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Abstract

Much like sentences are composed of
words, words themselves are composed of
smaller units. For example, the English
word questionably can be analyzed as
question+able+1ly. However, this structural
decomposition of the word does not directly
give us a semantic representation of the
word’s meaning. Since morphology obeys the
principle of compositionality, the semantics
of the word can be systematically derived
from the meaning of its parts. In this work, we
propose a novel probabilistic model of word
formation that captures both the analysis of a
word w into its constituent segments and the
synthesis of the meaning of w from the mean-
ings of those segments. Our model jointly
learns to segment words into morphemes and
compose distributional semantic vectors of
those morphemes. We experiment with the
model on English CELEX data and German
DErivBase (Zeller et al., 2013) data. We show
that jointly modeling semantics increases
both segmentation accuracy and morpheme
F by between 3% and 5%. Additionally, we
investigate different models of vector compo-
sition, showing that recurrent neural networks
yield an improvement over simple additive
models. Finally, we study the degree to which
the representations correspond to a linguist’s
notion of morphological productivity.

1 Introduction

In most languages, words decompose further into
smaller units, termed morphemes. For example,
the English word questionably can be analyzed as
question+able+ly. This structural decomposition
of the word, however, by itself is not a semantic rep-
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resentation of the word’s meaning;' we further re-
quire an account of how to synthesize the meaning
from the decomposition. Fortunately, words—just
like phrases—to a large extent obey the principle
of compositionality: the semantics of the word can
be systematically derived from the meaning of its
parts.? In this work, we propose a novel joint prob-
abilistic model of word formation that captures both
structural decomposition of a word w into its con-
stituent segments and the synthesis of w’s meaning
from the meaning of those segments.
Morphological segmentation is a structured pre-
diction task that seeks to break a word up into its
constituent morphemes. The output segmentation
has been shown to aid a diverse set of applications,
such as automatic speech recognition (Afify et al.,
2006), keyword spotting (Narasimhan et al., 2014),
machine translation (Clifton and Sarkar, 2011) and
parsing (Seeker and Cetinoglu, 2015). In contrast
to much of this prior work, we focus on supervised
segmentation, i.e., we provide the model with gold
segmentations during training time. Instead of sur-

!There are many different linguistic and computational theo-
ries for interpreting the structural decomposition of a word. For
example, un- often signifies negation and its effect on semantics
can then be modeled by theories based on logic. This work ad-
dresses the question of structural decomposition and semantic
synthesis in the general framework of distributional semantics.

“Morphological research in theoretical and computational
linguistics often focuses on noncompositional or less com-
positional phenomena—simply because compositional deriva-
tion poses fewer interesting research problems. It is also true
that—just as many frequent multiword units are not completely
compositional—many frequent derivations (e.g., refusal, fit-
ness) are not completely compositional. An indication that non-
lexicalized derivations are usually compositional is the fact that
standard dictionaries like OUP editors (2010) list derivational
affixes with their compositional meaning, without a hedge that
they can also occur as part of only partially compositional
forms. See also Haspelmath and Sims (2013), §5.3.6.
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face segmentation, our model performs canonical
segmentation (Cotterell et al., 2016a; Cotterell et al.,
2016b; Kann et al., 2016), i.e., it allows the induc-
tion of orthographic changes together with the seg-
mentation, which is not typical. For the example
questionably, our model can restore the deleted char-
acters le, yielding the canonical segments question,
able and ly. In this work, our primary contribution
lies in the integration of continuous semantic vec-
tors into supervised morphological segmentation—
we present a joint model of morphological analysis
and semantic synthesis at the word-level.

We experimentally investigate three novel aspects
of our model.

e First, we show that jointly modeling continu-
ous representations of the semantics of mor-
phemes and words allows us to improve mor-
phological analysis. On the English portion of
CELEX (Baayen et al., 1993), we achieve a
5 point improvement in segmentation accuracy
and a 3 point improvement in morpheme F7.
On the German DErivBase dataset we achieve
a 3 point improvement in segmentation accu-
racy and a 3 point improvement in morpheme
Fy.

e Second, we explore improved models of vec-
tor composition for synthesizing word mean-
ing. We find a recurrent neural network im-
proves over previously proposed additive mod-
els. Moreover, we find that more syntactically
oriented vectors (Levy and Goldberg, 2014a)
are better suited for morphology than bag-of-
word (BOW) models.

o Finally, we explore the productivity of English
derivational affixes in the context of distribu-
tional semantics.

2 Derivational Morphology

Two important goals of morphology, the linguistic
study of the internal structure of words, are to de-
scribe the relation between different words in the
lexicon and to decompose them into morphemes, the
smallest linguistic unit bearing meaning. Morphol-
ogy can be divided into two types: inflectional and
derivational. Inflectional morphology is the set of
processes through which the word form outwardly
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displays syntactic information, e.g., verb tense. It
follows that an inflectional affix typically neither
changes the part-of-speech (POS) nor the semantics
of the word. For example, the English verb fo run
takes various forms: run, runs, ran and running, all
of which convey “moving by foot quickly”, but ap-
pear in complementary syntactic contexts.

Derivation deals with the formation of new words
that have semantic shifts in meaning (often includ-
ing POS) and is tightly intertwined with lexical se-
mantics (Light, 1996). Consider the example of
the English noun discontentedness, which is derived
from the adjective discontented. It is true that both
words share a close semantic relationship, but the
transformation is clearly more than a simple inflec-
tional marking of syntax. Indeed, we can go one
step further and define a chain of words content —
contented — discontented — discontentedness.

In the computational literature, derivational mor-
phology has received less attention than inflectional.
There are, however, two bodies of work on deriva-
tion in computational linguistics. First, there is a
series of papers that explore the relation between
lexical semantics and derivation (Lazaridou et al.,
2013; Zeller et al., 2014; Pad¢ et al., 2015; Kisse-
lew et al., 2015). All of these assume a gold mor-
phological analysis and primarily focus on the ef-
fect of derivation on distributional semantics. The
second body of work, e.g., the unsupervised mor-
phological segmenter MORFESSOR (Creutz and La-
gus, 2007), does not deal with semantics and makes
no distinction between inflectional and derivational
morphology.> Even though the boundary between
inflectional and derivational morphology is a con-
tinuum rather than a rigid divide (Haspelmath and
Sims, 2013), there is still the clear distinction that
derivation changes meaning whereas inflection does
not. Our goal in this paper is to develop an account
of how the meaning of a word form can be computed
jointly, combining these two lines of work.

Productivity and Semantic Coherence. We
highlight two related issues in derivation that moti-
vated the development of our model: productivity

3Narasimhan et al. (2015) also make no distinction between
inflectional and derivational morphology, but their model is an
exception in that it includes vector similarity as a semantic fea-
ture. See §5 for discussion.



and semantic coherence. Roughly, a productive aftix
is one that can still actively be employed to form
new words in a language. For example, the English
nominalizing affix ness (red—red+ness) can be
attached to just about any adjective, including novel
forms. In contrast, the archaic English nominal-
izing affix th (dear—dear—+th, heal—heal+th,
steal—steal+th) does not allow us to form new
words such as cheapth. This is a crucial issue in
derivational morphology since we would not in
general want to analyze new words as having been
formed from non-productive endings; e.g., we do
not want to analyze hearth as hear+th (or wugth as
wug+th). Relations such as those between heal and
health are lexicalized since they no longer can be
derived by productive processes (Bauer, 1983).

Under a generative treatment (Chomsky, 1965)
of morphology, productivity becomes a central no-
tion since a grammar needs to account for active
word formation processes in the language (Aronoff,
1976). Defining productivity precisely, however, is
tricky; Aronoff (1976) writes, “one of the central
mysteries of derivational morphology ... [is that]

. though many things are possible in morphology,
some are more possible than others.” Nevertheless,
speakers often have clear intuitions about which af-
fixes in the language are productive.*

Related to productivity is the notion of seman-
tic coherence. The principle of compositionality
(Frege, 1892; Heim and Kratzer, 1998) applies to
interpretation of words just as it does to phrases. In-
deed, compositionality is often taken to be a sig-
nal for productivity (Aronoff, 1976). When de-
ciding whether to further decompose a word, ask-
ing whether the parts sum up to the whole is of-
ten a good indicator. In the case of questionably
— question+able+ly, the compositional meaning
is “in a manner that could be questioned”, which
corresponds to the meaning of the word. Contrast
this with the word unquiet, which means “restless”,
rather than “not quiet” and the compound blackmail,
which does not refer to a letter written in black ink.

The model we will describe in §3 is a joint model
of both semantic coherence and segmentation; that

“It is also important to distinguish productivity from
creativity—a non-rule-governed form of word formation
(Lyons, 1977). As an example of creativity, consider the cre-
ation of portmanteaux, e.g., dramedy and soundscape.

35

is, an analysis is judged not only by character-level
features, but also by the degree to which the word
is semantically compositional. Implicit in such a
treatment is the desire to only segment a word if the
segmentation is derived from a productive process.
While most prior work on morphological segmen-
tation has not explicitly modeled productivity,’ we
believe, from a computational modeling perspective,
segmenting only productive affixes is preferable.
This is analogous to the modeling of phrase compo-
sitionality in embedding models, where it can be bet-
ter to not further decompose noncompositional mul-
tiword units like named entities and idiomatic ex-
pressions; see, e.g., Mikolov et al. (2013b), Wang et
al. (2014), Yin and Schiitze (2015), Yaghoobzadeh
and Schiitze (2015), and Hashimoto and Tsuruoka
(2016).°

In this paper, we refer to the semantic aspect of the
model either as semantic synthesis or as coherence.
These are two ways of looking at semantics that are
related as follows. If the synthesis (i.e., composi-
tion) of the meaning of the derived form from the
meaning of its parts is a regular application of the
linguistic rules of derivation, then the meaning so
constructed is coherent. These are the cases where
a joint model is expected to be beneficial for both
segmentation and interpretation.

3 A Joint Model

From an NLP perspective, canonical segmentation
(Naradowsky and Goldwater, 2009; Cotterell et al.,
2016b) is the task that seeks to algorithmically de-
compose a word into its canonical sequence of mor-
phemes. It is a version of morphological segmenta-
tion that requires the learner to handle orthographic
changes that take place during word formation. We
believe this is a more natural formulation of mor-
phological analysis—especially for the processing

Note that segmenters such as MORFESSOR utilize the prin-
ciple of minimum description length, which implicitly encodes
productivity, in order to guide segmentation.

®As a reviewer points out, productivity of an affix and se-
mantic coherence of the words formed from it are not perfectly
aligned. Nonproductive affixes can produce semantically coher-
ent words, e.g., warm—warm-th. Productive affixes can pro-
duce semantically incoherent words, e.g., canny—un-+canny.
Again, this is analogous to multiword units. However, there is
a strong correlation and our experiments show that relying on it
gives good results.
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Figure 1: A depiction of the joint model that makes the
relation between the three factors and the observed sur-
face form explicit. We show a simple additive model of
composition for ease of explication.

of derivational morphology—as it draws heavily on
linguistic notions (see §2).

The main innovation we present is the augmen-
tation of canonical segmentation to take into ac-
count semantic coherence and productivity. Con-
sider the word hypercuriosity and its canonical seg-
mentation hyper+curious+-ity; this canonical seg-
mentation seeks to decompose the word into its con-
stituent morphemes and account for orthographic
changes. This amounts to a structural decomposi-
tion of the word, i.e., how do we break up the string
of characters into chunks? This is similar to the de-
composition of a sentence into a parse tree. How-
ever, it is also natural to consider the semantic com-
positionality of a word, i.e., how is the meaning of
the word synthesized from the meaning of the indi-
vidual morphemes?

We consider both of these questions together
in a single model, where we would like to place
high probability on canonical segmentations that
are also semantically coherent. Returning to hy-
percuriosity, we could further decompose it into
hyper+cure+ous+ity in analogy to, say, vice —
vicious. Nothing about the surface form of curi-
ous alone gives us a strong cue that we should rule
out the segmentation cure+ous. Turning to distri-
butional semantics, however, it is the case that the
contexts in which curious occurs are quite different
from those in which cure occurs. This gives us a
strong cue which segmentation is correct.

Formally, given a word string w € X*, where X
is a discrete alphabet of characters (in English this
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could be as simple as the 26 letter lowercase alpha-
bet), and a word vector v € V, where V is a set
of low-dimensional word embeddings, we define the
model as:

p(v, s, u w)

1 1 )
~ 5157 = (5pallo - Cals. DB

+f(sLw) n+g(uw)w). O

This model is composed of three factors: composi-
tion factor (# [lv—Cga(s,1)||3), segmentation factor
f and transduction factor g. The parameters of the
model are @ = {3, n, w}, the function Cg composes
morpheme vectors together, s is the segmentation, [
is the labeling of the segments, u is the underlying
representation and Zg(w) is the partition function.
Note that the conditional distribution p(v | s, [, u, w)
is Gaussian distributed by construction. A visualiza-
tion of our model is found in Figure 1. This model
is a conditional random field (CRF) that is mixed,
i.e., it is defined over both discrete and continuous
random variables (Koller and Friedman, 2009). We
restrict the range of u to be a subset of X1*+* where
k is an insertion limit (Dreyer, 2011). In this work,
we take k£ = 5. Explicitly, the partition function is
defined as

1
Zow) = [ 3 exp (all’ - Cals. I

U,s" u!
+ £(5, l/,u/)Tn + g(u’,w)Tw) dv', (2)

which is guaranteed to be finite.’

A CREF is simply the globally renormalized prod-
uct of several non-negative factors (Sutton and
McCallum, 2006). Our model is composed of
three: transduction, segmentation and composition
factors—we describe each in turn.

3.1 Transduction Factor

The first factor we consider is the transduction
factor: exp (g(u,w)Tw), which scores a surface

"Since we have capped the insertion limit, we have a finite
number of values that u can take for any w. Thus, it follows that
we have a finite number of canonical segmentations s. Hence
we take a finite number of Gaussian integrals. These integrals
all converge since we have fixed the covariance matrix as o1,
which is positive definite.



representation (SR) w, the character string ob-
served in raw text, and an underlying represen-
tation (UR), a character string with orthographic
processes reversed. The aim of this factor is to
place high weight on good pairs, e.g., the pair
(w=questionably,u=questionablely), so we can ac-
curately restore character-level changes.

We encode this portion of the model as a weighted
finite-state machine for ease of computation. This
factor generalizes probabilistic edit distance (Ristad
and Yianilos, 1998) by looking at additional input
and output context; see Cotterell et al. (2014) for de-
tails. As mentioned above and in contrast to Cot-
terell et al. (2014), we bound the insertion limit in
the edit distance model.> Computing the score be-
tween two strings v and w requires a dynamic pro-
gram that runs in O(Ju/|-|w|). This is a generalization
of the forward algorithm for Hidden Markov Models
(HMMs) (Rabiner, 1989).

We employ standard feature templates for the task
that look at features of edit operations, e.g., substi-
tute ¢ for y, in varying context granularities. See
Cotterell et al. (2016b) for details. Recent work has
also explored weighting of WFST arcs with scores
computed by LSTMs (Hochreiter and Schmidhuber,
1997), obviating the need for human selection of
feature templates (Rastogi et al., 2016).

3.2 Segmentation Factor

The second factor is the segmentation factor:
exp (f(s,l,u)'m). The goal of this factor is to
score a segmentation s of a UR w. In our example,
it scores the input-output pair (u=gquestionablely,
s=question+able+ly). It additionally scores a
labeling of the segmentation. Our label set in
this work is L = {stem,prefix,suffix}. The
proper labeling of the segmentation above is
l=question:stem+able:suffix+1y:suffix. The label-
ing is critical for our composition functions Cg (Cot-
terell et al., 2015): which vectors are used depends
on the label given to the segment; e.g., the vectors of
the prefix “post” and the stem “post” are different.
We can view this factor as an unnormalized first-

8 As our transduction model is an unnormalized factor in a
CRF, we do not require the local normalization discussed in
Cotterell et al. (2014)—a weight on an edge may be any non-
negative real number since we will renormalize later. The un-
derlying model, however, remains the same.
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model | composition function

stem c = Zf\i 1 Illi:stemmifi
mult c = @Z]\i 1 mf;’i

add c = YN mhi

wadd | ¢ = Zf\il amli

fulladd | ¢ = YN, Uimk

LDS | h; = Xhii+Unmb

RNN | h; = tanh(Xhi_1+Um})

Table 1: Composition models Cg(s,!) used in this and
prior work. The representation of the word is i for the
dynamic and c for the non-dynamic models. Note that for
the dynamic models hg is a learned parameter.

order semi-CRF (Sarawagi and Cohen, 2005). Com-
putation of the factor again requires dynamic pro-
gramming. The algorithm is a different generaliza-
tion of the forward algorithm for HMMs, one that

extends it to the semi-Markov case. This algorithm
runs in O(|u|? - |L|?).

Features. We again use standard feature templates
for the task. We create atomic indicator features
for the individual segments. We then conjoin the
atomic features with left and right context features
as well as the label to create more complex feature
templates. We also include transition features that
fire on pairs of sequential labels. See Cotterell et
al. (2015) for details. Recent work has also showed
that a neural parameterization can remove the need
for manual feature design (Kong et al., 2016).

3.3 Composition Factor

The composition factor takes the form of an
unnormalized multivariate  Gaussian  density:
exp (52 |[v — Ca(s,1)]|3), where the mean is
computed by the (potentially non-linear) compo-
sition function (See Table 1) and the covariance
matrix o2/ is a diagonal matrix. The goal of the
composition function Cg(s,!) is to stitch together
morpheme embeddings to approximate the vector of
the entire word.

The simplest form of the composition function
Cg(s, 1) is add, an additive model of the morphemes.
See Table 1: each vector mlslz refers to a morpheme-



specific, label-dependent embedding. If [; = stem,
then s; represents a stem morpheme. Given that our
segmentation is canonical, an s; that is a stem gen-
erally itself is an entry in the lexicon and v(s;) € V.
If v(s;) € V, then we set v(s;) to 0.° We optimize
over vectors with [; € {prefix, suffix} as they corre-
spond to bound morphemes.

We also consider a more expressive composition
model, a recurrent neural network (RNN). Let N
be the number of segments. Then Cg(s,l) = hy
where h; is a hidden vector, defined by the re-
cursion:'® h; = tanh (X hi14+U ml;Z) (Elman,
1990). Again, we optimize the morpheme embed-
dings mf;l only when I; # stem along with the other
parameters of the RNN, i.e., the matrices U and X.

4 Inference and Learning

Exact inference is intractable since we allow ar-
bitrary segment-level features on the canonicalized
word forms u. Since the semi-CRF factor has fea-
tures that fire on substrings, we would need a dy-
namic programming state for each substring of each
of the exponentially many settings of w; this breaks
the dynamic program. We thus turn to approximate
inference through an importance sampling routine
(Rubinstein and Kroese, 2011).

4.1 Inference by Importance Sampling

Rather than considering all underlying orthographic
forms u and segmentations s, we sample from a
tractable proposal distribution g—a distribution over
canonical segmentations. In the following equations
we omit the dependence on w for notational brevity
and define h(l,s,u) = f(s,l,u) + g(u,w). Cru-
cially, the partition function Zg(w) is not a function
of parameter subvector 3 and its gradient with re-

°This is not changed in training, so all such v(s;) are 0 in the
final model. Clearly, this could be improved in future work as a
reviewer points out, e.g., by setting such v(s;) to an average of
a suitable chosen set of known word vectors.

"We do not explore more complex RNNs, e.g., LSTMs
(Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al.,
2014a) as words in our data have <7 morphemes. These archi-
tectures make the learning of long distance dependencies eas-
ier, but are no more powerful than an Elman RNN, at least in
theory. Note that perhaps if applied to languages with richer
derivational morphology than English, considering more com-
plex neural architectures would make sense.
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spect to 3 is 0.!! Recall that computing the gradi-
ent of the log-partition function is equivalent to the
problem of marginal inference (Wainwright and Jor-
dan, 2008). We derive our estimator as follows:

VologZ= E [h(l,s,u) 3)
(,s,u)~p
— Zp(lys,u)h(l,s,u) @
l,s,u
=X i als,u),,
s,u)h(l,s,u) (5
lsu
p(l s, u)
o L](Z,S,u) (Ls,u)| s (0)

where we have omitted the dependence on w (which
we condition on) and v (which we marginalize out).
So long as g has support everywhere p does (i.e.,
p(l,s,u) >0 = q(l,s,u) > 0), the estimate is un-
biased. Unfortunately, we can only efficiently com-
pute p(l,s,u) up to a constant factor, p(l,s,u) =
p(l,s,u)/Zy(w). Thus, we use the indirect impor-
tance sampling estimator,

Zflw(l Zw

where (11 sy W)Y (1) (M) 4,(M)) g
and importance weights w(?) are defined as:
U0

@ _ pY, s u)
W= 00 50 @) ®)

This indirect estimator is biased, but consistent.'?

Proposal Distribution. The success of impor-
tance sampling depends on the choice of a “good”
proposal distribution, i.e., one that ideally is close to
p. Since we are fully supervised at training time,
we have the option of training locally normalized
distributions for the individual components. Con-
cretely, we train rwo proposal distributions ¢; (u | w)
and ¢2(l, s | u) that take the form of a WFST and
a semi-CREF, respectively, using features identical

""'The subvector 3 is responsible for computing only the
mean of the Gaussian factor and thus has no impact on its nor-
malization coefficient (Murphy, 2012).

"Informally, the indirect importance sampling estimate con-
verges to the true expectation as M — oo (the definition of
statistical consistency).



to the joint model. Each of these distributions is
tractable—we can compute the marginals with dy-
namic programming and thus sample efficiently. To
draw samples (I, s, u) ~ ¢, we sample sequentially
from ¢; and then g5, conditioned on the output of ¢;.

4.2 Learning

We optimize the log-likelihood of the model using
ADAGRAD (Duchi et al., 2011), which is SGD with
a special per-parameter learning rate. The full gra-
dient of the objective for one training example is:
Vologp(v,s,1,u | w) = f(s,L,u)" + g(u,w)"

1
- ;(v —Cg(s,1))VeCal(s,1)

— Vo log Zg (w)v ©)

where we use the importance sampling algorithm
described in §4.1 to approximate the gradient of
the log-partition function, following Bengio and
Senecal (2003). Note that VgCg(s,!) depends on
the composition function used. In the most com-
plicated case when Cg is a RNN, we can com-
pute VgCa(s,[) efficiently with backpropagation
through time (Werbos, 1990). We take M = 10 im-
portance samples; using so few samples can lead to a
poor estimate of the gradient, but for our application
it suffices. We employ Lo regularization.

4.3 Decoding

Decoding the model is also intractable. To approxi-
mate the solution, we again employ importance sam-
pling. We take M =10,000 importance samples and
select the highest weighted sample.

5 Related Work

The idea that vector semantics is useful for mor-
phological segmentation is not new. Count vectors
(Salton, 1971; Turney and Pantel, 2010) have been
shown to be beneficial in the unsupervised induction
of morphology (Schone and Jurafsky, 2000; Schone
and Jurafsky, 2001). Embeddings were shown to
act similarly (Soricut and Och, 2015). Our method
differs from this line of research in two key ways.
(i) We present a probabilistic model of the pro-
cess of synthesizing the word’s meaning from the
meaning of its morphemes. Prior work was ei-
ther not probabilistic or did not explicitly model
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morphemes. (ii) Our method is supervised and fo-
cuses on derivation. Schone and Jurafsky (2000) and
Soricut and Och (2015), being fully unsupervised,
do not distinguish between inflection and deriva-
tion and Schone and Jurafsky (2001) focus on in-
flection. More recently, Narasimhan et al. (2015)
look at the unsupervised induction of “morpholog-
ical chains” with semantic vectors as a crucial fea-
ture. Their goal is to jointly figure out an ordering
of word formation and a morphological segmenta-
tion, e.g., play—playful—playfulness. While it is a
rich model like ours, theirs differs in that it is un-
supervised and uses vectors as features, rather than
explicitly treating vector composition. All of the
above work focuses on surface segmentation and not
canonical segmentation, as we do.

A related line of work that has different goals con-
cerns morphological generation. Two recent papers
that address this problem using deep learning are
Faruqui et al. (2016a) and Faruqui et al. (2016b).
In an older line of work, Yarowsky and Wicen-
towski (2000) and Wicentowski (2002) exploit log
frequency ratios of inflectionally related forms to
tease apart that, e.g., the past tense of sing is not
singed, but instead sang. Related work by Dreyer
and Eisner (2011) uses a Dirichlet process to model
a corpus as a “mixture of a paradigm”, allowing
for the semi-supervised incorporation of distribu-
tional semantics into a structured model of inflec-
tional paradigm completion.

Our work is also related to recent attempts to in-
tegrate morphological knowledge into general em-
bedding models. For example, Botha and Blun-
som (2014) train a log-bilinear language model that
models the composition of morphological structure.
Likewise, Luong et al. (2013) train a recursive neural
network (Goller and Kiichler, 1996) over a heuristi-
cally derived tree structure to learn morphological
composition over continuous vectors. Our work is
different in that we learn a joint model of segmen-
tation and composition. Moreover, supervised mor-
phological analysis can drastically outperform unsu-
pervised analysis (Ruokolainen et al., 2013).

Early work by Kay (1977) can be interpreted as
finite-state canonical segmentation, but it neither ad-
dresses nor experimentally evaluates the question of
joint modeling of morphological analysis and se-
mantic synthesis. Moreover, we may view canoni-



dev test
Model Acc Fy Edit Acc Fy Edit
Semi-CRF (Baseline) 0.55 (018) 0.75 (014) 0.80 (.043) | 0.54 (.018) 0.75 (.014) 0.78 (.034)
Joint (Baseline) 0.77 co11) 0.87 007) 0.41 (.029) | 0.77 (.013) 0.87 (.007) 0.43 (.029)
% Joint + Vec (This Work) 0.83 (.014) 0.91 (.008) 0.31 (.019) | 0.82 (.020) 0.90 (.011) 0.32 (.038)
Joint + UR (Oracle) 0.94 015 0.96 009) 0.07 (.016) | 0.94 011) 0.96 (.007) 0.07 (.011)
Joint + UR + Vec (Oracle) || 0.95 (011) 0.97 (.007) 0.05 (.013) | 0.95 (.023) 0.97 (.006) 0.05 (.025)
Semi-CRF (Baseline) 0.39 (062) 0.68 (.039) 1.15 (.230) | 0.39 (.058) 0.68 (.042) 1.14 (.240)
Joint (Baseline) 0.79 107) 0.88 (069) 0.40 (.313) | 0.79 (.099) 0.87 (.063) 0.41 (.282)
E‘l Joint + Vec (This Work) 0.82 (102) 0.90 (.067) 0.33 (312) | 0.82 (.096) 0.90 (.061) 0.33 (.282)
Joint + UR (Oracle) 0.86 (.108) 0.90 (.070) 0.25 (.288) | 0.86 (.100) 0.90 (.064) 0.25 (.268)
Joint + UR + Vec (Oracle) || 0.87 (.106) 0.92 (.069) 0.20 (.285) | 0.88 (.096) 0.93 (.062) 0.19 (.263)

Table 2: Results for the canonical morphological segmentation task on English and German. Standard deviation
is given in parentheses. We compare against two baselines that do not make use of semantic vectors: (i) “Semi-CRF
(baseline)”, a semi-CRF that cannot account for orthographic changes and (ii) “Joint (Baseline)”, a version of our joint
model without vectors. We also compare against an oracle version with access to gold URs (“Joint + UR (Oracle)”,
“Joint + UR + Vec (Oracle)”), revealing that the toughest part of the canonical segmentation task is reversing the

orthographic changes.

calization as an orthographic analogue to phonology.
On this interpretation, the finite-state systems of Ka-
plan and Kay (1994), which computationally apply
SPE-style phonological rules (Chomsky and Halle,
1968), may be run backwards to get canonical un-
derlying forms.

6 Experiments and Results

We conduct experiments on English and German
derivational morphology. We analyze our joint
model’s ability to segment words into their canoni-
cal morphemes as well as its ability to composition-
ally derive vectors for new words. Finally, we ex-
plore the relationship between distributional seman-
tics and morphological productivity.

For English, we use the pretrained vectors of
Levy and Goldberg (2014a) for all experiments. For
German, we train word2vec skip-gram vectors on
the German Wikipedia. We first describe our En-
glish dataset, the subset of the English portion of
the CELEX lexical database (Baayen et al., 1993)
that was selected by Lazaridou et al. (2013); the
dataset contains 10,000 forms. This allows for com-
parison with previously proposed methods. We
make two modifications. (i) Lazaridou et al. (2013)
make the two-morpheme assumption: every word is
composed of exactly two morphemes. In general,
this is not true, so we further segment all complex
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words in the corpus. For example, friendless+ness
is further segmented into friend+less+ness. To
nevertheless allow for fair comparison, we pro-
vide versions of our experiments with and without
the two-morpheme assumption where appropriate.
(i) Lazaridou et al. (2013) only provide a single
train/test split. As we require a held-out develop-
ment set for hyperparameter tuning, we randomly
allocate a portion of the training data to select the
hyperparameters and then retrain the model using
these parameters on the original train split. We also
report 10-fold cross validation results in addition to
Lazaridou et al.’s train/test split.

Our German dataset is taken from Zeller et al.
(2013) and is described in Cotterell et al. (2016b).
It, again, consists of 10,000 derivational forms. We
report results on 10-fold cross validation.

6.1 Experiment 1: Canonical Segmentation

For our first experiment, we test whether jointly
modeling the continuous representations allows us
to segment words more accurately. We assume that
we are given an embedding for the target word. We
estimate the model p(v, s,l,u | w) as described in
§4 with Ly regularization \||0||3. To evaluate, we
decode the distribution p(s,l,u | v,w). We per-
form approximate MAP inference with importance
sampling—taking the sample with the highest score.



EN DE
BOW2 BOW5 DEPs SG
dev test | dev test | dev test dev  test

stem 403 402 | 374 376 | 422 422 || 400 405
add 635 635 | 541 542 | 787 785 || 712 711
LDS .660 .660 | .566 .568 | .806 .804 || .717 .718
RNN .660 .660 | .565 .567 | .807 .806 | .707 .712
stem 399 400 | 371 372 | 411 412 || 394 398
add 625 625 | 524 525 | 782 781 || .705 704
LDS 648 648 | 547 547 | 799 797 || 712 711
RNN .649  .647 | 547 546 | .801 .799 || .706 .708
GRU 586 585 | 452 452|769 .768 || .675 .667
LSTM || .586 .586 | .455 .455 | .768 .767 || .677 .666

oracle

joint

char

Table 3: Vector approximation (measured by mean co-
sine similarity) both with (“oracle”) and without (“joint”,
“char”) gold morphology. Surprisingly, joint models are
close in performance to models with gold morphology.

In these experiments, we use the RNN with the de-
pendency vectors, the combination of which per-
forms best on vector approximation in §6.2.

We follow the experimental design of Cotterell
et al. (2016b). We compare against two base-
lines (marked “Baseline” in Table 2): (i) a “Semi-
CRF” segmenter that cannot account for ortho-
graphic changes and (ii) the full “Joint” model of
Cotterell et al. (2016b)."* We additionally consider
an “Oracle” setting, where we give the model the
gold underlying orthographic form (“UR”) at both
training and test time. This gives us insight into the
performance of the transduction factor of our model,
i.e., how much could we benefit from a richer model.

Our hyperparameters are (i) the regularization
coefficient A and (ii) o2, the variance of the
Gaussian factor. We use grid search to tune
them: A € {0.0,10%,102,10%,10%,10°}, o2 €
{0.25,0.5,0.75,1.0}.

Metrics. We use three metrics to evaluate segmen-
tation accuracy. Note that the evaluation of canon-
ical segmentation is hard since a system may re-
turn a sequence of morphemes whose concatenation
is not the same length as the concatenation of the
gold morphemes. This rules out metrics for surface
segmentation like border F} (Kurimo et al., 2010),
which require the strings to be of the same length.
We now define the metrics. (i) Segmentation
accuracy measures whether every single canonical
morpheme in the returned sequence is correct. It is
inflexible: closer answers are penalized the same as

13i.e., a model without the Gaussian factor that scores vectors.
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more distant answers. (ii) Morpheme F) (van den
Bosch and Daelemans, 1999) takes the predicted se-
quence of canonical morphemes, turns it into a set,
computes precision and recall in the standard way
and based on that then computes Fj. This metric
gives credit if some of the canonical morphemes
were correct. (iii) Levenshtein distance joins the
canonical segments with a special symbol # into a
single string and computes the Levenshtein distance
between predicted and gold strings.

Discussion. Results in Table 2 show that jointly
modeling semantic coherence improves our ability
to analyze words. For test, our proposed joint model
(“This Work™) outperforms the baseline supervised
canonical segmenter, which is state-of-the-art for the
task, by .05 (resp. .03) on accuracy and .03 (resp.
.03) on F} for English (resp. German). We also find
that when we give the joint model an oracle UR the
vectors generally help less: .01 (resp. .02) on ac-
curacy and .01 (resp. .03) on F for English (resp.
German). This indicates that the chief boon the vec-
tor composition factor provides lies in selection of
an appropriate UR. Moreover, the up to .15 differ-
ence in English between systems with and without
the oracle UR suggests that reversing orthographic
changes is a particularly difficult part of the task, at
least for English.

6.2 Experiment 2: Vector Approximation

We adopt the experimental design of Lazaridou et
al. (2013). Its aim is to approximate a vector of a
derivationally complex word using a learned model
of composition. As Lazaridou et al. (2013) assume
a gold morphological analysis, we compare two set-
tings: (i) oracle morphological analysis and (ii) in-
ferred morphological analysis. To the best of our
knowledge, (ii) is a novel experimental condition
that no previous work has addressed.

We consider four composition models (See Ta-
ble 1). (i) stem, using just the stem vector. This
baseline tells us what happens if we make the incor-
rect assumption that derivation behaves like inflec-
tion and is not meaning-changing. (ii) add, a purely
additive model. This is arguably the simplest way of
combining the vectors of the morphemes. (iii) LDS,
a linear dynamical system. This is arguably the sim-
plest sequence model. (iv) A (simple) RNN. Recur-



H all HRLR | -less in- un-

stem 47 5232 | 22 39 33

= mult 39 .43 28 | 23 34 33
“’ dil. 48 .53 .33 | 30 .45 41
S wadd 50 .55 .38 | 24 .40 34
fulladd || .56 .61 41 | 38 .47 .44
lexfunc || .54 58 42 | .44 45 46
stem 43 44 38 | 32 43 51
add 65 .67 .61 | .60 .64 .67

. LDS 67 69 .62 | .61 .66 .67
Z RNN 67 .69 .60 | .60 .65 .66
“ "¢GRU | .59.60 55| 59 55 .57
¢-LSTM || .52 .53 .50 | .55 .50 .50
stem 40 .43 33 | 27 37 46
add 56 .59 .51 | .46 .55 .59

2 LDS 58 .61 .51 | .48 .57 .60
2 RNN 58 .61 .50 | .48 .56 .58
c-GRU || 45 47 42| 42 43 45
c-LSTM || .46 47 43 | 43 45 46
stem 46 45 49 | 38 57 .67
add 79.79 .77 | .78 .80 .80

£ LDS 80.81.77 | .79 .81 .81
2 RNN 81.82.77 | .79 .80 .81
c-GRU || .75.76 72 | 78 74 75
c-LSTM || .75.76 71 | 77 .72 73

Table 4: Vector approximation (measured by mean cosine
similarity) with gold morphology on the train/test split of
Lazaridou et al. (2013). HR/LR = high/low-relatedness
words. See Lazaridou et al. (2013) for details.

rent neural networks are currently the most widely
used nonlinear sequence model and simple RNNs
are the simplest such models.

Part of the motivation for considering a richer
class of models lies in our removal of the two-
morpheme assumption. Indeed, it is unclear that
the wadd and fulladd models (Mitchell and Lapata,
2008) are useful models in the general case of multi-
morphemic words—the weights are tied by position,
i.e., the first morpheme’s vector (be it a prefix or
stem) is always multiplied by the same matrix.

Comparison with Lazaridou et al. To compare
with Lazaridou et al. (2013), we use their exact
train/test split. Those results are reported in Table 4.
This dataset enforces that all words are composed of
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exactly two morphemes. Thus, a word like unques-
tionably is segmented as un-questionably, with-
out further decomposition. The vectors employed
by Lazaridou et al. (2013) are high-dimensional
count vectors derived from lemmatized and POS
tagged text with a before-and-after window of size
2. They then apply pointwise mutual informa-
tion (PMI) weighting and dimensionality reduction
by non-negative matrix factorization. In contrast,
we employ WORD2VEC (Mikolov et al., 2013a), a
model that is also interpretable as the factorization of
a PMI matrix (Levy and Goldberg, 2014b). We con-
sider three WORD2VEC models: two bag-of-word
(BOW) models with before-and-after windows of
size 2 and 5 and DEPs (Levy and Goldberg, 2014a),
a dependency-based model whose context is derived
from dependency parses rather than BOW.

In general, the results indicate that the key to
better vector approximation is not a richer model
of composition, but rather lies in the vectors them-
selves. We find that our best model, the RNN, only
marginally edges out the LDS. Additionally, looking
at the “all” column and the DEPs vectors, the sim-
ple additive model is only <.02 lower than LDS. In
comparison, we observe large differences between
the vectors. The RNN+DEPs model is .23 bet-
ter than the BOWS5 models (.81 vs. .58), .14 better
than the BOW2 models (.81 vs. .67) and .25 bet-
ter than Lazaridou et al.’s best model (.81 vs. .56).
A wider context for BOW (5 instead of 2) yields
worse results. This suggests that syntactic infor-
mation or at least positional information is neces-
sary for improved models of morpheme composi-
tion. The test vectors are annotated for relatedness,
which is a proxy for semantic coherence. HR (high-
relatedness) words were judged to be more compo-
sitional than LR (low-relatedness) words.

Character-Level Neural Retrofitting. As a fur-
ther strong baseline, we consider a retrofitting
(Faruqui et al., 2015) approach based on character-
level recurrent neural networks. Recently, running a
recurrent net over the character stream has become a
popular way of incorporating subword information
into a model—empirical gains have been observed
in a diverse set of NLP tasks: POS tagging (dos
Santos and Zadrozny, 2014; Ling et al., 2015), pars-
ing (Ballesteros et al., 2015) and language modeling



(Kim et al., 2016). To the best of our knowledge,
character-level retrofitting is a novel approach.
Given a vector v for a word form w, we seek a
function to minimize the following objective
1 2
Sllo = huvl3 (10)
where hy is the final hidden state of a recurrent neu-
ral architecture, i.e.,

h; = o(Ah;—1 + Bw;), (11D

where ¢ is a non-linearity and wj; is the i char-

acter in w, h;_; is the previous hidden state and
A and B are matrices. While we have defined
the architecture for a vanilla RNN, we experiment
with two more advanced recurrent architectures:
GRUs (Cho et al., 2014b) and LSTMs (Hochreiter
and Schmidhuber, 1997) as well as deep variants
(Sutskever et al., 2014; Gillick et al., 2016; Firat et
al., 2016). Importantly, this model has no knowledge
of morphology—it can only rely on representations
it extracts from the characters. This gives us a clear
ablation on the benefit of adding structured morpho-
logical knowledge. We optimize the depth and the
size of the hidden units on development data using
a coarse-grained grid search. We found a depth of
2 and hidden units of size 100 (in both LSTM and
GRU) performed best. We trained all models for 100
iterations of Adam (Kingma and Ba, 2015) with Lo
regularization with regularization coefficient 0.01.
Table 4 shows that the two character-level mod-
els (“c-GRU” and “c-LSTM”) perform much worse
than our models. This indicates that supervised mor-
phological analysis produces higher-quality vector
representations than “knowledge-poor” character-
level models. = However, we note that these
character-level models have fewer parameters than
our morpheme-level models—there are many more
morphemes in a languages than characters.

Oracle Morphology. In general, the two-
morpheme assumption is incorrect. We consider
an expanded setting of Lazaridou et al. (2013)’s
task, in which we fully decompose the word, e.g.,
unquestionably—un+question+able+ly. These
results are reported in Table 3 (top block, “oracle”).
We report mean cosine similarity. Standard devia-
tions s for 10-fold cross-validation (not shown) are
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small (< .012) with two exceptions: s = .044 for
the DEPs-joint-stem results (411 and .412).

The multi-morphemic results mirror those of the
bi-morphemic setting of Lazaridou et al. (2013). (1)
RNN+DEPs attains an average cosine similarity of
around .80 for English. Numbers for German are
lower, around .70. (ii) The RNN only marginally
edges out LDS for English and is slightly worse for
German. Again, this is not surprising as we are mod-
eling short sequences. (iii) Certain embeddings lend
themselves more naturally to derivational composi-
tionality: BOW?2 is better than BOWS5, DEPs is the
clear winner.

Inferred Morphology. The final setting we con-
sider is the vector approximation task without gold
morphology. In this case, we rely on the full joint
model p(v,s,l,u | w). At evaluation, we are in-
terested in the marginal distribution p(v | w) =
YosiuP(v,s,l,u | w). We then use importance
sanif;ling to approximate the mean of this marginal
distribution as the predicted embedding, i.e.,

0= /vp(v | w)dv (12)

1 M

~ o D10 (@) (13)

~ . w y S )
Zf\il w(® ; ol )

where w(?) are the importance weights defined in

Equation 8 and /(Y and s(*) are the i™ sampled la-

beling and segmentation, respectively.

Discussion. Surprisingly, Table 3 (joint) shows
that relying on the inferred morphology does not
drastically affect the results. Indeed, we are often
within .01 of the result with gold morphology. Our
method can be viewed as a retrofitting procedure
(Faruqui et al., 2015), so this result is useful: it indi-
cates that joint semantic synthesis and morphologi-
cal analysis produces high-quality vectors.

6.3 Experiment 3: Derivational Productivity

We now delve into the relation between distribu-
tional semantics and morphological productivity.
The extent to which jointly modeling semantics aids
morphological analysis will be determined by the in-
herent compositionality of the words within the vec-
tor space. We break down our results on the vector
approximation task with gold morphology using the



>

) T T T T
~o
- eEdaby
b
' $ ¢+

1 ne e ale n I o le

] [ A

<
> ”:

t n t e on ent al e

Figure 2: The boxplot breaks down the cosine similarity between the approximated vector and the target vector by
affix (using gold morphology). We have ordered the affixes such that the better approximated vectors are on the left.

dependency vectors and the RNN composer in Fig-
ure 2 by selected affixes. We observe a wide range of
scores: the most compositional ending ly gives rise
to cosine similarities that are 20 points higher than
those of the least compositional er.

On the left end of Figure 2 we see extremely pro-
ductive suffixes. The affix ize is used productively
with relatively obscure words in the sciences, e.g.,
Rao-Blackwellize. Likewise, the affix ness can be
applied to almost any adjective without restriction,
e.g., Poissonness ‘degree to which data have a Pois-
son distribution’. On the right end, we find -ment,
-er and re-. The affix -ment is borderline productive
(Bauer, 1983)—modern English tends to form novel
nominalizations with ness or ity. More interesting
are re- and er, both of which are very productive in
English. For er, many of the words bringing down
the average are simply non-compositional. For ex-
ample, homer ‘homerun in baseball’ is not derived
from home+er—this is an error in data. We also see
examples like cutter. It has a compositional read-
ing (e.g., “box cutter”), but also frequently occurs in
the non-compositional meaning ‘type of boat’. Fi-
nally, proper nouns like Homer and Turner end in
er and in our experiments we computed vectors for
lowercased words. The affix re- similarly has a large
number of non-compositional cases, e.g., remove,
relocate, remark. Indeed, to get the compositional
reading of remove, the first syllable (rather than the
second) is typically stressed to emphasize the prefix.
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We finally note several limitations of this exper-
iment. (i) The ability of our models—even the re-
current neural network—to model transformations
between vectors is limited. (ii) Our vectors are far
from perfect; e.g., sparseness in the training data af-
fects quality and some of the words in our corpus are
rare. (iii) Semantic coherence is not the only crite-
rion for productivity. An example is -tk in English.
As noted earlier, it is compositional in a word like
warmth, but it cannot be used to form new words.

7 Conclusion

We have presented a model of the semantics and
structure of derivationally complex words. To the
best of our knowledge, this is the first attempt to
jointly consider, within a single model, (i) the mor-
phological decomposition of the word form and
(ii) the semantic coherence of the resulting anal-
ysis. We found that directly modeling coherence
increases segmentation accuracy, improving over a
strong baseline. Also, our models show state-of-the-
art performance on the derivational vector approxi-
mation task introduced by Lazaridou et al. (2013).

Future work will focus on the extension of the
method to more complex instances of derivational
morphology, e.g., compounding and reduplication,
and on the extension to additional languages. We
also plan to explore the relation between derivation
and distributional semantics in greater detail.
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