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Abstract

This paper focuses on unsupervised modeling
of morphological families, collectively com-
prising a forest over the language vocabulary.
This formulation enables us to capture edge-
wise properties reflecting single-step morpho-
logical derivations, along with global distribu-
tional properties of the entire forest. These
global properties constrain the size of the af-
fix set and encourage formation of tight mor-
phological families. The resulting objective
is solved using Integer Linear Programming
(ILP) paired with contrastive estimation. We
train the model by alternating between op-
timizing the local log-linear model and the
global ILP objective. We evaluate our sys-
tem on three tasks: root detection, clustering
of morphological families, and segmentation.
Our experiments demonstrate that our model
yields consistent gains in all three tasks com-
pared with the best published results.!

1 Introduction

The morphological study of a language inherently
draws upon the existence of families of related
words. All words within a family can be derived
from a common root via a series of transformations,
whether inflectional or derivational. Figure 1 de-
picts one such family, originating from the word
faith. This representation can benefit a range of
applications, including segmentation, root detection
and clustering of morphological families.

!Code is available at
j-1luo93/MorphForest.

https://github.com/
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Figure 1: An illustration of a single tree in a mor-
phological forest. pre and suf represent prefixation
and suffixation. Each edge has an associated proba-
bility for the morphological change.

Using graph terminology, a full morphological as-
signment of the words in a language can be repre-
sented as a forest.” Valid forests of morphological
families exhibit a number of well-known regulari-
ties. At the global level, the number of roots is lim-
ited, and only constitute a small fraction of the vo-
cabulary. A similar constraint applies to the num-
ber of possible affixes, shared across families. At
the local edge level, we prefer derivations that fol-
low regular orthographic patterns and preserve se-
mantic relatedness. We hypothesize that enforcing
these constraints as part of the forest induction pro-

?The correct mathematical term for the structure in Figure 1
is a directed 1-forest or functional graph. For simplicity, we
shall use the terms forest and tree to refer to a directed 1-forest
or a directed 1-tree because of the cycle at the root.
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cess will allow us to accurately learn morphological
structures in an unsupervised fashion.

To test this hypothesis, we define an objective
over the entire forest representation. The proposed
objective is designed to maximize the likelihood
of local derivations, while constraining the overall
number of affixes and encouraging tighter morpho-
logical families. We optimize this objective using
Integer Linear Programming (ILP), which is com-
monly employed to handle global constraints. While
in prior work, ILP has often been employed in super-
vised settings, we explore its effectiveness in unsu-
pervised learning. We induce a forest by alternat-
ing between learning local edge probabilities using
a log-linear model, and enforcing global constraints
with the ILP-based decoder. With each iteration, the
model progresses towards more consistent forests.

We evaluate our model on three tasks: root detec-
tion, clustering of morphologically related families,
and segmentation. The last task has been extensively
studied in recent literature, providing us with the op-
portunity to compare the model with multiple unsu-
pervised techniques. On benchmark datasets repre-
senting four languages, our model outperforms the
baselines, yielding new state-of-the-art results. For
instance, we improve segmentation performance on
Turkish by 4.4% and on English by 3.7%, relative to
the best published results (Narasimhan et al., 2015).
Similarly, our model exhibits superior performance
on the other two tasks. We also provide analysis of
the model behavior which reveals that most of the
gain comes from enforcing global constraints on the
number of unique affixes.

2 Related Work

Unsupervised  morphological segmentation
Most top performing algorithms for unsupervised
segmentation today center around modeling single-
step derivations (Poon et al., 2009; Naradowsky
and Toutanova, 2011; Narasimhan et al., 2015).
A commonly used log-linear formulation enables
these models to consider a rich set of features
ranging from orthographic patterns to semantic
relatedness.  However, these models generally
bypass global constraints (Narasimhan et al., 2015)
or require performing inference over very large
spaces (Poon et al., 2009). As we show in our
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analysis (Section 5), this omission negatively affects
model performance.

In contrast, earlier work focuses on modeling
global morphological assignment, using generative
probabilistic models (Creutz and Lagus, 2007; Sny-
der and Barzilay, 2008; Goldwater et al., 2009; Sirts
and Goldwater, 2013). These models are inherently
limited in their ability to incorporate diverse features
that are effectively utilized by local discriminative
models.

Our proposed approach attempts to combine the
advantages of both approaches, by defining an ob-
jective that incorporates both levels of linguistic
properties over the entire forest representation, and
adopting an alternating training regime for optimiza-
tion.

Graph-based representations in computational
morphology Variants of a graph-based represen-
tation have been used to model various morpholog-
ical phenomena (Dreyer and Eisner, 2009; Peng et
al., 2015; Soricut and Och, 2015; Faruqui et al.,
2016). The graph induction methods vary widely
depending on the task and the available supervi-
sion. The distinctive feature of our work is the use
of global constraints to guide the learning of local,
edge-level derivations.

ILP for capturing global properties Integer Lin-
ear Programming has been successfully employed to
capture global constraints across multiple applica-
tions such as information extraction (Roth and Yih,
2001), sentence compression (Clarke and Lapata,
2008), and textual entailment (Berant et al., 2011).
In all of these applications, the ILP formulation is
used with a supervised classifier. Our work demon-
strates that this framework continues to be effective
in an unsupervised setting, providing strong guid-
ance for a local, unsupervised classifier.

3 Model

Our model considers a full morphological assign-
ment for all the words in a language, representing
it as a forest. Let F' = (V, E) be a directed graph
where each word corresponds to anode v € V. A
directed edge e = (v.,vp) € E encodes a single
morphological derivation from a parent word v, to
a child word v.. Edges also reflect the type of the



underlying derivation (e.g., prefixation), and an as-
sociated probability Pr(e). Note that the root of a
tree is always marked with a self-directed (i.e. v,
= vp) edge associated with the label stop. Figure 1
illustrates a single tree in the forest.

3.1 Inducing morphological forests

We postulate that a valid assignment yields forests
with the following properties:

1. Increased edge weights Edge weights re-
flect probabilities of single-step derivations
based on the local features including or-
thographic patterns and semantic relatedness.
This local information helps identify that the
edge (painter, paint) should be preferred over
(painter, pain), because —er is a valid suffix
and paint is semantically closer to painter.

2. Minimized number of affixes Prior research
has shown that local models tend to greatly
overestimate the number of suffixes. For in-
stance, the model of Narasimhan et al. (2015)
produces 617 unique affixes when segmenting
10000 English words. Thus, we explicitly en-
courage the model towards assignments with
the least number of affixes.

3. Minimized number of roots relatively to vo-
cabulary size Similarly, the number of roots,
and consequently the number of morphological
families is markedly smaller than the size of the
vocabulary.

The first property is local in nature, while the last
two are global and embody the principle of Min-
imum Description Length (MDL). Based on these
properties, we formulate an objective function S(F')
over a forest F':

> ccplogPr(e)
|E|

F
+ a|Affix| +ﬁu

SF) =~ v

)

where |-| denotes set cardinality, Affix = {ay }1_; is
the set of all affixes, and | F'| is the number of trees
in F. | E| and |V] are the size of the edge set and vo-
cabulary, respectively. The hyperparameters o and
[ capture the relative importance of the three terms.

By minimizing this objective, we encourage as-
signments with high edge probabilities (first term),
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Figure 2: Illustration of two chosen forest repre-
sentations. The top forest has only one affix -s,
but two roots {pain, paint}. Shown in the bottom
forest, choosing the edge (paint,pain) instead of
(paint, paint) will introduce another affix -z, while
reducing the set of roots to just {pain}.

while limiting the number of affixes and morpho-
logical families (second and third terms, respec-
tively). This objective can also be viewed as a simple
log-likelihood objective regularized by the last two
terms in Equation (1).

To illustrate the interaction between local and
global constraints in this objective, consider an ex-
ample in Figure 2. If the model selects a different
edge — e.g. (paint, pain) instead, all the terms in
Equation (1) will be affected.

3.2 Computing local probabilities

We now describe how to parameterize Pr(e), which
captures the likelihood of a single-step morpholog-
ical derivation between two words. Following prior



work (Narasimhan et al., 2015), we model this prob-
ability using a log-linear model:

PI‘(w, Z) X eXp<9 ’ ¢(w7 Z))7 (2)

where 6 is the set of parameters to be learned, and
o(w, z) is the feature vector extracted from w and
z. Bach candidate z is a tuple (string, label), where
label refers to the label of the potential edge.

As a result, the marginal probability is

Z Pr(w, z)

zeC(w)
- > zec(w) xP(0 - o(w, 2))
Zw’EE* Zz’GC(w’) exp(0 ’ ¢(w/7 Z/)) ’

where >* is the set of all possible strings. Com-
puting the sum in the denominator is infeasible. In-
stead, we make use of contrastive estimation (Smith
and Eisner, 2005), substituting >* with a (limited)
set of neighbor strings /N (w) that are orthographi-
cally close to w. This technique distributes the prob-
ability mass among neighboring words and forces
the model to identify meaningful discriminative fea-
tures. We obtain N (w) by transposing characters in
w, following the method described in Narasimhan et
al. (2015).

Now for the forest over the set of nodes V, the
log-likelihood loss function is defined as:

LV;0)=— Z log Pr(v)

Pr(w) =

veV
-y [1og > exp(6- (v, 2))
veV zeC(v)

—log > > exp(-o(v,2))|,

v'€N(v) 2/€C(v')
(3)

This objective can be minimized by gradient de-
scent.

Space of Possible Candidates We only consider
assignments where the parent word is strictly shorter
than the child word to prevent cycles of length two or
more. In addition to suffixation and prefixation, we
also consider three types of transformations intro-
duced in Goldwater and Johnson (2004): repetition,
deletion, and modification. We also handle com-
pounding, where two stems are combined to form a
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new word (e.g., football). One of these stems carries
the main semantic meaning of the compound and is
considered to be the parent of the word. Note that
stems are not considered affixes, so this does not af-
fect the affix list.

We allow parents to be words outside V, since
many legitimate word forms might never appear
in the corpus. For instance, if we have V =
{painter, paints}, the optimal solution would add
an unseen word paint to the forest, and choose
edges (painter, paint) and (paints, paint).

Features We use the same set of features shown to
be effective in prior work (Narasimhan et al., 2015),
including word vector similarity, beginning and end-
ing character bigrams, word frequencies and affixes.
Affix features are automatically extracted from the
corpus based on string difference and are thresh-
olded based on frequency. We also include an ad-
ditional sibling feature that counts how many words
are siblings of word w in its tree. Siblings are words
that are derived from the same parent, e.g., faithful
and faithless, both from the word faith.

3.3 ILP formulation

Minimizing the objective in Equation (1) is chal-
lenging because the second and third terms capture
discrete global properties of the forest, which pre-
vents us from performing gradient descent directly.
Instead, we formulate this optimization problem as
Integer Linear Programming (ILP), where these two
terms can be cast as constraints.

For each child word v; € V', we have a bounded
set of its candidate outgoing edges C(v;) = {zzj J=
where zf is the j-th candidate for v;. C(v;) is
the same set as defined in Section 3.2. Each
edge is associated with p;;, which is computed as
log Pr(z{ |vi). Let ;; be a binary variable that has
value 1 if and only if ZZ is chosen to be in the forest.
Without loss of generality, we assume the first can-
didate edge is always the self-edge (or stop case),
ie., 2z} = (v;,stop). We also use a set of binary
variables {y } to indicate whether affix ay, is used at

31f we had prior knowledge of words belonging to the same
family, we can frame the problem as growing a Minimum Span-
ning Tree (MST), and use Chu-Liu-Edmonds algorithm (Chu
and Liu, 1965; Edmonds, 1967) to solve it. However, this infor-
mation is not available to us.



least once in F' (i.e. required to explain a morpho-
logical change).

Now let us consider how to derive our ILP for-
mulation using the notations above. Note that |F'| is
equal to the number of self-edges EZ x;1, and also a
valid forest will satisfy |V'| = |E|. Combining these
pieces, we can rewrite the objective in Equation (1)
and arrive at the following ILP formulation:

o 1 B
minimize — T;iPii + & + — X;
i |V| %: ijDij zk:yk ‘V‘ zl: il
subjectto x5, yk € {0,1},
inj = 1,Vi, (4)
J
Zi5 < Yg, if ay, is involved in zf 5)

Constraint 4 states that exactly one of the can-
didate edges should be chosen for each word. The
last constraint implies that we can only consider this
candidate (and construct the corresponding edge)
when the involved affix* is used at least once in the
forest representation.

3.4 Alternating training

The objective function contains two sets of parame-
ters: a continuous weight vector 6 that parameterizes
edge probabilities, and binary variables {z;;} and
{yx} in ILP. Due to the discordance between con-
tinuous and discrete variables, we need to optimize
the objective in an alternating manner. Algorithm 1
details the training procedure. After automatically
extracting affixes from the corpus, we alternate be-
tween learning the local edge probabilities (line 3)
and solving ILP (line 4).

The feedback from solving ILP with the global
constraints can help us refine the learning of local
probabilities by removing incorrect affixes (line 5).
For instance, automatic extraction based on frequen-
cies can include -ers as an English suffix. This is
likely to be eliminated by ILP, since all occurrences
of -ers can be explained away without adding a new
affix by concatenating -er and -s, two very common
suffixes. After refining the affix set, we remove all
candidates that involve any affix discarded by ILP.
This corresponds to reducing the size of C'(w) in
Equation (3). We then train the log-linear model

*For English and German, where non-concatenative trans-
formations are possible such as deletion of ending e (taking —
take), we also include them in Affix.
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again using the newly-pruned candidate set. By do-
ing so, we force the model to learn from better con-
trastive signals, and focus on affixes of higher qual-
ity, resulting in a new set of probabilities {p;; }. This
procedure is repeated until no more affixes are re-
jected.”

4 Experiments

We evaluate our model on three tasks: segmentation,
morphological family clustering, and root detection.
While the first task has been extensively studied in
the prior literature, we consider two additional tasks
to assess the flexibility of the derived representation.

4.1 Morphological segmentation

Data We choose four languages with distinct mor-
phological properties: English, Turkish, Arabic, and
German. Our training data consists of standard
datasets used in prior work. Statistics for all datasets
are summarized in Table 1. Note that for the Arabic
test set, we filtered out duplicate words, and we reran
the baselines to obtain comparable results.

Following Narasimhan et al. (2015), we reduce
the noise by truncating the training word list to the
top K frequent words. In addition, we train word
vectors (Mikolov et al., 2013) to obtain cosine simi-
larity features. Statistics for all datasets are summa-
rized in Table 1.

Baselines We compare our approach against the
state-of-the-art unsupervised method of Narasimhan
et al. (2015) which outperforms a number of alter-
native approaches (Creutz and Lagus, 2005; Virpi-
oja et al., 2013; Sirts and Goldwater, 2013; Lee
et al., 2011; Stallard et al., 2012; Poon et al.,
2009). For this baseline, we report the results of
the publicly available implementation of the tech-
nique (NBJ’15), as well as our own improved reim-
plementation (NBJ-Imp). Specifically in NBJ-Imp,
we expanded the original algorithm to handle com-
pounding, along with sibling features as described in
Section 3.2, making it essentially an ablation of our
model without ILP and alternating training. We em-
ploy grid search to find the optimal hyperparameter
setting.®

3Typically the model converges after 5 rounds
8K € {2500,5000, 10000}, number of automatically ex-
tracted affixes € {100, 200, 300,400, 500}



Algorithm 1 Morphological Forest Induction

Input: wordlist V
Output: Forest representation of V'

1: Affix < ExtractAffixes(W)

2: fort < 1toT do

3: pgj < ContrastiveEstimation(W, Affix)
4: y L Ft ILP(pgj)

5 PruneAffixSet(Affix, y**)

> Extract common patterns as affixes from the wordlist

> Alternating training for 7 iterations
> Compute local probabilities, cf. Section 3.2

> Get indicators for affixes, and the forest, cf. Section 3.3
> Prune affix set using the output from ILP, cf. Section 3.4

return F7
Train Test WordVec #Words
Language #Words #Words #Words Language #Words #Clusters per Cluster
Enelish MC-10  MC-05:10 Wikipedia English 75,416 20,249 3.72
& 878K 2212 129M German 367,967 28,198 13.05
Turkish MC-10 MC-05:10 BOUN Table 2: Data statistics for the family clustering task
617K 2531 361M (CELEX). We only evaluate on English and Ger-
Arabi Gigaword ATB Gigaword man, since these are the languages MorphoChal-
raple 3.83M 21085 1.22G lenge has segmentations for.
MC-10 Dsolve  Wikipedia
German L. ) .
2.34M 15522 589M Training For unsupervised training, we use the

Table 1: Data statistics: MC-10 = MorphoChal-
lenge 2010 , MC:05-10 = aggregated from Mor-
phoChallenge 2005-2010, BOUN = BOUN cor-
pus (Sak et al., 2008), Gigaword = Arabic Gigaword
corpus (Parker et al., 2011), ATB = Arabic Tree-
bank (Maamouri et al., 2003). Duplicates in Arabic
test set are filtered. Dsolve is the dataset released
by Wiirzner and Jurish (2015), and for training Ger-
man vectors, we use the pre-processed Wikipedia
dump from (Al-Rfou et al., 2013).

We also include a supervised counterpart, which
uses the same set of features as NBJ-Imp but has ac-
cess to gold segmentation during training (we per-
form 5-fold cross-validation using the same data).
We obtain the gold standard parent-child pairs re-
quired for training from the segmented words in a
straightforward fashion.

Evaluation metric Following prior work (Virpi-
oja et al., 2011), we evaluate all models using the
standard boundary precision and recall (BPR). This
measure assesses the accuracy of individual segmen-
tation points, producing IR-style Precision, Recall
and F1 scores.
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gradient descent method ADAM (Kingma and Ba,
2014) and optimize over the whole batch of training
words. We use a Gurobi’ solver for the ILP.

4.2 Morphological family clustering

Morphological family clustering is the task of clus-
tering morphologically related word forms. For in-
stance, we want to group paint, paints and pain into
two clusters: {paint, paints} and {pain}. To derive
clusters from the forest representation, we assume
that all the words in the same tree form a cluster.

Data To obtain gold information about morpho-
logical clusters, we use CELEX (Baayen et al.,
1993). Data statistics are summarized in Table 2.
We remove words without stems from CELEX.3

Baseline We compare our model against NBJ-Imp
described above. We select the best variant of our
model and the base model based on their respective
performance on the segmentation task.

Evaluation We use the metrics proposed by
Schone and Jurafsky (2000). Specifically, let X,

"http://www.gurobi.com/
8 An example is aerodrome, where both aero- and drome are
affixes.



#Words
Language #Words ¢ only)
English 1675 687
Turkish 1759 763
German 1747 749

Table 3: Data statistics for root detection task. Du-
plicate words are removed.

and Y,, be the clusters for word w in our predic-
tions and gold standard, respectively. We compute
the number of correct (C), inserted (Z) and deleted
(D) words for the clusters as follows:

| Xw N Yy
C= —_—
2 W
X0\ Yl
7= —_—
Z W
D= Z ’Yw\Xw|
weW |Yw‘
Then we compute precision = %, recall =

_c — 9 precision-recall
C+D> Fl= 2precision+recall'

4.3 Root detection

In addition, we evaluate how accurately our model
can predict the root of any given word.

Data We report the results on the Chipmunk
dataset (Cotterell et al., 2015) which has been used
for evaluating supervised models for root detection.
Since our model is unsupervised, we report the per-
formance both on the test set only, and on the entire
dataset, combining the train/test split. Statistics for
the dataset are shown in Table 3.

5 Results

In the following subsections, we report model per-
formance on each one of the three evaluation tasks.

5.1 Segmentation

“We used cosine similarity features in all experiments. But
the root forms of German verbs are rarely used, except in im-
perative sentences. Consequently they have barely trained word
vectors, contributing to the low recall value. We suspect better
treatment with word vectors can further improve the results.

Yhttp://www.mathcracker.com/sign-test.
php
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BPR

Language Method
P R F

Supervised 0.905 0.813 0.856

NBJI'I5 0807 0722 0.762

NBJ-Imp 0.820 0726 0.770

English 6 model 0838 0729 0.780
+ Sibl 0.796 0739 0.767
+ Comp 0.840 0761 0.799*

+ Comp, Sibl 0815 0.774 0.794

Supervised 0.826 0.803 0.815

NBJ'15 0743 0520 0612

NBJ-Imp 0.697 0.583 0.635

Turkish 5 model 0717 0577 0.639
+ Sibl 0.698 0619 0.656"

+ Comp 0716 0581 0.642

+ Comp, Sibl  0.692 0.621 0.655

Supervised 0904 0921 0912

NBJ'15 0.840 0724 0.778

NBJ-Imp 0.866 0725 0.789

Arabic 5 model  0.848 0769  0.806
+ Sibl 0.829 0787 0.807"

+ Comp 0.851 0765 0.806
+ Comp, Sibl  0.881 0745 0.807"

Supervised 0.823 0.810 0.816

NBJ'15 0716 0275 0397

NBJ-Imp 0.790 0480 0.597

9

German™ —  model 0774 0.540  0.636
+ Sibl 0711 0514 059
+ Comp 0.777 0595 0.674"

+ Comp, Sibl 0701 0.616 0.656

Table 4: Segmentation results for the supervised
model and three unsupervised models: the state-of-
the-art system NBJ’15 (Narasimhan et al., 2015),
our improved implementation of their system NBJ-
Imp and our model. For our model, we also report
results with different feature combinations. + Sib/
and + Comp refer to addition of sibling and com-
pounding features, respectively. Best hyperparame-
ter values for unsupervised baselines (NBJ’15, NBJ-
Imp) are chosen via grid search, while for our model,
we use 10K words and top 500 affixes throughout. *
implies statistical significance with p < 0.05 against
the NBJ-Imp model using the sign test !9,

From Table 4, we observe that our model consis-
tently outperforms the baselines on all four lan-



guages. Compared to NBJ’I5, our model has a
higher F1 score by 3.7%), 4.4%,2.9% and 27.7% on
English, Turkish, Arabic and German, respectively.
While the improved implementation NBJ-Imp ben-
efits from the addition of compounding and sibling
features, our model still delivers an absolute increase
in F1 score, ranging from 1.8% to 7.7% over NBJ-
Imp. Note that our model achieves higher scores
even without tuning the threshold K or the number
of affixes, whereas the baselines have optimal hyper-
parameter settings via grid search.

To understand the importance of global con-
straints (the last two terms of Equation (1)), we an-
alyze our model’s performance with different values
of o and S (see Figure 3). The first constraint, which
controls the size of the affix set, plays a more dom-
inant role than the second. By setting o = 0.0, the
model scores at best 75.7% on English and 63.2%
on Turkish, lower than the baseline. While the value
of 3 also affects the F1 score, its role is secondary in
achieving optimal performance.

The results also demonstrate that language prop-
erties can greatly affect the feature set choice. For
fusional languages such as English, computing of
sibling features is unreliable. For example, two de-
scendants of the same parent spot — spotless and
spotty — may not be necessarily identified as such by
a simple sibling computation algorithm, since they
undergo different changes. In contrast, Turkish is
highly agglutinative, with minimal (if any) transfor-
mations, but each word can have up to hundreds of
related forms. Consequently, sibling features have
different effects on English and Turkish, leading to
changes of —0.3% and +2.1% in F1 score respec-
tively.

Understanding model behavior We find that
much of the gain in model performance comes from
the first two rounds of training. As Figure 4 shows,
the improvement mainly stems from solving ILP in
the first round, followed by training the log-linear
model in the second round after removing affixes
and pruning candidate sets. This is exactly what we
expect from the ILP formulation — to globally adjust
the forest by reducing the number of unique affixes.
We find this to be quite effective — in English, out of
500 prefixes, only 6 remain: de, dis, im, in, re, and
un. Similarly, only 72 out of 500 suffixes survive
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Figure 3: Heat maps of « and [ for English and
Turkish. Darker cells mean higher scores. Models
used are +C'omp for English and 4+.Sbl for Turkish.

after this reduction.

Robustness We also investigate how robust our
model is to the choice of hyperparameters. Figure 3
illustrates that we can obtain a sizable boost over the
baseline by choosing v and S within a fairly wide
region. Note that « takes on a much smaller value
than (3, to maintain the two constraints (JAffix| and

%) at comparable magnitudes.

Narasimhan et al. (2015) observe that after in-
cluding more than K = 10,000 words, the per-
formance of the unsupervised model drops notice-
ably. In contrast, our model handles training noise
more robustly, resulting in a steady boost or not
too big drop in performance with increasing train-
ing size (Figure 5). In fact, it scores 83.0% with
K = 40,000 on English, a 6.0% increase in abso-
lute value over the baseline.



Stage
@® Contrastive Estimation
A ILP

0.80

F1 score
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Figure 4: F1 score vs round of training, for + Comp
on English. Training log-linear models and solving
ILP are marked by circles and triangles respectively.
Best result for NBJ-Imp is represented as a dashed
horizontal line.

Qualitative analysis Table 5 shows examples of
English words that our model segments correctly,
while NBJ’15 fails on them. We present them in
three categories (top to bottom) based on the com-
ponent of our model that contributes to the success-
ful segmentation. The first category benefits from
a refinement of the affix set, by removing noisy af-
fixes, such as -nce, -ch, and k-. This leads to correct
stopping as in the case of knuckle or induction of the
right suffix, as in divergence. Further, a smaller affix
set also leads to more concentrated weights for the
remaining affixes. For example, the feature weight
for -ive jumps from 0.06 to 0.25, so that the deriva-
tion negative — negate is favored, as shown in the
second category. Finally, the last category lists some
compound words that our model successfully seg-
ments.

5.2 Morphological family clustering

We show the results for morphological family clus-
tering in Table 6. For both languages, our model
increases precision by a wide margin, with a mod-
est boost for recall as well. This corroborates our
findings in the segmentation task, where our model
can effectively remove incorrect affixes while still
encouraging words to form tight, cohesive families.
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Figure 5: Performance using bigger training sets.
+Comp for English and +S'ibl for Turkish. Dashed
lines represent the best results for NBJ-Imp (with
smaller training sets).

5.3 Root detection

Table 7 summarizes the results for the root detection
task. Our model shows consistent improvements
over the baseline on all three languages. We also
include the results on the test set of two supervised
systems: Morfette (Chrupala et al., 2008) and Chip-
munk (Cotterell et al., 2015). Morfette is a string
transducer while Chipmunk is a segmenter. Both
systems have access to morphologically annotated
corpora.

Our model is quite competitive against Morfette.
In fact, it achieves higher accuracy for English and
Turkish. Compared with Chipmunk, our model



NBJ-Imp Our model
diverge-nce diverg-ence
lur-ch lurch

k-nuckle knuckle
negative negat-ive
Jjunks junk-s
unreserved un-reserv-ed
gaslight-s gas-light-s
watercourse-s — water-course-s
expressway express-way

Table 5: Some English words that our model seg-
ments correctly which the unsupervised base model
(NBJ’1)5) fails at.

Language Method P R F
Enclish NBJ-Imp 0.328 0.680 0.442
£ Our model  0.895 0715 0.795
German NBJ-Imp 0.207 0421 0.278
Our model 0471 0484 0.477

Table 6: Results for morphological family cluster-
ing. P = precision, R = recall.

scores 0.65 versus 0.70 on English, bridging the gap
significantly. However, the high accuracy for mor-
phologically complex languages such as Turkish and
German suggests that unsupervised root detection
remains a hard task.

6 Conclusions

In this work, we focus on unsupervised modeling of
morphological families, collectively defining a for-
est over the language vocabulary. This formulation
enables us to incorporate both local and global prop-
erties of morphological assignment. The resulting
objective is solved using Integer Linear Program-
ming (ILP) paired with contrastive estimation. Our
experiments demonstrate that our model yields con-
sistent gains in three morphological tasks compared
with the best published results.
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Accuracy
Language Method Accuracy (Test only)
NBJ-Imp 0.590 0.595
English Our model 0.636 0.649
Morfette - 0.628
Chipmunk - 0.703
NBJ-Imp 0.446 0.442
Turkish Our model 0.463 0.467
Morfette - 0.268
Chipmunk - 0.756
NBJ-Imp 0.347 0.331
Our model 0.383 0.364
German
Morfette - 0.438
Chipmunk - 0.674

Table 7: Results for root detection. Numbers for
Morfette and Chipmunk are reported by Cotterell et
al. (2015).
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