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Abstract

We introduce a neural method for transfer
learning between two (source and target) clas-
sification tasks or aspects over the same do-
main. Rather than training on target la-
bels, we use a few keywords pertaining to
source and target aspects indicating sentence
relevance instead of document class labels.
Documents are encoded by learning to em-
bed and softly select relevant sentences in an
aspect-dependent manner. A shared classi-
fier is trained on the source encoded docu-
ments and labels, and applied to target en-
coded documents. We ensure transfer through
aspect-adversarial training so that encoded
documents are, as sets, aspect-invariant. Ex-
perimental results demonstrate that our ap-
proach outperforms different baselines and
model variants on two datasets, yielding an
improvement of 27% on a pathology dataset
and 5% on a review dataset.1

1 Introduction

Many NLP problems are naturally multitask classi-
fication problems. For instance, values extracted for
different fields from the same document are often
dependent as they share the same context. Exist-
ing systems rely on this dependence (transfer across
fields) to improve accuracy. In this paper, we con-
sider a version of this problem where there is a clear
dependence between two tasks but annotations are
available only for the source task. For example,

1The code is available at https://github.com/
yuanzh/aspect_adversarial.

Pathology report:
• Final  diagnosis:  BREAST (LEFT)  …  Invasive  ductal 

carcinoma: identified.  Carcinoma tumor size: num cm. 
Grade:  3.  …  Lymphatic  vessel  invasion:  identified. 
Blood vessel  invasion:  Suspicious.  Margin  of  invasive 
carcinoma …

Diagnosis results:
Source (IDC): Positive          Target (LVI): Positive

Figure 1: A snippet of a breast pathology report with
diagnosis results for two types of disease (aspects):
carcinoma (IDC) and lymph invasion (LVI). Note
how the same phrase indicating positive results (e.g.
identified) is applicable to both aspects. A transfer
model learns to map other key phrases (e.g. Grade
3) to such shared indicators.

the target goal may be to classify pathology reports
(shown in Figure 1) for the presence of lymph in-
vasion but training data are available only for car-
cinoma in the same reports. We call this problem
aspect transfer as the objective is to learn to classify
examples differently, focusing on different aspects,
without access to target aspect labels. Clearly, such
transfer learning is possible only with auxiliary in-
formation relating the tasks together.

The key challenge is to articulate and incorpo-
rate commonalities across the tasks. For instance, in
classifying reviews of different products, sentiment
words (referred to as pivots) can be shared across
the products. This commonality enables one to align
feature spaces across multiple products, enabling
useful transfer (?). Similar properties hold in other
contexts and beyond sentiment analysis. Figure 1
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shows that certain words and phrases like “identi-
fied”, which indicates the presence of a histologi-
cal property, are applicable to both carcinoma and
lymph invasion. Our method learns and relies on
such shared indicators, and utilizes them for effec-
tive transfer.

The unique feature of our transfer problem is that
both the source and the target classifiers operate over
the same domain, i.e., the same examples. In this
setting, traditional transfer methods will always pre-
dict the same label for both aspects and thus lead-
ing to failure. Instead of supplying the target classi-
fier with direct training labels, our approach builds
on a secondary relationship between the tasks using
aspect-relevance annotations of sentences. These
relevance annotations indicate a possibility that the
answer could be found in a sentence, not what the
answer is. One can often write simple keyword rules
that identify sentence relevance to a particular as-
pect through representative terms, e.g., specific hor-
monal markers in the context of pathology reports.
Annotations of this kind can be readily provided by
domain experts, or extracted from medical literature
such as codex rules in pathology (Pantanowitz et al.,
2008). We assume a small number of relevance an-
notations (rules) pertaining to both source and target
aspects as a form of weak supervision. We use this
sentence-level aspect relevance to learn how to en-
code the examples (e.g., pathology reports) from the
point of view of the desired aspect. In our approach,
we construct different aspect-dependent encodings
of the same document by softly selecting sentences
relevant to the aspect of interest. The key to effective
transfer is how these encodings are aligned.

This encoding mechanism brings the problem
closer to the realm of standard domain adaptation,
where the derived aspect-specific representations are
considered as different domains. Given these rep-
resentations, our method learns a label classifier
shared between the two domains. To ensure that it
can be adjusted only based on the source class la-
bels, and that it also reasonably applies to the tar-
get encodings, we must align the two sets of en-
coded examples.2 Learning this alignment is pos-

2This alignment or invariance is enforced on the level of sets,
not individual reports; aspect-driven encoding of any specific
report should remain substantially different for the two tasks
since the encoded examples are passed on to the same classifier.

sible because, as discussed above, some keywords
are directly transferable and can serve as anchors
for constructing this invariant space. To learn this
invariant representation, we introduce an adversar-
ial domain classifier analogous to the recent suc-
cessful use of adversarial training in computer vi-
sion (Ganin and Lempitsky, 2014). The role of the
domain classifier (adversary) is to learn to distin-
guish between the two types of encodings. During
training we update the encoder with an adversarial
objective to cause the classifier to fail. The encoder
therefore learns to eliminate aspect-specific infor-
mation so that encodings look invariant (as sets) to
the classifier, thus establishing aspect-invariance en-
codings and enabling transfer. All three components
in our approach, 1) aspect-driven encoding, 2) clas-
sification of source labels, and 3) domain adversary,
are trained jointly (concurrently) to complement and
balance each other.

Adversarial training of domain and label classi-
fiers can be challenging to stabilize. In our setting,
sentences are encoded with a convolutional model.
Feedback from adversarial training can be an un-
stable guide for how the sentences should be en-
coded. To address this issue, we incorporate an ad-
ditional word-level auto-encoder reconstruction loss
to ground the convolutional processing of sentences.
We empirically demonstrate that this additional ob-
jective yields richer and more diversified feature rep-
resentations, improving transfer.

We evaluate our approach on pathology reports
(aspect transfer) as well as on a more standard re-
view dataset (domain adaptation). On the pathology
dataset, we explore cross-aspect transfer across dif-
ferent types of breast disease. Specifically, we test
on six adaptation tasks, consistently outperforming
all other baselines. Overall, our full model achieves
27% and 20.2% absolute improvement arising from
aspect-driven encoding and adversarial training re-
spectively. Moreover, our unsupervised adaptation
method is only 5.7% behind the accuracy of a super-
vised target model. On the review dataset, we test
adaptations from hotel to restaurant reviews. Our
model outperforms the marginalized denoising au-
toencoder (Chen et al., 2012) by 5%. Finally, we
examine and illustrate the impact of individual com-
ponents on the resulting performance.
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2 Related Work

Domain Adaptation for Deep Learning Exist-
ing approaches commonly induce abstract represen-
tations without pulling apart different aspects in the
same example, and therefore are likely to fail on the
aspect transfer problem. The majority of these prior
methods first learn a task-independent representa-
tion, and then train a label predictor (e.g. SVM)
on this representation in a separate step. For ex-
ample, earlier researches employ a shared autoen-
coder (Glorot et al., 2011; Chopra et al., 2013) to
learn a cross-domain representation. Chen et al.
(2012) further improve and stabilize the represen-
tation learning by utilizing marginalized denoising
autoencoders. Later, Zhou et al. (2016) propose to
minimize domain-shift of the autoencoder in a linear
data combination manner. Other researches have fo-
cused on learning transferable representations in an
end-to-end fashion. Examples include using trans-
duction learning for object recognition (Sener et al.,
2016) and using residual transfer networks for image
classification (Long et al., 2016). In contrast, we use
adversarial training to encourage learning domain-
invariant features in a more explicit way. Our ap-
proach offers another two advantages over prior
work. First, we jointly optimize features with the
final classification task while many previous works
only learn task-independent features using autoen-
coders. Second, our model can handle traditional
domain transfer as well as aspect transfer, while pre-
vious methods can only handle the former.

Adversarial Learning in Vision and NLP Our
approach closely relates to the idea of domain-
adversarial training. Adversarial networks were
originally developed for image generation (Good-
fellow et al., 2014; Makhzani et al., 2015; Sprin-
genberg, 2015; Radford et al., 2016; Taigman et al.,
2016), and were later applied to domain adaptation
in computer vision (Ganin and Lempitsky, 2014;
Ganin et al., 2015; Bousmalis et al., 2016; Tzeng et
al., 2014) and speech recognition (Shinohara, 2016).
The core idea of these approaches is to promote the
emergence of invariant image features by optimizing
the feature extractor as an adversary against the do-
main classifier. While Ganin et al. (2015) also apply
this idea to sentiment analysis, their practical gains
have remained limited.

Our approach presents two main departures. In
computer vision, adversarial learning has been used
for transferring across domains, while our method
can also handle aspect transfer. In addition, we in-
troduce a reconstruction loss which results in more
robust adversarial training. We believe that this for-
mulation will benefit other applications of adversar-
ial training, beyond the ones described in this paper.

Semi-supervised Learning with Keywords In
our work, we use a small set of keywords as a source
of weak supervision for aspect-relevance scoring.
This relates to prior work on utilizing prototypes and
seed words in semi-supervised learning (Haghighi
and Klein, 2006; Grenager et al., 2005; Chang et
al., 2007; Mann and McCallum, 2010; Jagarlamudi
et al., 2012; Li et al., 2012; Eisenstein, 2017). All
these prior approaches utilize prototype annotations
primarily targeting model bootstrapping but not for
learning representations. In contrast, our model uses
provided keywords to learn aspect-driven encoding
of input examples.

Attention Mechanism in NLP One may view
our aspect-relevance scorer as a sentence-level
“semi-supervised attention”, in which relevant sen-
tences receive more attention during feature extrac-
tion. While traditional attention-based models typ-
ically induce attention in an unsupervised manner,
they have to rely on a large amount of labeled data
for the target task (Bahdanau et al., 2015; Rush et
al., 2015; Chen et al., 2015; Cheng et al., 2016;
Xu et al., 2015; Xu and Saenko, 2016; Yang et
al., 2016; Martins and Astudillo, 2016; Lei et al.,
2016). Unlike these methods, our approach assumes
no label annotations in the target domain. Other re-
searches have focused on utilizing human-provided
rationales as “supervised attention” to improve pre-
diction (Zaidan et al., 2007; Marshall et al., 2015;
Zhang et al., 2016; Brun et al., 2016). In contrast,
our model only assumes access to a small set of key-
words as a source of weak supervision. Moreover,
all these prior approaches focus on in-domain clas-
sification. In this paper, however, we study the task
in the context of domain adaptation.

Multitask Learning Existing multitask learn-
ing methods focus on the case where supervision
is available for all tasks. A typical architecture in-
volves using a shared encoder with a separate clas-
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sifier for each task. (Caruana, 1998; Pan and Yang,
2010; Collobert and Weston, 2008; Liu et al., 2015;
Bordes et al., 2012). In contrast, our work assumes
labeled data only for the source aspect. We train a
single classifier for both aspects by learning aspect-
invariant representation that enables the transfer.

3 Problem Formulation

We begin by formalizing aspect transfer with the
idea of differentiating it from standard domain adap-
tation. In our setup, we have two classification tasks
called the source and the target tasks. In contrast to
source and target tasks in domain adaptation, both
of these tasks are defined over the same set of ex-
amples (here documents, e.g., pathology reports).
What differentiates the two classification tasks is
that they pertain to different aspects in the examples.
If each training document were annotated with both
the source and the target aspect labels, the problem
would reduce to multi-label classification. However,
in our setting training labels are available only for
the source aspect so the goal is to solve the target
task without any associated training label.

To fix the notation, let d = {si}|d|i=1 be a document
that consists of a sequence of |d| sentences si. Given
a document d, and the aspect of interest, we wish
to predict the corresponding aspect-dependent class
label y (e.g., y ∈ {−1, 1}). We assume that the set
of possible labels are the same across aspects. We
use ysl;k to denote the k-th coordinate of a one-hot
vector indicating the correct training source aspect
label for document dl. Target aspect labels are not
available during training.

Beyond labeled documents for the source aspect
{dl, y

s
l }l∈L, and shared unlabeled documents for

source and target aspects {dl}l∈U , we assume fur-
ther that we have relevance scores pertaining to each
aspect. The relevance is given per sentence, for
some subset of sentences across the documents, and
indicates the possibility that the answer for that doc-
ument would be found in the sentence but without
indicating which way the answer goes. Relevance is
always aspect dependent yet often easy to provide in
the form of simple keyword rules.

We use rai ∈ {0, 1} to denote the given relevance
label pertaining to aspect a for sentence si. Only a
small subset of sentences in the training set have as-

sociated relevance labels. Let R = {(a, l, i)} de-
note the index set of relevance labels such that if
(a, l, i) ∈ R then aspect a’s relevance label ral,i is
available for the ith sentence in document dl. In our
case relevance labels arise from aspect-dependent
keyword matches. rai = 1 when the sentence con-
tains any keywords pertaining to aspect a and rai = 0
if it has any keywords of other aspects.3 Separate
subsets of relevance labels are available for each as-
pect as the keywords differ.

The transfer that is sought here is between two
tasks over the same set of examples rather than be-
tween two different types of examples for the same
task as in standard domain adaptation. However, the
two formulations can be reconciled if full relevance
annotations are assumed to be available during train-
ing and testing. In this scenario, we could simply lift
the sets of relevant sentences from each document
as new types of documents. The goal would be then
to learn to classify documents of type T (consisting
of sentences relevant to the target aspect) based on
having labels only for type S (source) documents,
a standard domain adaptation task. Our problem
is more challenging as the aspect-relevance of sen-
tences must be learned from limited annotations.

Finally, we note that the aspect transfer problem
and the method we develop to solve it work the same
even when source and target documents are a priori
different, something we will demonstrate later.

4 Methods

4.1 Overview of our approach

Our model consists of three key components as
shown in Figure 2. Each document is encoded
in a relevance weighted, aspect-dependent manner
(green, left part of Figure 2) and classified using the
label predictor (blue, top-right). During training, the
encoded documents are also passed on to the domain
classifier (orange, bottom-right). The role of the do-
main classifier, as the adversary, is to ensure that the
aspect-dependent encodings of documents are distri-
butionally matched. This matching justifies the use
of the same end-classifier to provide the predicted
label regardless of the task (aspect).

3rai = 1 if the sentence contains keywords pertaining to both
aspect a and other aspects.
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Pathology 
report

INVASIVE DUCTAL CAR-
CINOMA Tumor size …
Grade: 3.

……………….

Lymphatic vessel in-
vasion: Not identified.

… (IDC) is identified …

…
…

…
r = 1.0

Predicted 
Relevance Score

…
…

r = 0.0r = 0.9

…

…

D
ocum

ent representation

Transformation 
Layer

…

…

Class label yl

Objective: predict labels

Sentence embeddings Weighted combination

Adversary objective: confuse the domain classifier

… Domain label ya

Objective: predict domains

backprop

backprop

(b) Label predictor

(c) Domain classifier

(a) Document encoder
r̂ = 1.0

r̂ = 0.0

r̂ = 0.9

Figure 2: Aspect-augmented adversarial network for transfer learning. The model is composed of (a) an
aspect-driven document encoder, (b) a label predictor and (c) a domain classifier.

To encode a document, the model first maps each
sentence into a vector and then passes the vector to a
scoring network to determine whether the sentence
is relevant for the chosen aspect. These predicted
relevance scores are used to obtain document vec-
tors by taking relevance-weighted sum of the asso-
ciated sentence vectors. Thus, the manner in which
the document vector is constructed is always aspect-
dependent due to the chosen relevance weights.

During training, the resulting adjusted document
vectors are consumed by the two classifiers. The pri-
mary label classifier aims to predict the source labels
(when available), while the domain classifier deter-
mines whether the document vector pertains to the
source or target aspect, which is the label that we
know by construction. Furthermore, we jointly up-
date the document encoder with a reverse of the gra-
dient from the domain classifier, so that the encoder
learns to induce document representations that fool
the domain classifier. The resulting encoded repre-
sentations will be aspect-invariant, facilitating trans-
fer.

Our adversarial training scheme uses all the train-
ing losses concurrently to adjust the model param-
eters. During testing, we simply encode each test
document in a target-aspect dependent manner, and
apply the same label predictor. We expect that the
same label classifier does well on the target task
since it solves the source task, and operates on
relevance-weighted representations that are matched
across the tasks. While our method is designed to
work in the extreme setting that the examples for the
two aspects are the same, this is by no means a re-

  reconstruction of  

ductal carcinoma is identified

… … … …

… …
… …

……

…sentence embeddings

max-pooling:

…

x0 x1 x2 x3

x̂2 = tanh(Wch2 + bc)

x2

h1 h2

xsen = max{h1,h2, . . .}

Figure 3: Illustration of the convolutional model and
the reconstruction of word embeddings from the as-
sociated convolutional layer.

quirement. Our method will also work fine in the
more traditional domain adaptation setting, which
we will demonstrate later.

4.2 Components in detail

Sentence embedding We apply a convolutional
model illustrated in Figure 3 to each sentence si to
obtain sentence-level vector embeddings xsen

i . The
use of RNNs or bi-LSTMs would result in more flex-
ible sentence embeddings but based on our initial ex-
periments, we did not observe any significant gains
over the simpler CNNs.

We further ground the resulting sentence embed-
dings by including an additional word-level recon-
struction step in the convolutional model. The pur-
pose of this reconstruction step is to balance adver-
sarial training signals propagating back from the do-
main classifier. Specifically, it forces the sentence
encoder to keep rich word-level information in con-
trast to adversarial training that seeks to eliminate
aspect specific features. We provide an empirical
analysis of the impact of this reconstruction in the
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experiment section (Section 7).
More concretely, we reconstruct word embed-

ding from the corresponding convolutional layer, as
shown in Figure 3.4 We use xi,j to denote the em-
bedding of the j-th word in sentence si. Let hi,j be
the convolutional output when xi,j is at the center of
the window. We reconstruct xi,j by

x̂i,j = tanh(Wchi,j + bc) (1)

where Wc and bc are parameters of the reconstruc-
tion layer. The loss associated with the reconstruc-
tion for document d is

Lrec(d) =
1

n

∑

i,j

||x̂i,j − tanh(xi,j)||22 (2)

where n is the number of tokens in the document and
indexes i, j identify the sentence and word, respec-
tively. The overall reconstruction loss Lrec is ob-
tained by summing over all labeled/unlabeled docu-
ments.

Relevance prediction We use a small set of
keyword rules to generate binary relevance labels,
both positive (r = 1) and negative (r = 0). These la-
bels represent the only supervision available to pre-
dict relevance. The prediction is made on the basis
of the sentence vector xsen

i passed through a feed-
forward network with a ReLU output unit. The net-
work has a single shared hidden layer and a separate
output layer for each aspect. Note that our relevance
prediction network is trained as a non-negative re-
gression model even though the available labels are
binary, as relevance varies more on a linear rather
than binary scale.

Given relevance labels indexed by R =
{(a, l, i)}, we minimize

Lrel =
∑

(a,l,i)∈R

(
ral,i − r̂al,i

)2 (3)

where r̂al,i is the predicted (non-negative) relevance
score pertaining to aspect a for the ith sentence in
document dl, as shown in the left part of Figure 2.
ral,i, defined earlier, is the given binary (0/1) rele-
vance label. We use a score in [0, 1] scale because it
can be naturally used as a weight for vector combi-
nations, as shown next.

4 This process is omitted in Figure 2 for brevity.

Document encoding The initial vector repre-
sentation for each document such as dl is obtained
as a relevance weighted combination of the associ-
ated sentence vectors, i.e.,

xdoc,a
l =

∑
i r̂

a
l,i · xsen

l,i∑
i r̂

a
l,i

(4)

The resulting vector selectively encodes information
from the sentences based on relevance to the focal
aspect.

Transformation layer The manner in which
document vectors arise from sentence vectors means
that they will retain aspect-specific information that
will hinder transfer across aspects. To help re-
move non-transferable information, we add a trans-
formation layer to map the initial document vectors
xdoc,a
l to their domain invariant (as a set) versions, as

shown in Figure 2. Specifically, the transformed rep-
resentation is given by xtr,a

l = Wtrxdoc,a
l . Mean-

while, the transformation has to be strongly regular-
ized lest the gradient from the adversary would wipe
out all the document signal. We add the following
regularization term

Ωtr = λtr||Wtr − I||2F (5)

to discourage significant deviation away from iden-
tity I. λtr is a regularization parameter that has to
be set separately based on validation performance.
We show an empirical analysis of the impact of this
transformation layer in Section 7.

Primary label classifier As shown in the top-
right part of Figure 2, the classifier takes in the
adjusted document representation as an input and
predicts a probability distribution over the possible
class labels. The classifier is a feed-forward net-
work with a single hidden layer using ReLU acti-
vations and a softmax output layer over the possible
class labels. Note that we train only one label clas-
sifier that is shared by both aspects. The classifier
operates the same regardless of the aspect to which
the document was encoded. It must therefore be co-
operatively learned together with the encodings.

Let p̂l;k denote the predicted probability of class
k for document dl when the document is encoded
from the point of view of the source aspect. Recall
that [ysl;1, . . . , y

s
l;m] is a one-hot vector for the correct
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(given) source class label for document dl, hence
also a distribution. We use the cross-entropy loss for
the label classifier

Llab =
∑

l∈L

[
−

m∑

k=1

ysl;k log p̂l;k

]
(6)

Domain classifier As shown in the bottom-
right part of Figure 2, the domain classifier func-
tions as an adversary to ensure that the documents
encoded with respect to the source and target as-
pects look the same as sets of examples. The in-
variance is achieved when the domain classifier (as
the adversary) fails to distinguish between the two.
Structurally, the domain classifier is a feed-forward
network with a single ReLU hidden layer and a soft-
max output layer over the two aspect labels.

Let ya = [ya1 , y
a
2 ] denote the one-hot domain la-

bel vector for aspect a ∈ {s, t}. In other words,
ys = [1, 0] and yt = [0, 1]. We use q̂k(xtr,a

l ) as the
predicted probability that the domain label is k when
the domain classifier receives xtr,a

l as the input. The
domain classifier is trained to minimize

Ldom =
∑

l∈L∪U

∑

a∈{s,t}

[
−

2∑

k=1

yak log q̂k(xtr,a
l )

]

(7)

4.3 Joint learning
We combine the individual component losses per-
taining to word reconstruction, relevance labels,
transformation layer regularization, source class la-
bels, and domain adversary into an overall objective
function

Lall = Lrec + Lrel + Ωtr + Llab − ρLdom (8)

which is minimized with respect to the model pa-
rameters except for the adversary (domain classi-
fier). The adversary is maximizing the same objec-
tive with respect to its own parameters. The last term
−ρLdom corresponds to the objective of causing the
domain classifier to fail. The proportionality con-
stant ρ controls the impact of gradients from the ad-
versary on the document representation; the adver-
sary itself is always directly minimizing Ldom.

All the parameters are optimized jointly using
standard backpropagation (concurrent for the adver-
sary). Each mini-batch is balanced by aspect, half

DATASET #Labeled #Unlabeled

PATHOLOGY

DCIS 23.8k

96.6kLCIS 10.7k
IDC 22.9k
ALH 9.2k

REVIEW
Hotel 100k 100k
Restaurant - 200k

Table 1: Statistics of the pathology reports dataset
and the reviews dataset that we use for training. Our
model utilizes both labeled and unlabeled data.

ASPECT KEYWORDS

IDC IDC, Invasive Ductal Carcinoma
ALH ALH, Atypical Lobular Hyperplasia

Table 2: Examples of aspects and their correspond-
ing keywords (case insensitive) in the pathology
dataset.

coming from the source, the other half from the tar-
get. All the loss functions except Llab make use of
both labeled and unlabeled documents. Addition-
ally, it would be straightforward to add a loss term
for target labels if they are available.

5 Experimental Setup

Pathology dataset This dataset contains 96.6k
breast pathology reports collected from three hos-
pitals (Yala et al., 2016). A portion of this dataset
is manually annotated with 20 categorical values,
representing various aspects of breast disease. In
our experiments, we focus on four aspects related
to carcinomas and atypias: Ductal Carcinoma In-
Situ (DCIS), Lobular Carcinoma In-Situ (LCIS), In-
vasive Ductal Carcinoma (IDC) and Atypical Lob-
ular Hyperplasia (ALH). Each aspect is annotated
using binary labels. We use 500 held out reports as
our test set and use the rest of the labeled data as our
training set: 23.8k reports for DCIS, 10.7k for LCIS,
22.9k for IDC, and 9.2k for ALH. Table 1 summa-
rizes statistics of the dataset.

We explore the adaptation problem from one as-
pect to another. For example, we want to train a
model on annotations of DCIS and apply it on LCIS.
For each aspect, we use up to three common names
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as a source of supervision for learning the relevance
scorer, as illustrated in Table 2. Note that the pro-
vided list is by no means exhaustive. In fact Buckley
et al. (2012) provide example of 60 different verbal-
izations of LCIS, not counting negations.

Review dataset Our second experiment is
based on a domain transfer of sentiment classifica-
tion. For the source domain, we use the hotel re-
view dataset introduced in previous work (Wang et
al., 2010; Wang et al., 2011), and for the target
domain, we use the restaurant review dataset from
Yelp.5 Both datasets have ratings on a scale of 1
to 5 stars. Following previous work (Blitzer et al.,
2007), we label reviews with ratings > 3 as posi-
tive and those with ratings < 3 as negative, discard-
ing the rest. The hotel dataset includes a total of
around 200k reviews collected from TripAdvisor,6

so we split 100k as labeled and the other 100k as
unlabeled data. We randomly select 200k restaurant
reviews as the unlabeled data in the target domain.
Our test set consists of 2k reviews. Table 1 summa-
rizes the statistics of the review dataset.

The hotel reviews naturally have ratings for six
aspects, including value, room quality, checkin ser-
vice, room service, cleanliness and location. We use
the first five aspects because the sixth aspect loca-
tion has positive labels for over 95% of the reviews
and thus the trained model will suffer from the lack
of negative examples. The restaurant reviews, how-
ever, only have single ratings for an overall impres-
sion. Therefore, we explore the task of adaptation
from each of the five hotel aspects to the restau-
rant domain. The hotel reviews dataset also pro-
vides a total of 280 keywords for different aspects
that are generated by the bootstrapping method used
in Wang et al. (2010). We use those keywords as
supervision for learning the relevance scorer.

Baselines and our method We first compare
against a linear SVM trained on the raw bag-
of-words representation of labeled data in source.
Second, we compare against our SourceOnly
model that assumes no target domain data or key-
words. It thus has no adversarial training or tar-
get aspect-relevance scoring. Next we compare

5The restaurant portion of https://www.yelp.com/
dataset_challenge.

6https://www.tripadvisor.com/

METHOD
SOURCE TARGET Key-

wordLab. Unlab. Lab. Unlab.

SVM X × × × ×
SourceOnly X X × × X
mSDA X X × X ×
AAN-NA X X × X X
AAN-NR X X × X ×
In-Domain × × X × X
AAN-Full X X × X X

Table 3: Usage of labeled (Lab.), unlabeled (Un-
lab.) data and keyword rules in each domain by our
model and other baseline methods. AAN-* denote
our model and its variants.

with marginalized Stacked Denoising Autoencoders
(mSDA) (Chen et al., 2012), a domain adaptation
algorithm that outperforms both prior deep learning
and shallow learning approaches.7

In the rest part of the paper, we name our
method and its variants as AAN (Aspect-augmented
Adversarial Networks). We compare against AAN-
NA and AAN-NR that are our model variants
without adversarial training and without aspect-
relevance scoring respectively. Finally we in-
clude supervised models trained on the full set of
In-Domain annotations as the performance upper
bound. Table 3 summarizes the usage of labeled and
unlabeled data in each domain as well as keyword
rules by our model (AAN-Full) and different base-
lines. Note that our model assumes the same set of
data as the AAN-NA, AAN-NR and mSDA meth-
ods.

Implementation details Following prior work
(Ganin and Lempitsky, 2014), we gradually increase
the adversarial strength ρ and decay the learning rate
during training. We also apply batch normalization
(Ioffe and Szegedy, 2015) on the sentence encoder
and apply dropout with a ratio of 0.2 on word em-
beddings and each hidden layer activation. We set
the hidden layer size to 150 and pick the transforma-
tion regularization weight λt = 0.1 for the pathol-

7We use the publicly available implementation provided by
the authors at http://www.cse.wustl.edu/˜mchen/
code/mSDA.tar. We use the hyper-parameters from the au-
thors and their models have more parameters than ours.
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DOMAIN
SVM

Source
mSDA AAN-NA AAN-NR AAN-Full In-Domain

SOURCE TARGET Only

LCIS
DCIS

45.8 25.2 45.0 81.2 50.0 93.0
96.2IDC 71.8 62.4 73.0 87.6 81.4 94.8

ALH 37.2 20.6 39.0 49.2 48.0 84.6

DCIS
LCIS

73.8 75.4 76.2 89.0 81.2 95.2
97.8IDC 71.4 66.4 71.6 84.8 52.0 85.0

ALH 54.4 46.4 54.2 84.8 52.4 93.2

DCIS
IDC

94.0 77.4 94.0 92.4 93.8 95.4
96.8LCIS 51.6 29.5 53.2 89.6 51.2 93.8

ALH 41.0 26.8 39.2 68.0 31.6 89.6

DCIS
ALH

74.6 75.0 75.0 52.6 74.2 90.4
96.8LCIS 59.0 51.6 60.4 52.6 60.0 92.8

IDC 67.6 66.4 68.8 52.6 69.2 87.0

AVERAGE 61.9 51.9 62.5 71.0 64.2 91.2 96.9

Table 4: Pathology: Classification accuracy (%) of different approaches on the pathology reports dataset,
including the results of twelve adaptation scenarios from four different aspects (IDC, ALH, DCIS and LCIS)
in breast cancer pathology reports. “mSDA” indicates the marginalized denoising autoencoder in (Chen
et al., 2012). “AAN-NA” and “AAN-NR” corresponds to our model without the adversarial training and
the aspect-relevance scoring component, respectively. We also include in the last column the in-domain
supervised training results of our model as the performance upper bound. Boldface numbers indicate the
best accuracy for each testing scenario.

ogy dataset and λt = 10.0 for the review dataset.

6 Main Results

Table 4 summarizes the classification accuracy of
different methods on the pathology dataset, includ-
ing the results of twelve adaptation tasks. Our full
model (AAN-Full) consistently achieves the best
performance on each task compared with other base-
lines and model variants. It is not surprising that
SVM and mSDA perform poorly on this dataset be-
cause they only predict labels based on an overall
feature representation of the input, and do not utilize
weak supervision provided by aspect-specific key-
words. As a reference, we also provide a perfor-
mance upper bound by training our model on the
full labeled set in the target domain, denoted as In-
Domain in the last column of Table 4. On average,
the accuracy of our model (AAN-Full) is only 5.7%
behind this upper bound.

Table 5 shows the adaptation results from each
aspect in the hotel reviews to the overall ratings of

restaurant reviews. AAN-Full and AAN-NR are the
two best performing systems on this review dataset,
attaining around 5% improvement over the mSDA
baseline. Below, we summarize our findings when
comparing the full model with the two model vari-
ants AAN-NA and AAN-NR.

Impact of adversarial training We first focus
on comparisons between AAN-Full and AAN-NA.
The only difference between the two models is that
AAN-NA has no adversarial training. On the pathol-
ogy dataset, our model significantly outperforms
AAN-NA, yielding a 20.2% absolute average gain
(see Table 4). On the review dataset, our model
obtains 2.5% average improvement over AAN-NA.
As shown in Table 5, the gains are more significant
when training on room and checkin aspects, reaching
6.9% and 4.5%, respectively.

Impact of relevance scoring As shown in Ta-
ble 4, the relevance scoring component plays a cru-
cial role in classification on the pathology dataset.
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DOMAIN
SVM

Source
mSDA AAN-NA AAN-NR AAN-Full In-Domain

SOURCE TARGET Only

Value

Restaurant
Overall

82.2 87.4 84.7 87.1 91.1 89.6

93.4
Room 75.6 79.3 80.3 79.7 86.1 86.6
Checkin 77.8 83.0 81.0 80.9 87.2 85.4
Service 82.2 88.0 83.8 88.8 87.9 89.1
Cleanliness 77.9 83.2 78.4 83.1 84.5 81.4

AVERAGE 79.1 84.2 81.6 83.9 87.3 86.4 93.4

Table 5: Review: Classification accuracy (%) of different approaches on the reviews dataset. Columns have
the same meaning as in Table 4. Boldface numbers indicate the best accuracy for each testing scenario.

1.0

0.8

0.6

0.4

0.2

0.0

w/o reconstruction with reconstruction

1.0

0.8

0.6

0.4

0.2

0.0
+adversarial, -reconstruction-adversarial,  -reconstruction +adversarial, +reconstruction

Figure 4: Heat map of 150×150 matrices. Each row corresponds to the vector representation of a document
that comes from either the source domain (top half) or the target domain (bottom half). Models are trained
on the review dataset when room quality is the source aspect.

Our model achieves more than 27% improvement
over AAN-NR. This is because, in general, aspects
have zero correlations to each other in pathology
reports. Therefore, it is essential for the model to
have the capacity of distinguishing across different
aspects in order to succeed in this task.

On the review dataset, however, we observe that
relevance scoring has no significant impact on per-
formance. On average, AAN-NR actually outper-
forms AAN-Full by 0.9%. This observation can be
explained by the fact that different aspects in ho-
tel reviews are highly correlated to each other. For
example, the correlation between room quality and
cleanliness is 0.81, much higher than aspect corre-
lations in the pathology dataset. In other words,
the sentiment is typically consistent across all sen-
tences in a review, so that selecting aspect-specific
sentences becomes unnecessary. Moreover, our su-
pervision for the relevance scorer is weak and noisy
because the aspect keywords are obtained in a semi-
automatic way. Therefore, it is not surprising that
AAN-NR sometimes delivers a better classification

DATASET
AAN-Full AAN-NA

-REC. +REC. -REC. +REC.

PATHOLOGY 86.2 91.2 68.6 72.0
REVIEW 80.8 86.4 85.0 83.9

Table 6: Impact of adding the reconstruction com-
ponent in the model, measured by the average ac-
curacy on each dataset. +REC. and -REC. denote
the presence and absence of the reconstruction loss,
respectively.

accuracy than AAN-Full.

7 Analysis

Impact of the reconstruction loss Table 6
summarizes the impact of the reconstruction loss on
the model performance. For our full model (AAN-
Full), adding the reconstruction loss yields an aver-
age of 5.0% gain on the pathology dataset and 5.6%
on the review dataset.
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Restaurant Reviews

• the fries were undercooked and thrown 
haphazardly into the sauce holder . the shrimp 
was over cooked and just deepfried . … even 
the water tasted weird . …

• i had the shrimp boil and it was very under-
seasoned . much closer to bland than 
anything . …

• the room was old . … we did n’t like the 
night shows at all . …

• however , the decor was just fair . … the 
doorknob to our bathroom door fell off , as 
well as the handle on the toilet . … in the 
second bedroom it literally rained water 
from above . 

• the room decor was not entirely modern . 
… we just had the run of the mill hotel 
room without a view .

• stay away from fresh vegetable like lettuce 
, etc . …

• rest room in this restaurant is very dirty . 
…

• the only problem i had was that … i was 
very ill with what was suspected to be 
food poison

• probably the noisiest room he could have 
given us in the whole hotel .

Nearest Hotel Reviews by Ours-Full Nearest Hotel Reviews by Ours-NA

Restaurant Reviews

• the fries were undercooked and thrown 
haphazardly into the sauce holder . the shrimp 
was over cooked and just deepfried . … even 
the water tasted weird . …

• the room was old . … we did n’t like the 
night shows at all . …

• however , the decor was just fair . … in 
the second bedroom it literally rained 
water from above . 

• rest room in this restaurant is very dirty . 
…

• the only problem i had was that … i was 
very ill with what was suspected to be 
food poison

Nearest Hotel Reviews by Ours-Full Nearest Hotel Reviews by Ours-NA

Figure 5: Examples of restaurant reviews and their nearest neighboring hotel reviews induced by different
models (column 2 and 3). We use room quality as the source aspect. The sentiment phrases of each review
are in blue, and some reviews are also shortened for space.

DATASET λt = 0 0 < λt <∞ λt =∞
PATHOLOGY 77.4 91.2 81.4
REVIEW 80.9 86.4 84.3

Table 7: The effect of regularization of the transfor-
mation layer λt on the performance.

To analyze the reasons behind this difference,
consider Figure 4 that shows the heat maps of
the learned document representations on the review
dataset. The top half of the matrices corresponds
to input documents from the source domain and the
bottom half corresponds to the target domain. Un-
like the first matrix, the other two matrices have no
significant difference between the two halves, in-
dicating that adversarial training helps learning of
domain-invariant representations. However, adver-
sarial training also removes a lot of information from
representations, as the second matrix is much more
sparse than the first one. The third matrix shows
that adding reconstruction loss effectively addresses
this sparsity issue. Almost 85% of the entries of the
second matrix have small values (< 10−6) while
the sparsity is only about 30% for the third one.
Moreover, the standard deviation of the third ma-
trix is also ten times higher than the second one.
These comparisons demonstrate that the reconstruc-
tion loss function improves both the richness and
diversity of the learned representations. Note that
in the case of no adversarial training (AAN-NA),
adding the reconstruction component has no clear
effect. This is expected because the main motiva-
tion of adding this component is to achieve a more
robust adversarial training.

Regularization on the transformation layer
Table 7 shows the averaged accuracy with differ-

ent regularization weights λt in Equation 5. We
change λt to reflect different model variants. First,
λt = ∞ corresponds to the removal of the transfor-
mation layer because the transformation is always
identity in this case. Our model performs better than
this variant on both datasets, yielding an average
improvement of 9.8% on the pathology dataset and
2.1% on the review dataset. This result indicates the
importance of adding the transformation layer. Sec-
ond, using zero regularization (λt = 0) also consis-
tently results in inferior performance, such as 13.8%
loss on the pathology dataset. We hypothesize that
zero regularization will dilute the effect from re-
construction because there is too much flexibility in
transformation. As a result, the transformed repre-
sentation will become sparse due to the adversarial
training, leading to a performance loss.

Examples of neighboring reviews Finally, in
Figure 5 we illustrate a case study on the charac-
teristics of learned abstract representations by dif-
ferent models. The first column shows an example
restaurant review. Sentiment phrases in this example
are mostly food-specific, such as “undercooked” and
“tasted weird”. In the other two columns, we show
example hotel reviews that are nearest neighbors to
the restaurant reviews, measured by cosine simi-
larity between their representations. In column 2,
many sentiment phrases are specific for room qual-
ity, such as “old” and “rained water from above”.
In column 3, however, most sentiment phrases are
either common sentiment expressions (e.g. dirty)
or food-related (e.g. food poison), even though the
focus of the reviews is based on the room quality
of hotels. This observation indicates that adversar-
ial training (AAN-Full) successfully learns to elim-
inate domain-specific information and to map those
domain-specific words into similar domain-invariant
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Figure 6: Classification accuracy (y-axis) on two
transfer scenarios (one on review and one on pathol-
ogy dataset) with a varied number of keyword rules
for learning sentence relevance (x-axis).

representations. In contrast, AAN-NA only captures
domain-invariant features from phrases that com-
monly present in both domains.

Impact of keyword rules Finally, Figure 6
shows the accuracy of our full model (y-axis) when
trained with various amount of keyword rules for
relevance learning (x-axis). As expected, the trans-
fer accuracy drops significantly when using fewer
rules on the pathology dataset (LCIS as source and
ALH as target). In contrary, the accuracy on the re-
view dataset (hotel service as source and restaurant
as target) is not sensitive to the amount of used rel-
evance rules. This can be explained by the observa-
tion from Table 5 that the model without relevance
scoring performs equally well as the full model due
to the tight dependence in aspect labels.

8 Conclusions

In this paper, we propose a novel aspect-augmented
adversarial network for cross-aspect and cross-
domain adaptation tasks. Experimental results
demonstrate that our approach successfully learns
invariant representation from aspect-relevant frag-
ments, yielding significant improvement over the
mSDA baseline and our model variants. The effec-
tiveness of our approach suggests the potential ap-
plication of adversarial networks to a broader range
of NLP tasks for improved representation learning,
such as machine translation and language genera-
tion.
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