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Abstract

Pruning hypotheses during dynamic program-
ming is commonly used to speed up inference
in settings such as parsing. Unlike prior work,
we train a pruning policy under an objective
that measures end-to-end performance: we
search for a fast and accurate policy. This
poses a difficult machine learning problem,
which we tackle with the LOLS algorithm.
LOLS training must continually compute the ef-
fects of changing pruning decisions: we show
how to make this efficient in the constituency
parsing setting, via dynamic programming and
change propagation algorithms. We find that
optimizing end-to-end performance in this way
leads to a better Pareto frontier—i.e., parsers
which are more accurate for a given runtime.

1 Introduction

Decades of research have been dedicated to heuris-
tics for speeding up inference in natural language
processing tasks, such as constituency parsing (Pauls
and Klein, 2009; Caraballo and Charniak, 1998) and
machine translation (Petrov et al., 2008; Xu et al.,
2013). Such research is necessary because of a trend
toward richer models, which improve accuracy at the
cost of slower inference. For example, state-of-the-
art constituency parsers use grammars with millions
of rules, while dependency parsers routinely use mil-
lions of features. Without heuristics, these parsers
take minutes to process a single sentence.

To speed up inference, we will learn a pruning pol-
icy. During inference, the pruning policy is invoked
to decide whether to keep or prune various parts of
the search space, based on features of the input and
(potentially) the state of the inference process.

Our approach searches for a policy with maximum
end-to-end performance (reward) on training data,
where the reward is a linear combination of problem-
specific measures of accuracy and runtime, namely
reward = accuracy — A - runtime. The parameter A > 0
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specifies the relative importance of runtime and accu-
racy. By adjusting A, we obtain policies with different
speed-accuracy tradeoffs.

For learning, we use Locally Optimal Learning
to Search (LOLS) (Chang et al., 2015b), an algorithm
for learning sequential decision-making policies,
which accounts for the end-to-end performance of
the entire decision sequence jointly. Unfortunately,
executing LOLS naively in our setting is prohibitive
because it would run inference from scratch millions
of times under different policies, training examples,
and variations of the decision sequence. Thus, this
paper presents efficient algorithms for repeated
inference, which are applicable to a wide variety of
NLP tasks, including parsing, machine translation
and sequence tagging. These algorithms, based on
change propagation and dynamic programming,
dramatically reduce time spent evaluating similar
decision sequences by leveraging problem structure
and sharing work among evaluations.

We evaluate our approach by learning pruning
heuristics for constituency parsing. In this setting,
our approach is the first to account for end-to-end
performance of the pruning policy, without making
independence assumptions about the reward func-
tion, as in prior work (Bodenstab et al., 2011). In
the larger context of learning-to-search for structured
prediction, our work is unusual in that it learns to con-
trol a dynamic programming algorithm (i.e., graph-
based parsing) rather than a greedy algorithm (e.g.,
transition-based parsing). Our experiments show that
accounting for end-to-end performance in training
leads to better policies along the entire Pareto frontier
of accuracy and runtime.

2 Weighted CKY with pruning

A simple yet effective approach to speeding up pars-
ing was proposed by Bodenstab et al. (2011), who
trained a pruning policy 7 to classify whether or not
spans of the input sentence wy - - - wy, form plausible
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constituents based on features of the input sentence.
These predictions enable a parsing algorithm, such
as CKY, to skip expensive steps during its execu-
tion: unlikely constituents are pruned. Only plausible
constituents are kept, and the parser assembles the
highest-scoring parse from the available constituents.

Alg. 1 provides pseudocode for weighted CKY
with pruning. Weighted CKY aims to find the highest-
scoring derivation (parse tree) of a given sentence,
where a given grammar specifies a non-negative
score for each derivation rule and a derivation’s
score is the product of the scores of the rules it uses.!
CKY uses a dynamic programming strategy to fill
in a three-dimensional array 3, known as the chart.
The score (i, is the score of the highest-scoring sub-
derivation with fringe w;1 ... wj and root z. This
value is computed by looping over the possible ways
to assemble such a subderivation from smaller sub-
derivations with scores 3;j, and ;. (lines 17-22).
Additionally, we track a witness (backpointer) for
each (;i.., so that we can easily reconstruct the cor-
responding subderivation at line 23. The chart is
initialized with lexical grammar rules (lines 3-9),
which derive words from grammar symbols.

The key difference between pruned and unpruned
CKY is an additional “if” statement (line 14), which
queries the pruning policy 7 to decide whether to
compute the several values (i, associated with a
span (7, k). Note that width-1 and width-n spans are
always kept because all valid parses require them.

3 End-to-end training

Bodenstab et al. (2011) train their pruning policy as a
supervised classifier of spans. They derive direct su-
pervision as follows: try to keep a span if it appears in
the gold-standard parse, and prune it otherwise. They
found that using an asymmetric weighting scheme
helped find the right balance between false positives
and false negatives. Intuitively, failing to prune is
only a slight slowdown, whereas pruning a good item
can ruin the accuracy of the parse.

' As is common practice, we assume the grammar has been
binarized. We focus on pre-trained grammars, leaving co-
adaptation of the grammar and pruning policy to future work. As
indicated at lines 6 and 19, a rule’s score may be made to depend
on the context in which that rule is applied (Finkel et al., 2008),
although the pre-trained grammars in our present experiments
are ordinary PCFGs for which this is not the case.

264

Algorithm 1 PARSE: Weighted CKY with pruning

1: Input: grammar G, sentence w, policy 7
Output: completed chart 3, derivation d
> Initialize chart
:3:=0
cfork:=1ton:
for x such that (x — wy,) € rules(G) :
s:=G(z = w | w, k)
ifs> Bk 150
Br—1ka =S
witness(k—1,k,x) := (k—1, k, wy)
10: for width :=2ton :
11:  fori:=0ton — width:
12: k :=1 4 width

D A T

> Current span is (i, k)

13: > Policy determines whether to fill in this span
14: if m(w, i, k) = prune :

15: continue

16: > Fill in span by considering each split point j
17: forj:=i+1tok—1:

18: for (v — y z) € rules(G) :

19: 5= Bijy-Bikz-G(x = y 2z | w,i,5,k)
20: if s > Gy -

21: Bike := S

22: witness(i, k,x) := (j,y, 2)

23: d := follow backpointers from (0,n,ROOT)
24: return (3,d)

Our end-to-end training approach improves upon
asymmetric weighting by jointly evaluating the se-
quence of pruning decisions, measuring its effect on
the test-time evaluation metric by actually running
pruned CKY (Alg. 1). To estimate the value of a
pruning policy 7, we call PARSE(G, w(®), 7) on each
training sentence w (), and apply the reward func-
tion, » = accuracy — A -runtime. The empirical value
of a policy is its average reward on the training set:

m

Y E [r(PARSE(G,w(i),w))}

=1

R(m) = )

1
m
The expectation in the definition may be dropped
if PARSE, 7, and r are all deterministic, as in our
setting.? Our definition of r depends on the user
parameter A > 0, which specifies the amount of
accuracy the user would sacrifice to save one unit of

Parsers may break ties randomly or use Monte Carlo meth-
ods. The reward function r can be nondeterministic when it
involves wallclock time or human judgments.



runtime. Training under a range of values for \ gives
rise to policies covering a number of operating points
along the Pareto frontier of accuracy and runtime.
End-to-end training gives us a principled way
to decide what to prune. Rather than artificially
labeling each pruning decision as inherently good
or bad, we evaluate its effect in the context of the
particular sentence and the other pruning decisions.
Actions that prune a gold constituent are not equally
bad—some cause cascading errors, while others
are “worked around” in the sense that the grammar
still selects a mostly-gold parse. Similarly, actions
that prune a non-gold constituent are not equally
good—some provide more overall speedup (e.g.,
pruning narrow constituents prevents wider ones
from being built), and some even improve accuracy
by suppressing an incorrect but high-scoring parse.
More generally, the gold vs. non-gold distinction is
not even available in NLP tasks where one is pruning
potential elements of a latent structure, such as an
alignment (Xu et al., 2013) or a finer-grained parse
(Matsuzaki et al., 2005). Yet our approach can still
be used in such settings, by evaluating the reward on
the downstream task that the latent structure serves.
Past work on optimizing end-to-end performance
is discussed in §8. One might try to scale these tech-
niques to learning to prune, but in this work we take
a different approach. Given a policy, we can easily
find small ways to improve it on specific sentences by
varying individual pruning actions (e.g., if 7 currently
prunes a span then try keeping it instead). Given a
batch of improved action sequences (trajectories), the
remaining step is to search for a policy which pro-
duces the improved trajectories. Conveniently, this
can be reduced to a classification problem, much like
the asymmetric weighting approach, except that the
supervised labels and misclassification costs are not
fixed across iterations, but rather are derived from
interaction with the environment (i.e., PARSE and
the reward function). This idea is formalized as a
learning algorithm called Locally Optimal Learning
to Search (Chang et al., 2015b), described in §4.
The counterfactual interventions we require—
evaluating how reward would change if we changed
one action—can be computed more efficiently using
our novel algorithms (§5) than by the default strategy
of running the parser repeatedly from scratch. The
key is to reuse work among evaluations, which is
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possible because LOLS only makes tiny changes.

4 Learning algorithm

Pruned inference is a sequential decision process.
The process begins in an initial state sg. In pruned
CKY, sg specifies the state of Alg. 1 at line 10, after
the chart has been initialized from some selected
sentence. Next, the policy is invoked to choose
action ap = m(sg)—in our case at line 14—which
affects what the parser does next. Eventually the
parser reaches some state s; from which it calls
the policy to choose action a; = 7(s1), and so on.
When the policy is invoked at state s, it selects
action a; based on features extracted from the current
state s;—a snapshot of the input sentence, grammar
and parse chart at time ¢.> We call the state-action
sequence sg ag S1 aj - - - ST a trajectory, where 1" is
the trajectory length. At the final state, the reward
function is evaluated, r(sr).

The LOLS algorithm for learning a policy is given
in Alg. 2,* with a graphical illustration in Fig. 1. Ata
high level, LOLS alternates between evaluating and
improving the current policy ;.

The evaluation phase first samples a trajectory
from m;, called a roll-in: spagsiai---sp ~
ROLL-IN(7;). In our setting, sg is derived from a
randomly sampled training sentence, but the rest of
the trajectory is then deterministically computed
by m; given sg. Then we revisit each state s in the
roll-in (line 7), and try each available action a € A(s)
(line 9), executing m; thereafter—a rollout—to
measure the resulting reward 7[a] (line 10). Our
parser is deterministic, so a single rollout is an
unbiased, O-variance estimate of the expected reward.
This process is repeated many times, yielding a large
list Q; of pairs (s,7), where s is a state that was
encountered in some roll-in and 7 maps the possible
actions A(s) in that state to their measured rewards.

The improvement phase now trains a new policy
;41 to try to choose high-reward actions, seeking
a policy that will “on average” get high rewards
r{mi+1(s)]. Good generalization is important: the
policy must select high-reward actions even in states
s that are not represented in @i, in case they are

30ur experiments do not make use of the current state of the
chart. We discuss this decision in §8.

*Alg. 2 is simpler than in Chang et al. (2015b) because it
omits oracle rollouts, which we do not use in our experiments.
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Figure 1: Example LOLS iteration (lines 6—10). Roll-in with the current policy 7; (starting with a random sentence),
S0 ap 81 a1 - -+ S5 ~ ROLL-IN(7;). Perform interventions at each state along the roll-in (only ¢ = 2 is shown). The
intervention tries alternative actions at each state (e.g., ao = prune at so). We rollout after the intervention by following
7; until a terminal state, 53 a3 54 @4 S5 ~ ROLLOUT(7;, $2, 42), and evaluate the reward of the terminal state r(55).

Algorithm 2 LOLS algorithm for learning to prune.

71 := INITIALIZEPOLICY(. . .)
for i := 1 to number of iterations :
> Evaluate: Collect dataset for m;

1:

2:

3: >

4 Qi = 0

5:  for j := 1 to minibatch size :
6 Spap S ai -+ Sy ~ ROLL-IN(m;) > Sample
7 fort:=0to T—1:

8 > Intervene: Evaluate each action at sy

9: for a, ¢ A(s):
10 T¢[at] ~ ROLLOUT(7;, s¢, Gt)

11: Q;.append((s;, 7))
12: > Improve: Train with dataset aggregation

13 Tip1 < TRAIN (UZ:1 @k>

14: > Finalize: Pick the best policy over all iterations
15: return argmax; R(m;)

> Possible actions

encountered when running the new policy ;41 (or
when parsing test sentences). Thus, beyond just reg-
ularizing the training objective, we apply dataset ag-
gregation (Ross et al., 2011): we take the training set
to include not just @1 but also the examples from pre-
vious iterations (line 13). This also ensures that the
sequence of policies 71, 72, . . . will be “stable” (Ross
and Bagnell, 2011) and will eventually converge.

So line 13 seeks to find a good classifier m; 1
using a training set: a possible classifier 7 would
receive from each training example (s, 7) a reward
of 7[m(s)]. In our case, where A(s) = {keep, prune},
this cost-sensitive classification problem is equivalent
to training an ordinary binary classifier, after convert-
ing each training example (s, 7') to (s, argmax, 7[a])
and giving this example a weight of |7 keep — Tt prune|-
Our specific classifier is described in §6.

In summary, the evaluation phase of LOLS collects
training data for a cost-sensitive classifier, where the

266

inputs (states), outputs (actions), and costs are ob-
tained by interacting with the environment. LOLS
concocts a training set and repeatedly revises it, simi-
lar to the well-known Expectation-Maximization al-
gorithm. This enables end-to-end training of systems
with discrete decisions and nondecomposable reward
functions. LOLS gives us a principled framework for
deriving (nonstationary) “supervision” even in tricky
cases such as latent-variable inference (mentioned in
§3). LOLS has strong theoretical guarantees, though
in pathological cases, it may take exponential time to
converge (Chang et al., 2015b).

The inner loop of the evaluation phase performs
roll-ins, interventions and rollouts. Roll-ins ensure
that the policy is (eventually) trained under the dis-
tribution of states it tends to encounter at test time.
Interventions and rollouts force 7; to explore the ef-
fect of currently disfavored actions.

5 [Efficient rollouts

Unlike most applications of LOLS and related algo-
rithms, such as SEARN (Daumé III, 2006) and DAG-
GER (Ross et al., 2011), executing the policy is a
major bottleneck in training. Because our dynamic
programming parser explores many possibilities (un-
like a greedy, transition-based decoder) its trajecto-
ries are quite long. This not only slows down each
rollout: it means we must do more rollouts.

In our case, the trajectory has length T' =
% — 1 — n for a sentence of length n, where T'
is also the number of pruning decisions: one for each
span other than the root and width-1 spans. LOLS
must then perform 7" rollouts on this example. This
means that to evaluate policy 7;, we must parse each
sentence in the minibatch hundreds of times (e.g.,
189 for n =20, 434 for n=230, and 779 for n =40).

We can regard each policy 7 as defining a pruning



mask m, an array that maps each of the 7" spans
(i, k) to a decision m;y, (1 = keep, 0 = prune). Each
rollout tries flipping a different bit in this mask.

We could spend less time on each sentence by sam-
pling only some of its 7" rollouts (see §6). Regardless,
the rollouts we do on a given sentence are related: in
this section we show how to get further speedups by
sharing work among them. In §5.2, we leverage the
fact that rollouts will be similar to one another (differ-
ing by a single pruning decision). In §5.3, we show
that the reward of all 7" rollouts can be computed si-
multaneously by dynamic programming under some
assumptions about the structure of the reward func-
tion (described later). We found these algorithms to
be crucial to training in a “reasonable” amount of
time (see the empirical comparison in §7.2).

5.1 Background: Parsing as hypergraphs

It is convenient to present our efficient rollout algo-
rithms in terms of the hypergraph structure of Alg. 1
(Klein and Manning, 2001; Huang, 2008; Li and Eis-
ner, 2009; Eisner and Blatz, 2007). A hypergraph de-
scribes the information flow among related quantities
in a dynamic programming algorithm. Many compu-
tational tricks apply generically to hypergraphs.

A hypergraph edge e (or hyperedge) is a “gener-
alized arrow” e.head << e.Tail with one output and
a list of inputs. We regard each quantity ;5. , Mk,
or G(...) in Alg. 1 as the value of a correspond-
ing hypergraph vertex Bikas Tig, OF G( ..). Thus,
value(v) = v for any vertex v. Each i s value is
computed by the policy 7 or chosen by a rollout in-
tervention. Each G’s value is given by the grammar.

Values of ﬂzkx by contrast, are computed at
line 19 if £ — ¢ > 1. To record the dependence of
Biks on other quantities, our hypergraph includes
the hyperedge fir. <= (Bijy, Bjkz» Mk, ) for each
0<i<j<k<mnand (x—yz)€rules(Q),
where ¢ denotes the vertex G(z — y z | w, i, j, k).

If £ — i = 1, then values of ;.. are instead com-
puted at line 6, which does not access any other (3
values or the pruning mask. Thus our hypergraph in-
cludes the hyperedge v;x, << (¢) whenever i = k—1,
0<i<k<n,and (z — wg) € rules(G), with
=Gz = w | w, k).

With this setup, the value [3;1, is the maximum
score of any derivation of vertex ﬂlkm (a tree rooted at
Bika:a representing a subderivation), where the score
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of a derivation is the product of its leaf values. Alg. 1
computes it by considering hyperedges Biny =T
and the previously computed values of the vertices in
the tail 7". For a vertex 0, we write In(v) and Out(?)
for its sets of incoming and outgoing hyperedges.
Our algorithms follow these hyperedges implicitly,
without the overhead of materializing or storing them.

5.2 Change propagation (CP)

Change propagation is an efficient method for incre-
mentally re-evaluating a computation under a change
to its inputs (Acar and Ley-Wild, 2008; Filardo and
Eisner, 2012). In our setting, each roll-in at Alg. 2
line 6 evaluates the reward 7(PARSE(G, x;, 7)) from
(1), which involves computing an entire parse chart
via Alg. 1. The inner loop at line 10 performs 7" in-
terventions per roll-in, which ask how reward would
have changed if one bit in the pruning mask m had
been different. Rather than reparsing from scratch
(T times) to determine this, we can simply adjust the
initial roll-in computation (71" times).

CP is efficient when only a small fraction of the
computation needs to be adjusted. In principle, flip-
ping a single pruning bit can change up to 50% of the
chart, so one might expect the bookkeeping overhead
of CP to outweigh the gains. In practice, however,
90% of the interventions change < 10% of the 8
values in the chart. The reason is that 3;;, is a maxi-
mum over many quantities, only one of which “wins.”
Changing a given f3;;, rarely affects this maximum,
and so changes are unlikely to propagate from vertex
Bijy to Bigs. Since changes are not very contagious,
the “epidemic of changes” does not spread far.

Alg. 3 provides pseudocode for updating the
highest-scoring derivation found by Alg. 1. We
remark that the RECOMPUTE is called only when we
flip a bit from keep to prune, which removes hyper-
edges and potentially decreases vertex values. The
reverse flip only adds hyperedges, which increases
vertex values via a running max (lines 12-14).

After determining the effect of flipping a bit,
we must restore the original chart before trying a
different bit (the next rollout). The simplest approach
is to call Alg. 3 again to flip the bit back.’

>Qur implementation uses a slightly faster method which
accumulates an “undo list” of changes that it makes to the chart
to quickly revert the modified chart to the original roll-in state.



Algorithm 3 Change propagation algorithm

1: Global: Alg. 1’s vertex values/witnesses (roll-in)
2: procedure CHANGE(v, v)

3: > Change the value of a leaf vertex ¥ to v
value(v) := v ; witness(0) = LEAF

Q :=0; Q.push(v) > Work queue (“agenda”)
while Q # 0 :

> Propagate until convergence

D PR AN A

@ := Q.pop() > Narrower constituents first
if witness(1) = NULL : > Value is unknown
RECOMPUTE(1) > Get value & witness
10: for ¢ € Out(w) : > Propagate new value of i
11: 5:=e.head; s:= ]y ceru value(i')
12: if s > value(s) : > Increase value
13: value(s) := s; witness(s) :==e
14: Q.push($)
15: else if witness(s) = e and s < value(s):
16: witness($) :=NULL > Value may decrease
17: Q.push(s) > s0, recompute upon pop

18: procedure RECOMPUTE(S)

19:  for e € In($) : > Max over incoming hyperedges

20: 5 = [ Luce an value(it)
21: if s > value(s) :
22: value($) = s; witness(s) = e

5.3 Dynamic programming (DP)

The naive rollout algorithm runs the parser 7' times—
once for each variation of the pruning mask. The
reader may be reminded of the finite difference ap-
proximation to the gradient of a function, which also
measures the effects from perturbing each input value
individually. In fact, for certain reward functions, the
naive algorithm can be precisely regarded as comput-
ing a gradient—and thus we can use a more efficient
algorithm, back-propagation, which finds the entire
gradient vector of reward as fast (in the big-O sense)
as computing the reward once. The overall algorithm
is O(|E| + T') where |E)| is the total number of hy-
peredges, whereas the naive algorithm is O(|E'|-T')
where |E’| < |E| is the maximum number of hyper-
edges actually visited on any rollout.

What accuracy measure must we use? Let (d) de-
note the recall of a derivation d—the fraction of gold
constituents that appear as vertices in the derivation.
A simple accuracy metric would be 1-best recall, the
recall r(g) of the highest-scoring derivation d that
was not pruned. In this section, we relax that to ex-
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pected recall,’ 7 =Y, p(d)r(d). Here we interpret
the pruned hypergraph’s values as an unnormalized
probability distribution over derivations, where the
probability p(d) = p(d)/Z of a derivation is propor-
tional to its score p(d) = [ [;cieaves(a) value(t).
Though 7 is not quite our evaluation metric, it
captures more information about the parse forest, and
so may offer some regularizing effect when used in a
training criterion (see §7.1). In any case, 7 is close to
r(@ when probability mass is concentrated on a few
derivations, which is common with heavy pruning.
We can re-express 7 as 7/Z, where

P =Y p(d)r(d) Z=Y"pd) @
d d

These can be efficiently computed by dynamic pro-
gramming (DP), specifically by a variant of the inside
algorithm (Li and Eisner, 2009). Since p(d) is a prod-
uct of rule weights and pruning mask bits at d’s leaves
(§5.1), each appearing at most once, both 7 and Z
vary linearly in any one of these inputs provided that
all other inputs are held constant. Thus, the exact
effect on 7 or Z of changing an input m;; can be
found from the partial derivatives with respect to it.
In particular, if we increased m;, by A € {—1,1}
(to flip this bit), the new value of ¥ would be exactly

P+ A - OF Oma,

Z+ N 0Z]0my, )

It remains to compute these partial derivatives. All
partials can be jointly computed by back-propagation,
which equivalent to another dynamic program known
as the outside algorithm (Eisner, 2016).

The inside algorithm only needs to visit the |E’|
unpruned edges, but the outside algorithm must also
visit some pruned edges, to determine the effect of
“unpruning” them (changing their m;; input from 0
to 1) by finding 0r/9my, and 0Z/9m;x. On the
other hand, these partials are 0 when some other
input to the hyperedge is 0. This case is common
when the hypergraph is heavily pruned (|E'| < |E|),
and means that back-propagation need not descend
further through that hyperedge.

®In theory, we could anneal from expected to 1-best recall
(Smith and Eisner, 2006). We experimented extensively with
annealing but found it to be too numerically unstable for our
purposes, even with high-precision arithmetic libraries.



Note that the DP method computes only the accu-
racies of rollouts—not the runtimes. In this paper, we
will combine DP with a very simple runtime measure
that is trivial to roll out (see §7). An alternative would
be to use CP to roll out the runtimes. This is very
efficient: to measure just runtime, CP only needs to
update the record of which constituents or edges are
built, and not their scores, so the changes are easier
to compute than in §5.2, and peter out more quickly.

6 Parser details’

Setup: We use the standard English parsing setup:
the Penn Treebank (Marcus et al., 1993) with the
standard train/dev/test split, and standard tree normal-
ization.? For efficiency during training, we restrict
the length of sentences to < 40. We do not restrict
the length of test sentences. We experiment with
two grammars: coarse, the “no frills” left-binarized
treebank grammar, and fine, a variant of the Berkeley
split-merge level-6 grammar (Petrov et al., 20006) as
provided by Dunlop (2014, ch. 5). The parsing algo-
rithms used during training are described in §5. Our
test-time parsing algorithm uses the left-child loop
implementation of CKY (Dunlop et al., 2010). All
algorithms allow unary rules (though not chains). We
evaluate accuracy at test time with the F; score from
the official EVALB script (Sekine and Collins, 1997).

Training: Note that we never retrain the grammar
weights—we train only the pruning policy. To TRAIN
our classifiers (Alg. 2 line 13), we use Lo-regularized
logistic regression, trained with L-BFGS optimiza-
tion. We always rescale the example weights in the
training set to sum to 1 (otherwise as LOLS proceeds,
dataset aggregation overwhelms the regularizer).
For the baseline (defined in next section), we
determine the regularization coefficient by sweeping
{2~ 9=12 9=13 9=14 9=151 and picking the
best value (27!%) based on the dev frontier. We
re-used this regularization parameter for LOLS. The
number of LOLS iterations is determined by a 6-day
training-time limit” (meaning some jobs run many

"Code for experiments is available at http://github.
com/timvieira/learning-to-prune.

8Data train/dev/test split (by section) 2-21 / 22 / 23. Nor-
malization operations: Remove function tags, traces, spurious
unary edges (X — X), and empty subtrees left by other opera-

tions. Relabel ADVP and PRT | ADVP tags to PRT.
°On the 7" day, LOLS rested and performance was good.

269

fewer iterations than others). For LOLS minibatch
size we use 10K on the coarse grammar and 5K on
the fine grammar. At line 15 of Alg. 2, we return the
policy that maximized reward on development data,
using the reward function from training.

Features: We use similar features to Bodenstab et
al. (2011), but we have removed features that depend
on part-of-speech tags. We use the following 16
feature templates for span (i, k) with 1 < k—i < N:
bias, sentence length, boundary words, conjunc-
tions of boundary words, conjunctions of word
shapes, span shape, width bucket. Shape features
map a word or phrase into a string of character
classes (uppercase, lowercase, numeric, spaces);
we truncate substrings of identical classes to
length two; punctuation chars are never modified
in any way. Width buckets use the following
partition: 2,3,4,5,[6,10],[11,20],[21,00). We
use feature hashing (Weinberger et al., 2009) with
MurmurHash3 (Appleby, 2008) and project to
222 features. Conjunctions are taken at positions
(t—1,4), (k,k+1),(i—1,k+1) and (i, k). We use
special begin and end symbols when a template
accesses positions beyond the sentence boundary.
Hall et al. (2014) give examples motivating our
feature templates and show experimentally that they
are effective in multiple languages. Boundary words
are strong surface cues for phrase boundaries. Span
shape features are also useful as they (minimally)
check for matched parentheses and quotation marks.

7 Experimental design and results

Reward functions and surrogates: FEach user has
a personal reward function. In this paper, we choose
to specify our frue reward as accuracy — A - runtime,
where accuracy is given by labeled F; percentage
and runtime by mega-pushes (mpush), millions of
calls per sentence to lines 6 and 19 of Alg. 1, which
is in practice proportional to seconds per sentence
(correlation > (.95) and is more replicable. We
evaluate accordingly (on test data)—but during LOLS
training we approximate these metrics. We compare:

e rcp (fast): Use change propagation (§5.2) to
compute accuracy on a sentence as F; of just that
sentence, and to approximate runtime as ||3||o,



the number of constituents that were built.'°

e rpp (faster): Use dynamic programming (§5.3)
to approximate accuracy on a sentence as ex-
pected recall.'! This time we approximate run-
time more crudely as ||m||o, the number of non-
zeros in the pruning mask for the sentence (i.e.,
the number of spans whose constituents the pol-
icy would be willing to keep if they were built).

We use these surrogates because they admit efficient
rollout algorithms. Less important, they preserve the
training objective (1) as an average over sentences.
(Our true F; metric on a corpus cannot be computed
in this way, though it could reasonably be estimated
by averaging over minibatches of sentences in (1).)

Controlled experimental design: Our baseline
system is an adaptation of Bodenstab et al. (2011)
to learning-to-prune, as described in §3 and §6. Our
goal is to determine whether such systems can be
improved by LOLS training. We repeat the following
design for both reward surrogates (rcp and rpp) and
for both grammars (coarse and fine).

@® We start by training a number of baseline mod-
els by sweeping the asymmetric weighting pa-
rameter. For the coarse grammar we train 8 such
models, and for the fine grammar 12.

@ For each baseline policy, we estimate a value of
A for which that policy is optimal (among base-
line policies) according to surrogate reward.'?

""When using rcp, we speed up LOLS by doing < 2n rollouts
per sentence of length n. We sample these uniformly without
replacement from the 7" possible rollouts (§5), and compensate
by upweighting the resulting training examples by 7'/(2n).

"' Considering all nodes in the binarized tree, except for the
root, width-1 constituents, and children of unary rules.

12We estimate \ by first fitting a parametric model y; =
h(;) £ Ymax - sigmoid(a - log(x; + ¢) + b) to the baseline
runtime-accuracy measurements on dev data (shown in green in
Fig. 2) by minimizing mean squared error. We then use the fitted
curve’s slope k' to estimate each \; = h’(xz;), where z; is the
runtime of baseline 7. The resulting choice of reward function
y — A; - T increases along the green arrow in Fig. 2, and is indeed
maximized (subject to y < h(x), and in the region where h
is concave) at x = x;. As a sanity check, notice since \; is a
derivative of the function y = h(z), its units are in units of y
(accuracy) per unit of « (runtime), as appropriate for use in the
expression y — A; - . Indeed, this procedure will construct the
same reward function regardless of the units we use to express
x. Our specific parametric model & is a sigmoidal curve, with
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® For each baseline policy, we run LOLS with the
same surrogate reward function (defined by \)
for which that baseline policy was optimal. We
initialize LOLS by setting 7o to the baseline pol-
icy. Furthermore, we include the baseline pol-
icy’s weighted training set Q)¢ in the | at line 13.
Fig. 2 shows that LOLS learns to improve on the
baseline, as evaluated on development data.

@ But do these surrogate reward improvements
also improve our true reward? For each baseline
policy, we use dev data to estimate a value of A
for which that policy is optimal according to our
true reward function. We use blind test data to
compare the baseline policy to its corresponding
LOLS policy on this true reward function, testing
significance with a paired permutation test. The
improvements hold up, as shown in Fig. 3.

The rationale behind this design is that a user who
actually wishes to maximize accuracy — A-runtime, for
some specific A, could reasonably start by choosing
the best baseline policy for this reward function, and
then try to improve that baseline by running LOLS
with the same reward function. Our experiments
show this procedure works for a range of A values.

In the real world, a user’s true objective might in-
stead be some nonlinear function of runtime and accu-
racy. For example, when accuracy is “good enough,”
it may be more important to improve runtime, and
vice-versa. LOLS could be used with such a non-
linear reward function as well. In fact, a user does
not even have to quantify their global preferences
by writing down such a function. Rather, they could
select manually among the baseline policies, choos-
ing one with an attractive speed-accuracy tradeoff,
and then specify A to indicate a local direction of de-
sired improvement (like the green arrows in Fig. 2),
modifying this direction periodically as LOLS runs.

7.1 Discussion

As previous work has shown, learning to prune gives
us excellent parsers with less than < 2% overhead

accuracy — Ymax asymptotically as runtime — oo. It obtains
an excellent fit by placing accuracy and runtime on the log-
logit scale—that is, log(z; + ¢) and logit(y; /Ymax) transforms
are used to convert our bounded random variables x; and y; to
unbounded ones—and then assuming they are linearly related.
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Figure 2: Depiction of LOLS pushing out the frontier of surrogate objectives, rcp (left) and rpp (right), on dev data with
coarse (top) and fine (bottom) grammars. Green elements are associated with the baseline and purple elements with LOLS.
@ The green curve shows the performance of the baseline policies. @ For each baseline policy, a green arrow points
along the gradient of surrogate reward, as defined by the X that would identify that baseline as optimal. (In case a user
wants a different value of A but is unwilling to search for a better baseline policy outside our set, the green cones around
each baseline arrow show the range of As that would select that baseline from our set.) @ The LOLS trajectory is shown
as a series of purple points, and the purple arrow points from the baseline policy to the policy selected by LOLS with
early stopping (§6). This improves surrogate reward if the purple arrow has a positive inner product with the green arrow.
LOLS cannot move exactly in the direction of the green arrow because it is constrained to find points that correspond
to actual parsers. Typically, LOLS ends up improving accuracy, either along with runtime or at the expense of runtime.

for deciding what to prune (i.e., pruning feature ex-
traction and span classification). Even the baseline
pruner has access to features unavailable to the gram-
mar, and so it learns to override the grammar, improv-
ing an unpruned coarse parser’s accuracy from 61.1
to as high as 70.1% F; on test data (i.e., beneficial
search error). It is also 8.1x faster!'> LOLS simply
does a better job at figuring out where to prune, rais-
ing accuracy 2.1 points to 72.2 (while maintaining
a 7.4x speedup). Where pruning is more aggressive,

3We measure runtime as best of 10 runs (recommended by
Dunlop (2014)). All parser timing experiments were performed
on a Linux laptop with the following specs: Intel® Core™
5-2540M 2.60GHz CPU, 8GB memory, 32K /256 K /3072K
L1/L2/Ls cache. Code is written in the Cython language.
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LOLS has even more impact on accuracy.

Even on the fine grammar, where there is less room
to improve accuracy, the most accurate LOLS system
improves an unpruned parser by +0.16% F; with
a 8.6x speedup. For comparison, the most accurate
baseline drops —0.03% F; with a 9.7x speedup.

With the fine grammar, we do not see much im-
provement over the baseline in the accuracy > 85
regions. This is because the supervision specified
by asymmetric weighting is similar to what LOLS
surmises via rollouts. However, in lower-accuracy
regions we see that LOLS can significantly improve
reward over its baseline policy. This is because the
baseline supervision does not teach which plausible
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Figure 3: Test set results on coarse (top) and fine (bottom) grammars. Each curve or column represents a different train-
ing regimen. Accuracy is measured in F; percentage; runtime is measured by millions of hyperedges built per sentence.
@ Here, the green arrows point in the direction of true reward. Dashed lines connect each green baseline point to the
two LOLS-improved points. Starred points and bold values indicate a significant improvement over the baseline reward
(paired permutation test, p < 0.05). In no case was there a statistically significant decrease. In 4 cases (marked with
‘") the policy chosen by early stopping was the initial baseline policy. We also report words per second x 10% (kw/s).

constituents are “safest” to prune, nor can it learn
strategies such as “skip all long sentences.” We dis-
cuss why LOLS does not help as much in the high
accuracy regions further in §7.3.

In a few cases in Fig. 2, LOLS finds no policy that
improves surrogate reward on dev data. In these
cases, surrogate reward does improve slightly on
training data (not shown), but early stopping just
keeps the initial (baseline) policy since it is just as
good on dev data. Adding a bit of additional random
exploration might help break out of this initialization.

Interestingly, the rpp LOLS policies find higher-
accuracy policies than the corresponding rcp poli-
cies, despite a greater mismatch in surrogate accuracy
definitions. We suspect that rpp’s approach of trying
to improve expected accuracy may provide a useful
regularizing effect, which smooths out the reward
signal and provides a useful bias (§5.3).

The most pronounced qualitative difference due
to LOLS training is substantially lower rates of parse
failure in the mid- to high- A-range on both grammars
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(not shown). Since LOLS does end-to-end training, it
can advise the learner that a certain pruning decision
catastrophically results in no parse being found.

7.2 Training speed and convergence

Part of the contribution of this paper is faster algo-
rithms for performing LOLS rollouts during training
(§5). Compared to the naive strategy of running the
parser from scratch 7' times, rcp achieves speedups
of 4.9-6.6x on the coarse grammar and 1.9-2.4x on
the fine grammar. rpp is even faster, 10.4-11.9x on
coarse and 10.5-13.8x on fine. Most of the speedup
comes from longer sentences, which take up most
of the runtime for all methods. Our new algorithms
enable us to train on fairly long sentences (< 40).
We note that our implementations of rcp and rpp are
not as highly optimized as our test-time parser, so
there may be room for improvement.

Orthogonal to the cost per rollout is the number
of training iterations. LOLS may take many steps
to converge if trajectories are long (i.e., 1" is large)



because each iteration of LOLS training attempts to
improve the current policy by a single action. In our
setting, T is quite large (discussed extensively in §5),
but we are able to circumvent slow convergence by
initializing the policy (via the baseline method). This
means that LOLS can focus on fine-tfuning a policy
which is already quite good. In fact, in 4 cases, LOLS
did not improve from its initial policy.

We find that when A is large—the cases where
we get meaningful improvements because the initial
policy is far from locally optimal—LOLS steadily
and smoothly improves the surrogate reward on both
training and development data. Because these are
fast parsers, LOLS was able to run on the order of
10 (fine grammar) or 100 (coarse grammar) epochs
within our 6-day limit; usually it was still improving
when we terminated it. By contrast, for the slower
and more accurate small-\ parsers (which completed
fewer training epochs), LOLS still improves surrogate
reward on training data, but without systematically
improving on development data—often the reward
on development fluctuates, and early stopping simply
picks the best of this small set of “random” variants.

7.3 Understanding the LOLS training signal

In §3, we argued that LOLS gives a more appropriate
training signal for pruning than the baseline method
of consulting the gold parse, because it uses rollouts
to measure the full effect of each pruning decision in
the context of the other decisions made by the policy.

To better understand the results of our previous
experiments, we analyze how often a rollout does
determine that the baseline supervision for a span is
suboptimal, and how suboptimal it is in those cases.

We specifically consider LOLS rollouts that eval-
uate the rcp surrogate (because rpp is a cruder ap-
proximation to true reward). These rollouts @Z tell us
what actions LOLS is trying to improve in its current
policy 7; for a given A, although there is no guarantee
that the learner in §4 will succeed at classifying @Z
correctly (due to limited features, regularization, and
the effects of dataset aggregation).

We define regret of the baseline oracle. Let
best(s) = argmax,roLLOUT(T, S, a) and regret(s) =
(roLLoUT(T, S, best(s) — rorLout(m, s, gold(s)))).
Note that regret(s) >0 for all s, and let diff(s) be the
event that regret(s) > 0 strictly. We are interested
in analyzing the expected regret over all gold and
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non-gold spans, which we break down as
E[regret] = p(diff)

- (p(gold | diff) - E|regret | gold, diff]

+ p(—gold | diff) - E[regret | - gold, diff] )

“4)

where expectations are taken over s ~ ROLL-IN(T).

Empirical analysis of regret: To show where the
benefit of the LOLS oracle comes from, Fig. 4 graphs
the various quantities that enter into the definition (4)
of baseline regret, for different 7, A, and grammar.
The LOLS oracle evolves along with the policy ,
since it identifies the best action given m. We thus
evaluate the oracle baseline against two LOLS oracles:
the one used at the start of LOLS training (derived
from the initial policy 7r; that was trained on baseline
supervision), and the one obtained at the end (derived
from the LOLS-trained policy m, selected by early
stopping). These comparisons are shown by solid
and dashed lines respectively.

Class imbalance (black curves): In all graphs, the
aggregate curves primarily reflect the non-gold spans,
since only 8% of spans are gold.

Gold spans (gold curves): The top graphs show
that a substantial fraction of the gold spans should
be pruned (whereas the baseline tries to keep them
all), although the middle row shows that the benefit
of pruning them is small. In most of these cases,
pruning a gold span improves speed but leaves accu-
racy unchanged—because that gold span was missed
anyway by the highest-scoring parse. Such cases be-
come both more frequent and more beneficial as A
increases and we prune more heavily. In a minority
of cases, however, pruning a gold span also improves
accuracy (through beneficial search error).

Non-gold spans (purple curves): Conversely, the
top graphs show that a few non-gold spans should
be kept (whereas the baseline tries to prune them
all), and the middle row shows a large benefit from
keeping them. They are needed to recover from catas-
trophic errors and get a mostly-correct parse.

Coarse vs. fine (left vs. right): The two gram-
mars differ mainly for small A, and this difference
comes especially from the top row. With a fine gram-
mar and small )\, the baseline parses are more accu-
rate, so LOLS has less room for improvement: fewer



gold spans go unused, and fewer non-gold spans are
needed for recovery.

Effect of \: Aggressive pruning (large A) reduces
accuracy, so its effect on the top row is similar to
that of using a coarse grammar. Aggressive pruning
also has an effect on the middle row: there is more
benefit to be derived from pruning unused gold
spans (surprisingly), and especially from keeping
those non-gold spans that are helpful (presumably
they enable recovery from more severe parse errors).
These effects are considerably sharper with rpp
reward (not shown here), which more smoothly
evaluates the entire weighted pruned parse forest
rather than trying to coordinate actions to ensure
a good single 1-best tree; the baseline oracle is
excellent at choosing the action that gets the better
forest when the forest is mostly present (small \) but
not when it is mostly pruned (large \).

Effect on retraining the policy: The black lines
in the bottom graphs show the overall regret (on train-
ing data) if we were to perfectly follow the baseline
oracle rather than the LOLS oracle. In practice, re-
training the policy to match the oracle will not match
it perfectly in either case. Thus the baseline method
has a further disadvantage: when it trains a policy, its
training objective weights all gold or all non-gold ex-
amples equally, whereas LOLS invests greater effort
in matching the oracle on those states where doing
so would give greater downstream reward.

8 Related work

Our experiments have focused on using LOLS to im-
prove a reasonable baseline. Fig. 5 shows that our
resulting parser fits reasonably among state-of-the-art
constituency parsers trained and tested on the Penn
Treebank. These parsers include a variety of tech-
niques that improve speed or accuracy. Many are
quite orthogonal to our work here—e.g., the SpMV
method (which is necessary for Bodenstab’s parser
to beat ours) is a set of cache-efficient optimizations
(Dunlop, 2014) that could be added to our parser
(just as it was added to Bodenstab’s), while Hall et al.
(2014) and Fernandez-Gonzalez and Martins (2015)
replace the grammar with faster scoring models that
have more conditional independence. Overall, other
fast parsers could also be trained using LOLS, so that
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Figure 4: Comparison of the LOLS and baseline training
signals based on the regret decomposition in Eq. (4) as
we vary m, A, and grammar. Solid lines show where
the baseline oracle is suboptimal on its own system 7y
and dashed lines show where it is suboptimal on the
LOLS-improved system 7,. Each plot shows an overall
quantity in black as well as that quantity broken down
by gold and non-gold spans. Top: Fraction of states in
which oracles differ. Middle: Expected regret per state in
which oracles differ. Bottom: Expected regret per state.
See §7.3 for discussion.

they quickly find parses that are accurate, or at least
helpful to the accuracy of some downstream task.
Pruning methods'# can use classifiers not only to
select spans but also to prune at other granularities
(Roark and Hollingshead, 2008; Bodenstab et al.,
2011). Prioritization methods do not prune substruc-
tures, but instead delay their processing until they
are needed—if ever (Caraballo and Charniak, 1998).
This paper focuses on learning pruning heuristics
that have trainable parameters. In the same way,
Stoyanov and Eisner (2012) learn to turn off un-
needed factors in a graphical model, and Jiang et
al. (2012) and Berant and Liang (2015) train prioriti-
zation heuristics (using policy gradient). In both of
those 2012 papers, we explicitly sought to maximize
accuracy — A - runtime as we do here. Some previ-
ous “coarse-to-fine”” work does not optimize heuris-
14We focus here on parsing, but pruning is generally useful

in structured prediction. E.g., Xu et al. (2013) train a classifier
to prune (latent) alignments in a machine translation system.



System F1  words/sec

Dyer et al. (2016a); Dyer et al. (2016b) 93.3 -
Zhu et al. (2013) 90.4 1290
Fernandez-Gonzalez and Martins (2015)  90.2 957
Petrov and Klein (2007) 90.1 169
Crabbé (2015) 90.0 2150
Our most accurate parser 88.9 218
Bodenstab (2012) w/ SpMV 88.8 1581
Bodenstab (2012) w/o SpMV 88.7 188
Hall et al. (2014) 88.6 12

Figure 5: Comparison among fast and accurate parsers.
Runtimes are computed on different machines and parsers
are implemented in different programming languages, so
runtime is not a controlled comparison.

tics directly but rather derives heuristics for pruning
(Charniak et al., 2006; Petrov and Klein, 2007; Weiss
and Taskar, 2010; Rush and Petrov, 2012) or prioriti-
zation (Klein and Manning, 2003; Pauls and Klein,
2009) from a coarser version of the model. Com-
bining these automatic methods with LOLS would
require first enriching their heuristics with trainable
parameters, or parameterizing the coarse-to-fine hier-
archy itself as in the “feature pruning” work of He et
al. (2013) and Strubell et al. (2015).

Dynamic features are ones that depend on previous
actions. In our setting, a policy could in principle
benefit from considering the full state of the chart
at Alg. 1 line 14. While coarse-to-fine methods im-
plicitly use certain dynamic features, training with
dynamic features is a fairly new goal that is challeng-
ing to treat efficiently. It has usually been treated
with some form of simple imitation learning, using
a heuristic training signal much as in our baseline
(Jiang, 2014; He et al., 2013). LOLS would be a more
principled way to train such features, but for effi-
ciency, our present paper restricts to static features
that only access the state via 7(w, i, k). This permits
our fast CP and DP rollout algorithms. It also reduces
the time and space cost of dataset aggregation.'

LOLS attempts to do end-fo-end training of a
sequential decision-making system, without falling
back on black-box optimization tools (Och, 2003;
Chung and Galley, 2012) that ignore the sequential
structure. In NLP, sequential decisions are more
commonly trained with step-by-step supervision

'SLOLS repeatedly evaluates actions given (w, i, k). We con-
solidate the resulting training examples by summing their reward
vectors 7, so the aggregated dataset does not grow over time.
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(Kuhlmann et al., 2011), using methods such as local
classification (Punyakanok and Roth, 2001) or beam
search with early update (Collins and Roark, 2004).
LOLS tackles the harder setting where the only train-
ing signal is a joint assessment of the entire sequence
of actions. It is an alternative to policy gradient,
which does not scale well to our long trajectories
because of high variance in the estimated gradient
and because random exploration around (even good)
pruning policies most often results in no parse at all.
LOLS uses controlled comparisons, resulting in more
precise “credit assignment” and tighter exploration.
We would be remiss not to note that current
transition-based parsers—for constituency parsing
(Zhu et al., 2013; Crabbé, 2015) as well as depen-
dency parsing (Chen and Manning, 2014)—are both
incredibly fast and surprisingly accurate. This may
appear to undermine the motivation for our work, or
at least for its application to fast parsing.'® However,
transition-based parsers do not produce marginal
probabilities of substructures, which can be useful
features for downstream tasks. Indeed, the transition-
based approach is essentially greedy and so it may
fail on tasks with more ambiguity than parsing. Cur-
rent transition-based parsers also require step-by-step
supervision, whereas our method can also be used
to train in the presence of incomplete supervision,
latent structure, or indirect feedback. Our method
could also be used immediately to speed up dynamic
programming methods for MT, synchronous parsing,
parsing with non-context-free grammar formalisms,
and other structured prediction problems for which
transition systems have not (yet) been designed.

9 Conclusions

We presented an approach to learning pruning poli-
cies that optimizes end-to-end performance on a user-
specified speed-accuracy tradeoff. We developed two
novel algorithms for efficiently measuring how vary-
ing policy actions affects reward. In the case of pars-
ing, given a performance criterion and a good base-
line policy for that criterion, the learner consistently
manages to find a higher-reward policy. We hope this
work inspires a new generation of fast and accurate
structured prediction models with tunable runtimes.

1Of course, LOLS can also train transition-based parsers
(Chang et al., 2015a), or even vary their beam width dynamically.
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