,has part,tooth turtle,live in,water
envment.,is known as,envment. meat,attract,hummingbird animal,chew,food
man,join,man spider,has part,claw insect,destroy,tree
bird,give birth to,bird turtle,has part,tooth farm,possess,horse
region,is known as,region human,eat,plant fish,swim in,ocean
virus,derive from,virus monkey,has part,wing turtle,feed in,water
food,resemble,food dolphin,has part,tooth turtle,float in,water
bird,is known as,bird carnivore,live in,water dinosaur,walk on,leg
field,resemble,field lizard,eat,fish turtle,migrate to,water
fish,is known as,fish pelican,has part,tooth turtle,return to,water
bird,resemble,bird caterpillar,turn into,bird man,ride,cattle
grass,graze in,man bee,pollinate,garden turtle,swim in,ocean
animal,is known as,animal virus,infect,bird fish,float in,ocean

Table 2: Top 20 predictions by various methods, with invalid triples underlined and uninteresting ones , such as (X, is
known as, X) or (Y, resembles, Y), shown in italics. While some of this assessment can be subjective, it is evident that
our method, HolE+ITRS+IET, generates many more triples that are valid and interesting than competing approaches.

RESCAL and incorporates schema.
Figure 1 shows the resulting precision-yield

curves for the predictions made by each method on
the Animals dataset containing 10.6K facts. Specif-
ically, for each method, we rank the predictions
based on the method’s assigned score and compute
the precision of the top k predictions for varying
k. As expected, we observe a generally decreasing
trend as k increases. TransE+ITRS gave a precision
of only around 10% and is omitted from the plot. We
make two observations:

First, deriving new facts for these generics tensors
at a high precision is challenging! Specifically, none
of the baseline methods (black and pink curves),
which represent state of the art for named-entity ten-
sors, achieve a yield of more than 10% of T (i.e., 1K
predictions) even at a precision of just 60%.

Second, external information, if used appropri-
ately, can be surprisingly powerful in this setting.
Specifically, simply incorporating relation schema
(ITRS, blue curve) allows HolE-based completion
to double the size of the starting tensor T by pro-
ducing over 10K new triples at a precision of 82%.
Further, incorporating entity taxonomy (IET, green

curve) to address tensor sparsity results in the same
yield at a statistically significantly higher precision
of 86.4%.

It turns out that not only does our method result in
substantially improved PR curves, it also generates
qualitatively more interesting and useful generic
facts about the world than previous methods. We
illustrate this in Table 2, which lists the top 20 pre-
dictions made by various approaches. The triples
shown in red are false predictions (e.g., (penguin,
has part, tooth), (grass, graze in, man), (caterpil-
lar, turn into, bird)) or uninteresting ones (e.g., (wa-
ter, is known as, water)). As we see, a vast major-
ity of the top 20 predictions made by both vanilla
HolE and SICTF fall into these categories. On the
other hand, our method, HolE+ITRS+IET, predicts
19 true tripes out of the top 20, including interesting
scientific facts that were evidently missing from the
starting tensor, such as (salmon, thrive in, water),
(fish, swim in, ocean) and (insect, destroy, tree).

Finally, we evaluate our proposal on the entire
Science dataset with 66.6K facts. Since graph-based
methods did not scale well to the much smaller An-
imals dataset and other methods performed substan-
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# New True Triples Inferred
Query Subset From Sibling Tensor

Proposal Selection Anntation Argument Factorization Total

Random - 0 - 0 0
Schema Consistent TK 73 - 10 83
Schema Consistent SM 57 - 27 84

Sibling Guided TK 96 17 211 324
Sibling Guided SM 100 17 366 483

Table 3: Active Learning for new entities: Number of new facts inferred (from annotation, sibling agreement, tensor
factorization, and in total) for a representative new entity ẽ, when querying 100 facts about ẽ for human annotation.

tially worse there, we focus here on the scalability
and prediction quality of our method. We found that
HolE+ITRS+IET scales well to this high dimen-
sion, doubling the number of facts by adding 66K
new facts at 74% precision. Although the Science
tensor is 1,000 times larger than the Animals tensor,
the method took only 10x longer to run (3 minutes
on Animals tensor vs. 56 minutes on Science ten-
sor, using a 2.8GHz, 16GB Macbook Pro). With
additional improvements such as parallelization, it
is easily possible to further scale the method up to
substantially larger tensors.

5.3 Active Learning for New Entities

To assess the quality of our active learning mecha-
nism (Section 4), we consider predicting facts about
a new entity ẽ that is not in the Animals tensor. For
illustration, we choose ẽ from the Science tensor
vocabulary while ensuring that it is present in the
WordNet taxonomy.

The setup is as follows. We first use a query gen-
eration mechanism (Random, Schema Consistent, or
Sibling Guided; cf. Section 4.1) to propose an or-
dered list L of facts about ẽ to annotate. Next, we
perform subset selection (Top k or TK, Submodular
or SM; cf. Section 4.2) on L to identify a subset L̂
of up to 100 most promising queries. These are then
annotated and the true ones fed into tensor factor-
ization as additional input to infer further new facts
about ẽ.

In Table 3, we assess the quality of L̂ in two ways,
when |L̂| = 100: how many true facts does L̂ have
and how many overall new facts does this annotation
produce about ẽ. Figure 2 provides a complemen-
tary view, focusing on the overall number of new
facts inferred as |L̂| increases. While these illus-
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Figure 2: Active Learning for new entities: Total num-
ber of new inferred facts (y-axis) for various human an-
notation query sizes (x-axis). The use of subset selection
(green triangles, top) and sibling information (blue cir-
cles, 2nd from top) vastly outperforms various baselines.

trative numbers are for a representative new entity,
reindeer, the overall trend and order of numbers re-
mained the same for other new entities we experi-
mented with.

We mention some highlights from Table 3. First,
not surprisingly, randomly choosing triples about ẽ
to annotate is ineffective. Second, choosing schema
consistent triples results in 73 true triples (out of
100) but these facts help tensor factorization very lit-
tle, resulting in only 10 additional new triples about
ẽ. Our proposed sibling guided querying mecha-
nism results not only in nearly all 100 facts being
true along with 17 true facts inferred from sibling
agreement (set M in Alg. 1), but also, combined with
submodular subset selection for balancing diversity
with coverage (Alg. 2), ultimately results in 483 new
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facts about ẽ. These facts cover interesting new in-
formation such as (reindeer, eat, fruit), (wolf, chase,
reindeer), and (reindeer, provide, fur).

Finally, the plot in Figure 2 demonstrates that the
qualitative trends remain the same, irrespective of
the number |L̂| of queries annotated. Overall, our
sibling guided queries with submodular subset se-
lection (green triangles, top-most curve) ultimately
results in 5.8 times more new facts about ẽ than
a non-trivial, uncertainly based, schema consistent
baseline (black stars, 3rd curve from the top). This
attests to the efficacy of the method on this challeng-
ing problem and dataset.

6 Conclusion

This work explores KB completion for a new class
of problems, namely completing generics KBs,
which is an essential step for including general
world knowledge in intelligent machines. The dif-
ferences between generics and much studied named
entity KBs make existing techniques either not scale
well or produce facts at an undesirably low preci-
sion out of the box. We demonstrate that incorporat-
ing entity taxonomy and relation schema appropri-
ately can be highly effective for generics KBs. Fur-
ther, to address scarcity of facts about certain enti-
ties in such KBs, we present a novel active learn-
ing approach using sibling guided uncertainty esti-
mation along with submodular subset selection. The
proposed techniques substantially outperform vari-
ous baselines, setting a new state of the art for this
challenging class of completion problems.

Our method is applicable to KBs that have an as-
sociated entity taxonomy and relation schema. It
is expected to be successful when information from
siblings can be used to guide what is likely to be true
and what is a good candidate to query for a given
entity. We focus on KBs of generics where such in-
formation is available and—as we show—is highly
valuable for effective KB completion.

Why does our use of types work substantially bet-
ter in our setting than the use of types in various
baselines? One hypothesis is the following. The use
of complicated models requires substantial data and
information. In our KB, the information appears so
sparse and incomplete that using types in compli-
cated ways is not productive. Our proposal instead

attempts to use type information only to gently en-
hance the signal and reduce noise, before perform-
ing tensor decomposition. We hope this work will
trigger further exploration of knowledge bases with
generics, a key aspect of machine intelligence.
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