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Abstract

Both bottom-up and top-down strategies have
been used for neural transition-based con-
stituent parsing. The parsing strategies dif-
fer in terms of the order in which they recog-
nize productions in the derivation tree, where
bottom-up strategies and top-down strategies
take post-order and pre-order traversal over
trees, respectively. Bottom-up parsers bene-
fit from rich features from readily built par-
tial parses, but lack lookahead guidance in
the parsing process; top-down parsers benefit
from non-local guidance for local decisions,
but rely on a strong encoder over the input to
predict a constituent hierarchy before its con-
struction. To mitigate both issues, we pro-
pose a novel parsing system based on in-order
traversal over syntactic trees, designing a set
of transition actions to find a compromise be-
tween bottom-up constituent information and
top-down lookahead information. Based on
stack-LSTM, our psycholinguistically moti-
vated constituent parsing system achieves 91.8
F; on the WSJ benchmark. Furthermore,
the system achieves 93.6 F; with supervised
reranking and 94.2 F; with semi-supervised
reranking, which are the best results on the
WSIJ benchmark.

1 Introduction

Transition-based constituent parsing employs se-
quences of local transition actions to construct con-
stituent trees over sentences. There are two pop-
ular transition-based constituent parsing systems,
namely bottom-up parsing (Sagae and Lavie, 2005;
Zhang and Clark, 2009; Zhu et al., 2013; Watanabe
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and Sumita, 2015) and top-down parsing (Dyer et
al., 2016; Kuncoro et al., 2017). The parsing strate-
gies differ in terms of the order in which they recog-
nize productions in the derivation tree.

The process of bottom-up parsing can be re-
garded as post-order traversal over a constituent
tree. For example, given the sentence in Figure
1, a bottom-up shift-reduce parser takes the ac-
tion sequence in Table 2(a)! to build the output,
where the word sequence “The little boy” is first
read, and then an NP recognized for the word
sequence. After the system reads the verb “likes”
and its subsequent NP, a VP is recognized. The
full order of recognition for the tree nodes is
O-@—-0-0-0-0-0-®—-0—-0—
(1. When making local decisions, rich information
is available from readily built partial trees (Zhu
et al.,, 2013; Watanabe and Sumita, 2015; Cross
and Huang, 2016), which contributes to local
disambiguation. However, there is lack of top-down
guidance from lookahead information, which can be
useful (Johnson, 1998; Roark and Johnson, 1999;
Charniak, 2000; Liu and Zhang, 2017). In addition,
binarization must be applied to trees, as shown in
Figure 1(b), to ensure a constant number of actions
(Sagae and Lavie, 2005), and to take advantage of
lexical head information (Collins, 2003). However,
such binarization requires a set of language-specific
rules, which hampers adaptation of parsing to other
languages.

On the other hand, the process of top-down
parsing can be regarded as pre-order traversal over
a tree. Given the sentence in Figure 1, a top-down

!The action sequence is taken on unbinarized trees.
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Figure 1: Syntactic trees of the sentence “The little
boy likes red tomatoes.”. (a) syntactic tree; (b) bi-
narized syntactic tree, where r and [ mean the head
is the right branch and the left branch, respectively,
and * means this constituent is not completed.

shift-reduce parser takes the action sequence in
Table 2(b) to build the output, where an S is first
made and then an NP is generated. After that,
the system makes a decision to read the word
sequence “The little boy” to complete the NP.
The full order of recognition for the tree nodes is
O-0—-0—-0=>0-20-0—-0—-0—0~

(). The top-down lookahead guidance contributes
to non-local disambiguation. However, it is difficult
to generate a constituent before its sub constituents
have been realized, since no explicit features can be
extracted from their subtree structures. Thanks to
the use of recurrent neural networks, which make
it possible to represent a sentence globally before
syntactic tree construction, seminal work of neural
top-down parsing directly generates bracketed con-
stituent trees using sequence-to-sequence models
(Vinyals et al., 2015). Dyer et al. (2016) design
a set of top-down transition actions for standard
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stack  buffer action node
[1 [The litte ...] SHIFT ®
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(a) bottom-up system
stack  buffer action node
[1 [The little ...] NT-S [©)
[(S] [The little ...] NT-NP ©)
[(S(NP] [The little ...] SHIFT ©)
[... (NP The] [little boy ...] SHIFT @
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[... little boy]  [likes red ...] REDUCE /
(b) top-down system
stack  buffer action node
[1 [The little ...] SHIFT [©)
[The] [little boy ...] PJ-NP ©)
[The NP] [little boy ...] SHIFT @
[... NP little] [boy likes...] SHIFT ®
[likes red ...] REDUCE /

[... little boy]

(c) in-order system

Figure 2: Action sequences of three types of transi-
tion constituent parsing system. Details of the action
system are introduced in Section 2.1, Section 2.2 and
Section 3, respectively.

transition-based parsing.

In this paper, we propose a novel transition
system for constituent parsing, mitigating issues of
both bottom-up and top-down systems by finding
a compromise between bottom-up constituent
information and top-down lookahead information.
The process of the proposed constituent parsing
can be regarded as in-order traversal over a tree.
Given the sentence in Figure 1, the system takes
the action sequence in Table 2(c) to build the
output. The system reads the word “The” and
then projects an NP, which is based on bottom-up
evidence. After this, based on the projected NP, the
system reads the word sequence “little boy”, with
top-down guidance from NP. Similarly, based on
the completed constituent “(NP The little boy)”, the
system projects an S, with the bottom-up evidence.
With the S and the word “likes”, the system projects



an VP, which can serve as top-down guidance.
The full order of recognition for the tree nodes is
O—=0—-0-0-0-0-0—-0—-®—0~
@). Compared to post-order traversal, in-order
traversal can potentially resolve non-local ambi-
guity better by top-down guidance. Compared to
pre-order traversal, in-order traversal can poten-
tially resolve local ambiguity better by bottom-up
evidence.

Furthermore, in-order traversal is psycho-
linguistically motivated (Roark et al.,, 2009;
Steedman, 2000). Empirically, a human reader
comprehends sentences by giving lookahead
guesses for constituents.  For example, when
reading a word “likes”, a human reader could guess
that it could be a start of a constituent VP, instead of
waiting to read the object “red tomatoes”, which is
the procedure of a bottom-up system.

We compare our system with the two baseline
systems (i.e. a top-down system and a bottom-
up system) under the same neural transition-based
framework of Dyer et al. (2016). Our final mod-
els outperform both of the bottom-up and top-down
transition-based constituent parsing by achieving a
91.8 F} in English and a 86.1 F} in Chinese for
greedy fully-supervised parsing, respectively. Fur-
thermore, our final model obtains a 93.6 F; with su-
pervised reranking (Choe and Charniak, 2016) and
a 94.2 F, with semi-supervised reranking, achieving
the state-of-the-art results on constituent parsing on
the English benchmark. By converting to Stanford
dependencies, our final model achieves the state-of-
the-art results on dependency parsing by obtaining
a 96.2% UAS and a 95.2% LAS. To our knowl-
edge, we are the first to systematically compare
top-down and bottom-up constituent parsing under
the same neural framework. We release our code
at https://github.com/LeonCrashCode/
InOrderParser.

2 Transition-based constituent parsing

Transition-based constituent parsing takes a left-
to-right scan of the input sentence, where a stack
is used to maintain partially constructed phrase-
structures, while the input words are stored in a
buffer. Formally, a state is defined as [0, i, f], where
o 1s the stack, 7 is the front index of the buffer, and
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f is a boolean value showing that the parsing is fin-
ished. At each step, a transition action is applied to
consume an input word or construct a new phrase-
structure. Different parsing systems employ their
own sets of actions.

2.1 Bottom-up system

We take the bottom-up system of Sagae and Lavie
(2005) as our bottom-up baseline. Given a state, the
set of transition actions are:

e SHIFT: pop the front word from the buffer, and
push it onto the stack.

e REDUCE-L/R-X: pop the top two constituents
off the stack, combine them into a new con-
stituent with label X, and push the new con-
stituent onto the stack.

e UNARY-X: pop the top constituent off the
stack, raise it to a new constituent with label
X, and push the new constituent onto the stack.

e FINISH: pop the root node off the stack and end
parsing.

The bottom-up parser can be summarized as the
deductive system in Figure 3(a). Given the sen-
tence with the binarized syntactic tree in Figure
1(b), the sequence of actions SHIFT, SHIFT, SHIFT,
REDUCE-R-NP, REDUCE-R-NP, SHIFT, SHIFT,
SHIFT, REDUCE-R-NP, REDUCE-L-VP, SHIFT,
REDUCE-L-S, REDUCE-R-S and FINISH, can be
used to construct its constituent tree.

2.2 Top-down system

We take the top-down system of Dyer et al. (2016)
as our top-down baseline. Given a state, the set of
transition actions are:

e SHIFT: pop the front word from the buffer, and
push it onto the stack.

e NT-X: open a nonterminal with label X on top
of the stack.

e REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until an
open nonterminal is encountered, and then this
open NT is popped and used as the label of a
new constituent that has the popped subtrees as
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[0|51|807 (2 fa‘lse]

REDUCE-L/R-X ;
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(c) in-order system

Figure 3: Different transition systems. The start
state is [¢, 0, false] and the final state is [0, n, true].

its children. This new completed constituent
is pushed onto the stack as a single composite
item.

The deduction system for the process is shown in
Figure 3(b)?>. Given the sentence in Figure 1, the
sequence of actions NT-S, NT-NP, SHIFT, SHIFT,
SHIFT, REDUCE, NT-VP, SHIFT, NT-NP, SHIFT,
SHIFT, REDUCE, REDUCE, SHIFT and REDUCE,
can be used to construct its constituent tree.

"Due to unary decisions, with exception of the top-down
system, we use completed marks to make the finish decisions.
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3 In-order system

We propose a novel in-order system for transition-
based constituent parsing. Similar to the bottom-up
and top-down systems, the in-order system main-
tains a stack and a buffer for representing a state.
The set of transition actions are defined as:

e SHIFT: pop the front word from the buffer, and
push it onto the stack.

e PJ-X: project a nonterminal with label X on top
of the stack.

e REDUCE: repeatedly pop completed subtrees
or terminal symbols from the stack until a pro-
jected nonterminal encountered, and then this
projected nonterminal is popped and used as
the label of a new constituent. Furthermore,
one more item on the top of stack is popped
and inserted as the leftmost child of the new
constituent. The popped subtrees are inserted
as the rest of the children. This new completed
constituent is pushed onto the stack as a single
composite item.

e FINISH: pop the root node off the stack and end
parsing.

The deduction system for the process is shown in
Figure 3(c). Given the sentence in Figure 1, the
sequence of actions SHIFT, PJ-NP, SHIFT, SHIFT,
REDUCE, PJ-S, SHIFT, PJ-VP, SHIFT, PJ-NP,
SHIFT, REDUCE, REDUCE, SHIFT, REDUCE, FIN-
ISH can be used to construct its constituent tree.
Variants The in-order system can be gener-
alized into variants by modifying k, the number of
leftmost nodes traced before the parent node. For
example, given the tree “(S a b ¢ d)”, the traversal is
“aSbcd’if kK = 1 while the traversal is “ab S ¢
d” if £ = 2. We name each variant with a certain k
value as k-in-order systems. In this paper, we only
investigate the in-order system with k£ = 1, the 1-in-
order system. Note that the top-down parser can be
regarded as a special case of a generalized version
of the in-order parser with k£ = 0, and the bottom-up
parser can be regarded as a special case with & = oc.
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Figure 4:
parsers.

Framework of our transition-based

4 Neural parsing model

We employ the stack-LSTM parsing model of Dyer
et al. (2016) for the three types of transition-based
parsing systems in Section 2.1, 2.2 and 3, respec-
tively, where a stack-LSTM is used to represent the
stack, a stack-LSTM is used to represent the buffer,
and a vanilla LSTM is used to represent the action
history, as shown in Figure 4.

4.1 Word representation

We follow Dyer et al. (2015), representing each
word using three different types of embeddings, in-
cluding pretrained word embedding, €,,,, which is
not fine-tuned during the training of the parser, ran-
domly initialized embeddings e,,;, which is fine-
tuned, and the randomly initialized part-of-speech
embeddings, which is fine-tuned. The three embed-
dings are concatenated, and then fed to nonlinear
layer to derive the final word embedding:

T = f(meut [epi;éwi; ewi] + bmput)a

where Wiyt and iy are model parameters, w;
and p; denote the form and the POS tag of the ith
input word, respectively, and f is an nonlinear func-
tion. In this paper, we use ReLu for f.
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NP
The little boy

NP The little boy NP

(a) Unbinarized composition

NP-r*
little  boy

NP boy little NP

(b) Binarized composition

Figure 5: The composition function. (a) is for un-
binarized trees and (b) is for binarized trees, where
“NP-r*” means that “little boy” is a non-completed
noun phrase with head “boy”.

4.2 Stack representation

We employ a bidirectional LSTM as the compo-
sition function to represent constituents on stack>.
For top-down parsing and in-order parsing, follow-
ing Dyer et al. (2016), as shown in Figure 5(a), the
composition representation Sqq,p is computed as:

(LSTM ¢ypal€nt; 505 -+, Sm);
LSTMbwd[enta Smy ey 30})7

Scomp =

where e,; is the representation of a non-terminal,
sj,j € [0,m] is the jth child node, and m is the
number of the child nodes. For bottom-up parsing,
we make use of the head information in the compo-
sition function by requiring the order that the head
node is always before the non-head node in the bidi-
rectional LSTM, as shown in Figure 5(b)*. The bi-

3To be fair, we use a bidirectional LSTM as composition
function for all parsing systems

“A bidirectional LSTM consists of two LSTMs, making it
balanced for composition. However, they have different param-
eters so that one represents information of head-first while other
represents information of head-last.



narized composition is computed as:

Sbcomp = (LSTMfwd[enta Sh 50];
LSTMbwd[entv So, Sh]):

where sy, and s, is the representation of the head and
the non-head node, respectively.

4.3 Greedy action classification

Given a sentence wq, w1, ..., W,_1, Where w; is
the ith word, and n is the length of the sentence,
our parser makes local action classification deci-
sions incrementally. For the kth parsing state like
[sj,..., 51, S0, i, false], the probability distribution
of the current action p is:

p = SOFTMAX(W [hsr; hpugs han] +0), (%)
where W and b are model parameters, the represen-
tation of stack information hg;y, is:

hst, = stack-LSTM]sg, s1, ..., 5],

the representation of buffer information Ay, s is:
hbuf = stack-LSTM[z;, T 41, ..., Tn),

x is the word representation, and the representation
of action history h,y, is:

han = LSTM[eactk_l y Cactyy_os s 6act0]7

where eq., , is the representation of action in the
k-1th parsing state.

Training Our models are trained to minimize a
cross-entropy loss objective with an /5 regularization
term, defined by

A
L(0) = => > log pa;; + 5\|¢9\|2,
v g

where 0 is the set of parameters, p,,; is the proba-
bility of the jth action in the ith training example
given by the model and ) is a regularization hyper-
parameter (A = 107%). We use stochastic gradient
descent with a 0.1 initialized learning rate with a
0.05 learning rate decay.
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Parameter | Value
LSTM layer 2
Word embedding dim 32
English pretrained word embedding dim 100

Chinese pretrained word embedding dim 80

POS tag embedding dim 12
Action embedding dim 16
Stack-LSTM input dim 128
Stack-LSTM hidden dim 128

Table 1: Hyper-parameters.

S Experiments

5.1 Data

We empirically compare our bottom-up, top-down
and in-order parsers. The experiments are carried
out on both English and Chinese. For English data,
we use the standard benchmark of WSJ sections in
PTB (Marcus et al., 1993), where the Sections 2-
21 are taken for training data, Section 22 for devel-
opment data and Section 23 for testing both depen-
dency parsing and constituency parsing. We adopt
the pretrained English word embeddings generated
on the AFP portion of English Gigaword.

For Chinese data, we use Version 5.1 of the Penn
Chinese Treebank (CTB) (Xue et al., 2005). We use
articles 001- 270 and 440-1151 for training, articles
301-325 for system development, and articles 271-
300 for final performance evaluation. We adopt the
pretrained Chinese word embeddings generated on
the complete Chinese Gigaword corpus.

The POS tags in both the English data and the
Chinese data are automatically assigned the same as
the work of Dyer et al. (2016), using Stanford tagger.
We follow the work of Choe and Charniak (2016)
and adopt the AFP portion of the English Giga-
word as the extra resources for the semi-supervised
reranking.

5.2 Settings

Hyper-parameters For both English and Chinese
experiments, we use the same hyper-parameters as
the work of Dyer et al. (2016) without further opti-
mization, as shown in Table 1.

Reranking experiments Following the same
reranking setting of Dyer et al. (2016) and Choe
and Charniak (2016), we obtain 100 samples from
our bottom-up, top-down, and in-order model (Sec-



Model | IR [ LP [ F;

Top-down parser | 91.59 | 91.66 | 91.62
Bottom-up parser | 91.89 | 91.83 | 91.86
In-order parser 91.98 | 91.86 | 91.92

Table 2: Development results (%) on WSJ 22.

Model | Fu
fully-supervise
Top-down parser | 91.2
Bottom-up parser | 91.3
In-order parser 91.8
rerank

Top-down parser | 93.3
Bottom-up parser | 93.3
In-order parser 93.6

Table 3: Final results (%) on WSJ Section 23.

tion 4), respectively, with an exponentiation strat-
egy (o« = 0.8), by using the probability distribu-
tion of action (equation *). We adopt the reranker of
Choe and Charniak (2016) as both our English fully-
supervised reranker and semi-supervised reranker,
and the generative reranker of Dyer et al. (2016) as
our Chinese supervised reranker.

5.3 Development experiments

Table 2 shows the development results of the three
parsing systems. The bottom-up system performs
slightly better than the top-down system. The in-
order system outperforms both the bottom-up and
the top-down system.

5.4 Results

Table 3 shows the parsing results on the English
test dataset. We find that the bottom-up parser and
the top-down parser have similar results under the
greedy setting, and the in-order parser outperforms
both of them. Also, with supervised reranking, the
in-order parser achieves the best results.

English constituent results We compare our
models with previous work, as shown in Ta-
ble 4. With the fully-supervise setting’, the in-
order parser outperforms the state-of-the-art discrete
parser (Shindo et al., 2012; Zhu et al., 2013), the
state-of-the-art neural parsers (Cross and Huang,

SHere, we only consider the work of a single model.
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Model | F
fully-supervise
Socher et al. (2013) 90.4
Zhu et al. (2013) 90.4
Vinyals et al. (2015) 90.7
Watanabe and Sumita (2015) | 90.7
Shindo et al. (2012) 91.1
Durrett and Klein (2015) 91.1
Dyer et al. (2016) 91.2
Cross and Huang (2016) 91.3
Liu and Zhang (2017) 91.7
" Top-down parser 91.2
Bottom-up parser 91.3
In-order parser 91.8
reranking
Huang (2008) 91.7
Charniak and Johnson (2005) | 91.5
Choe and Charniak (2016) 92.6
Dyer et al. (2016) 93.3
Kuncoro et al. (2017) 93.6
" Top-down parser 933
Bottom-up parser 93.3
In-order parser 93.6
semi-supervised reranking
Choe and Charniak (2016) 93.8
In-order parser 94.2

Table 4: Final results (%) on WSJ Section 23.

2016; Watanabe and Sumita, 2015) and the state-of-
the-art hybrid parsers (Durrett and Klein, 2015; Liu
and Zhang, 2017), achieving state-of-the-art results.
With the reranking setting, the in-order parser out-
performs the best discrete parser (Huang, 2008) and
has the same performance as Kuncoro et al. (2017),
which extends the work of Dyer et al. (2016) by
adding a gated attention mechanism on composition
functions. With the semi-supervised setting, the in-
order parser outperforms the best semi-supervised
parser (Choe and Charniak, 2016) by achieving 94.2
F; (the oracle is 97.9 Fy).

English dependency results As shown in Table
5, by converting to Stanford Dependencies, with-
out additional training data, our models achieve a
similar performance with the state-of-the-art system
(Choe and Charniak, 2016); with the same addi-
tional training data, our models achieve new state-
of-the-art results on dependency parsing by achiev-
ing 96.2% UAS and 95.2% LAS on standard bench-
mark.

Chinese constituent results
final results on the Chinese test dataset.

Table 6 shows the
The in-



Model | UAS LAS Model | UAS LAS
Kiperwasser and Goldberg (2016)T | 93.9 919 Dyer et al. (2016) 85.5 84.0
Cheng et al. (2016) T 94.1 915 Ballesteros et al. (2016) 87.7 86.2
Andor et al. (2016) 94.6 92.8 Kiperwasser and Goldberg (2016) | 87.6  86.1
Dyer et al. (2016) -re 95.6 944 Cheng et al. (2016) T 88.1 85.7
Dozat and Manning (2017) 95.7 94.0 Dozat and Manning (2017) } 89.3 882
Kuncoro et al. (2017) -re 95.7 945 " In-order parser | 874 86.4
Choe and Charniak (2016) -sre 959 94.1 In-order parser -re 894 884
" In-order parser | 945 934
E_gigg gizg _gfe ggg ggg Table 7: Dependency accuracy (%) on CTB test set.

Table 5: Stanford Dependency accuracy (%) on
WSJ Section 23. 1 means graph-based parsing. “-re”
means fully-supervised reranking and ““-sre” means
semi-supervised reranking.

Parser | F
fully-supervision
Zhu et al. (2013) 83.2
Wang et al. (2015) 83.2
Dyer et al. (2016) 84.6
Liu and Zhang (2017) 85.5

~ Top-down parser 846
Bottom-up parser 85.7
In-order parser 86.1
rerank
Charniak and Johnson (2005) | 82.3
Dyer et al. (2016) 86.9

- Top-down parser 869
Bottom-up parser 87.5
In-order parser 88.0
semi-supervision
Zhu et al. (2013) 85.6
Wang and Xue (2014) 86.3
Wang et al. (2015) 86.6

Table 6: Final results on test set of CTB.

order parser achieves the best results under the fully-
supervised setting. With the supervised reranking,
the in-order parser outperforms the state-of-the-art
models by achieving 88.0 F; (the oracle is 93.47 F).

Chinese dependency results As shown in Table
7, by converting the results to dependencies®, our fi-
nal model achieves the best results among transition-
based parsing, and obtains comparable results to the
state-of-the-art graph-based models.

®The Penn2Malt tool is used with Chinese head rules
https://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html.
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T means graph-based parsing. ‘“-re” means super-
vised reranking.

6 Analysis

We analyze the results of Section 23 in WSJ given
by our model (i.e. in-order parser) and two baseline
models (i.e. the bottom-up parser and the top-down
parser) against the sentence length, the span length
and the constituent type, respectively.

6.1 Influence of sentence length

Figure 6 shows the F; scores of the three parsers on
sentences of different lengths. Compared to the top-
down parser, the bottom-up parser performs better
on the short sentences with the length falling in the
range [20-40]. This is likely because the bottom-
up parser takes advantages of rich local features
from partially-built trees, which are useful for pars-
ing short sentences. However, these local structures
are can be insufficient for parsing long sentences
due to error propagation. On the other hand, the
top-down parser obtains better results on long sen-
tences with the length falling in the range [40-50].
This is because, as the length of sentences increase,
lookahead features become rich and they could be
correctly represented by the LSTM, which is bene-
ficial for parsing non-local structures. We find that
the in-order parser performs the best for both short
and long sentences, showing the advantages of inte-
grating bottom-up and top-down information.

6.2 Influence of span length

Figure 7 shows the F; scores of the three parsers
on spans of different lengths. The trend of perfor-
mances of the two baseline parsers are similar. Com-
pared to the baseline parsers, the in-order parser ob-
tains significant improvement on long spans. Lin-
guistically, it is because the in-order traversal, (over



NP VP S PP SBAR ADVP ADJP WHNP QP
Top-down parser  92.87 9251 9136 8796 86.74 8521 7541 96.44 8941
Bottom-up parser 93.01 9220 9146 8795 86.81 8458 7484 9499  89.95
In-order parser 9323 9283 91.87 8897 88.05 8630 76.62 96.75 92.16
Improvement +0.22 +032 +041 +1.01 +1.04 +1.09 +1.21 +031 +2.01
Table 8: Comparison on different phrases types.
04 B stituent types including NP, S, SBAR, QP. We find
SN that the prediction of these constituent types re-
~ 92 - NG quires, explicitly, modeling of bottom-up structures.
% 90| = < In other words, bottom-up information is necessary
- — Top-down parser TN for us to know if the span can be a noun phrase (NP)
- - - Bottom-up parser N
88 || ~Xe. or sentence (S), for example. On the other hand, the
----- In-order parser G-
J top-down parser has better performance on WHNP,

36 | | \ \
10 20 30 40 50 60

Sentence length

Figure 6: F; score against sentence length. (the
number of words in a sentence, in bins of size 10,
where 20 contains sentences with lengths in [10,
20).)

95 [ A ‘
' —— Top-down parser
- - - Bottom-up parser
----- In-order parser

Fi (%)

85 | | | | | |

span length

Figure 7: F; score against span length.

a tree) allows constituent types of spans to be cor-
rectly projected based on the information of the be-
ginning (leftmost nodes) of the spans. Then the pro-
jected constituents constrain long span construction,
which is different from the top-down parser, gener-
ating constituent types of spans without trace of the
spans.

6.3 Influence of constituent type

Table 7 shows the F; scores of the three parsers on
frequent constituent types. The bottom-up parser
performs better than the top-down parser on con-
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which is likely because a WHNP starts with a cer-
tain question word, making the prediction easy with-
out bottom-up information. The in-order parser per-
forms the best on all constituent types, demonstrat-
ing that the in-order parser can benefit from both
bottom-up and top-down information.

6.4 Examples

We give output examples from the test set to qualita-
tively compare the performances of the three parsers
using the fully-supervised model without reranking,
as shown in Table 9. For example, given the Sen-
tence #2006, the bottom-up and the in-order parsers
give both correct results. However, the top-down
parser makes an incorrect decision to generate an S,
leading to subsequent incorrect decisions on VP to
complete S. Sentence pattern ambiguity allows top-
down guidance to over-parsing the sentence by rec-
ognizing the word “Plans” as a verb, while more
bottom-up information is useful for the local disam-
biguation.

Given the Sentence #308, the bottom-up parser
prefers construction of local constituents such as
“once producers and customers”, ignoring the pos-
sible clause SBAR, however, which is captured by
the in-order parser. The parser projects a constituent
SBAR from the word “stick” and continues to com-
plete the clause, showing that top-down lookahead
information is necessary for non-local disambigua-
tion. The in-order parser gives the correct output for
the Sentence #2066 and the Sentence #308, show-
ing that it can benefit from bottom-up and top-down
information.



Sent #2066 | Employee Benefit Plans Inc. —

Gold (NP Employee Benefit Plans Inc. -)

Top-down (S (NP Employee Benefit ) (VP Plans (NP Inc. ) —))

Bottom-up | (NP Employee Benefit Plans Inc. -)

In-order (NP Employee Benefit Plans Inc. -)

Sent #308 ... whether the new posted prices will stick once producers and customers start to haggle .

Gold ... (VP will (VP stick (SBAR once (S (NP producers and customers ) (VP start (S...) ) ) ) ) ) ...
Top-down ... (VP will (VP stick (SBAR once (S (NP producers and customers ) (VP start (S...)))))) ...
Bottom-up | ... (VP will (VP stick (NP once producers and customers ) ) ) ... (VP start (S ...) ) ...

In-order ... (VP will (VP stick (SBAR once (S (NP producers and customers ) (VP start (S...) ) ) ) ) ) ...
Sent #1715 | This has both made investors uneasy and the corporations more vulnerable .

Gold (S (NP This) (VP has (VP both made (S (S investors uneasy) and (S the corporations ...)))) .)
Top-down (S (S (NP This) (VP has (S (NP both) (VP made investors uneasy)))) and (S the corporations ...) .)
Bottom-up | (S (S (NP This) (VP has (S both (VP made investors uneasy)))) and (S the corporations ...) .)
In-order (S (NP This) (VP has both (VP made (S (S investors uneasy) and (S the corporations ...)))) .)

Table 9: Output examples of the three parsers on the English test set. Incorrect constituents are marked in

red.

In the Sentence #1715, there are coordinated ob-
jects such as “investors uneasy” and “the corpora-
tions more vulnerable”. All of the three parsers
can recognize coordination. However, the top-down
and the bottom-up parsers incorrectly recognize the
“This has both made investors uneasy” as a com-
plete sentence. The top-down parser incorrectly
generates S, marked in red, at a early stage, leaving
no choice but to follow this incorrect non-terminal.
The bottom-up parser without lookahead informa-
tion makes incorrect local decisions. By contrast,
the in-order parser reads the word “and” and projects
a non-terminal S for coordination after completing
“(S investors uneasy)”. On the other hand, the in-
order parser is confused by projecting for the word
“made” or the word “both” into an VP, which we
think could be addressed by using a in-order system
variant with k=2 described in Section 3.

7 Related work

Our work is related to left corner parsing.
Rosenkrantz and Lewis (1970) formalize this in au-
tomata theory, which have appeared frequently in
the compiler literature. Roark and Johnson (1999)
apply the strategy into parsing. Typical works in-
vestigate the transformation of syntactic trees based
on left-corner rules (Roark, 2001; Schuler et al.,
2010; Van Schijndel and Schuler, 2013). In contrast,
we propose a novel general transition-based in-order
constituent parsing system.

Neural networks have achieved the state-of-the-
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art for parsing under various grammar formalisms,
including dependency (Dozat and Manning, 2017),
constituent (Dyer et al., 2016; Kuncoro et al., 2017),
and CCG parsing (Xu, 2016; Lewis et al., 2016).
Seminal work employs transition-based methods
(Chen and Manning, 2014). This method has
been extended by investigating more complex rep-
resentations of configurations for constituent pars-
ing (Watanabe and Sumita, 2015; Dyer et al., 2016).
Dyer et al. (2016) employ stack-LSTM onto the
top-down system, which is the same as our top-
down parser. Watanabe and Sumita (2015) employ
tree-LSTM to model the complex representation in
the stack in bottom-up system. We are the first to
investigate in-order traversal by designing a novel
transition-based system under the same neural struc-
ture model framework.

8 Conclusion

We proposed a novel psycho-linguistically moti-
vated constituent parsing system based on the in-
order traversal over syntactic trees, aiming to find
a compromise between bottom-up constituent infor-
mation and top-down lookahead information. On
the standard WSJ benchmark, our in-order system
outperforms bottom-up parsing on a non-local am-
biguity and top-down parsing on local decision. The
resulting parser achieves the state-of-the-art con-
stituent parsing results by obtaining 94.2 F; and de-
pendency parsing results by obtaining 96.2% UAS
and 95.2% LAS.
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