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Abstract

This paper presents a novel hybrid genera-
tive/discriminative model of word segmenta-
tion based on nonparametric Bayesian meth-
ods. Unlike ordinary discriminative word seg-
mentation which relies only on labeled data,
our semi-supervised model also leverages a
huge amounts of unlabeled text to automat-
ically learn new “words”, and further con-
strains them by using a labeled data to seg-
ment non-standard texts such as those found
in social networking services.

Specifically, our hybrid model combines a
discriminative classifier (CRF; Lafferty et al.
(2001) and unsupervised word segmentation
(NPYLM; Mochihashi et al. (2009)), with a
transparent exchange of information between
these two model structures within the semi-
supervised framework (JESS-CM; Suzuki and
Isozaki (2008)). We confirmed that it can
appropriately segment non-standard texts like
those in Twitter and Weibo and has nearly
state-of-the-art accuracy on standard datasets
in Japanese, Chinese, and Thai.

1 Introduction

For any unsegmented language, especially East
Asian languages such as Chinese, Japanese and
Thai, word segmentation is almost an inevitable first
step in natural language processing. In fact, it is be-
coming increasingly important lately because of the
growing interest in processing user-generated me-
dia, such as Twitter and blogs. Texts in such media
are often written in a colloquial style that contains
many new words and expressions that are not present
in any existing dictionaries. Since such words are
theoretically infinite in number, we need to lever-
age unsupervised learning to automatically identify
them in corpora.

For this purpose, ordinary supervised learning is
clearly unsatisfactory; even hand-crafted dictionar-
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ies will not suffice because functional expressions
more complex than simple nouns need to be recog-
nized through their relationship with other words in
text, which also might be unknown in advance. Pre-
vious studies of this issue used character and word
information in the framework of supervised learning
(Kruengkrai et al., 2009; Sun et al., 2009; Sun and
Xu, 2011). However, they

(1) did not explicitly model new words, or

(2) did not give a seamless combination with dis-
criminative classifiers (e.g., they just used a
threshold to discriminate between known and
unknown words).

In contrast, unsupervised word segmentation
methods (Goldwater et al., 2006; Mochihashi et
al., 2009) use nonparametric Bayesian generative
models for word generation to infer the “words”
only from observations of raw input strings. These
methods work quite well and have been used not
only for tokenization but also for machine transla-
tion (Nguyen et al., 2010), speech recognition (Lee
and Glass, 2012; Heymann et al., 2014), and even
robotics (Nakamura et al., 2014).

However, from a practical point of view, such
purely unsupervised approaches do not suffice.
Since they only aim to maximize the probability of
the language model on the observed set of strings,
they sometimes yield word segmentations that are

BEREXEET, . CRELIESpartyInsR TRINE, £,
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BRI K NBEMinem R A ER20 8 RS, BXFIT
HIRIRIE I — R, XRE_REEE, BERET. . .
%5 LR Moobosk. WEBREERN., FIERET

SRR | AN R IR LR IHE
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Figure 1: Excerpt of Weibo tweets. It contains many “un-
known” words such as novel proper nouns, terms from
local dialects, etc., that cannot be covered by ordinary la-
beled data or dictionaries.
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different from human standards on low frequency
words.

To solve this problem, this paper describes a novel
combination of a nonparametric Bayesian gener-
ative model (NPYLM; Mochihashi et al. (2009))
and a discriminative classifier (CRF; Lafferty et al.
(2001)). This combination is based on a semi-
supervised framework called JESS-CM (Suzuki and
Isozaki, 2008), and it requires a nontrivial exchange
of information between these two models. In this
approach, the generative and discriminative models
will “teach each other” and yield a novel log-linear
model for word segmentation.

Experiments on standard datasets of Chinese,
Japanese, and Thai indicate that this hybrid model
achieves nearly state-of-the-art accuracy on standard
corpora, and, thanks to our nonparametric Bayesian
model of infinite vocabulary it can accurately seg-
ment non-standard texts like those in Twitter and
Weibo (the Chinese equivalent of Twitter) without
any human intervention.

This paper is organized as follows. Section 2 in-
troduces NPYLM which will be leveraged in the
framework of JESS-CM, described in Section 3.
Section 4 introduces our model, NPYCRF, and
the necessary exchange of information, while Sec-
tion 5 is devoted to experiments on datasets in Chi-
nese, Japanese, and Thai. We analyze the results
and discuss future directions of research on semi-
supervised learning in Section 6 and conclude in
Section 7.

2  Unsupervised Word Segmentation

To acquire new words from an observation consist-
ing of raw strings, a generative model of words
can be extremely useful for word segmentation.
Goldwater et al. (2006) showed that a bigram hi-
erarchical Dirichlet process (HDP) model based
on Gibbs sampling can effectively find “words” in
small corpora. In extending this work, Mochihashi
et al. (2009) proposed a nested Pitman-Yor language
model (NPYLM), a hierarchical Bayesian language
model, where character n-grams (actually, co-grams
(Mochihashi and Sumita, 2008)) are embedded in
word n-grams, and an efficient dynamic program-
ming algorithm for inference exists. Conceptually,
NPYLM posits that an infinite number of spellings,
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Character HPYLM ¢ SRR~
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Figure 2: The structure of NPYLM by a Chinese Restau-
rant Process representation (replicated from Mochihashi
etal. (2009)). The word and character HPYLM are drawn
as suffix trees; the character HPYLM is a base measure
for the word HPYLM, and the two are learned as a single
model. Each black customer is a count in HPYLM, and a
white customer is a latent proxy customer initiated from
each black customer: see Teh (2006) for details.

i.e., “words”, are probabilistically generated from
character n-grams, and a word unigram is drawn us-
ing the character n-grams as the base measure. Then
bigram and trigram distributions are hierarchically
generated and the final string is yielded from the
“word” n-grams, as shown in Figure 2.

Practically, NPYLM can be considered as a hi-
erarchical smoothing of the Bayesian n-gram lan-
guage model, HPYLM (Teh, 2006). In HPYLM, the
predictive distribution of a word w =w; given a his-
tory h=w;_(,,—1) - -~ wy—1 is expressed as
c(wlh)—d-tpy, 0+d-ty.

0+c(h) O+c(h)
where c¢(w|h) denotes the observed counts, 6 and d

are model parameters, and tp,, and tj. =) tp,, are
latent variables estimated in the model.

p(wlh) = p(wlh’) (1)

The probability of w given h is recur-
sively interpolated wusing a shorter history
P = wi_(n_g)---wi—1. If h is already empty

at the unigram level, NPYLM employs a back-off
distribution using character n-grams for p(w|h'):

po(w) = pler---cp) (2)
= [T5, pleiler - eia) - 3)

In this way, NPYLM can assign appropriate prob-
abilities to every possible sequence of segmenta-
tion and learn the word and character n-grams at
the same time by using a single generative model
(Mochihashi et al., 2009).

Semi-Markov view of NPYLM NPYLM formu-
lates unsupervised word segmentation as learning
with a semi-Markov model (Figure 3). Here, each



node corresponds to an inside probability «[t][k]!
that equals the probability of a substring ¢} =
c1 -+ ¢; with the last k& characters cﬁ_k 41 being a
word. This inside probability can be computed re-
cursively as follows:

L
aft]lk] = D p(ci_pialciTp_jp0) - olt=KIl] @)
j=1

Here, 1 < L <t—k is the maximum allowed length of
aword. With these inside probabilities, we can make
use of Markov Chain Monte Carlo (MCMC) method
with an efficient forward filtering-backward sam-
pling algorithm (Scott, 2002), namely a ‘“stochas-
tic Viterbi” algorithm to iteratively sample “words”
from raw strings in a completely unsupervised fash-
ion, while avoiding local minima.

Problems and Beyond Unsupervised word seg-
mentation with NPYLM works surprisingly well for
many languages (Mochihashi et al., 2009); however,
it has certain issues. First, since it optimizes the
performance of the language model, its segmenta-
tion does not always conform to human standards
and depends on subtle modeling decisions. For ex-
ample, NPYLM often separates inflectional suffixes
in Japanese like “%” in “W—%" from the rest of
the verb, when it is actually a part of the verb it-
self. Second, it can produce deficient segmenta-
tions for low-frequency words and the beginning or
ending of a string where the available information
comes from only one direction. These issues can
be alleviated by using naive semi-supervised learn-
ing method (Mochihashi et al., 2009) that simply

Figure 3: Semi-Markov model representation of NPYLM
(simplest case of segment length < 3). Each node corre-
sponds to a substring ending at time ¢, and its length & is
indexed by each row.

'While we consider only bigrams in this paper for simplic-
ity, the theory can be naturally extended to higher-order n-
grams. However, it requires quite a complicated implementa-
tion, and the expected gain in performance will not be large,
even if we use trigrams (Mochihashi et al., 2009).
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Figure 4: Semi-supervised learning of the same model
structure (HMM and CRF) with JESS-CM. Discrimina-
tive and generative potentials are given relative weights
1 : A\p, and added together in the log probability domain.

adds n-gram counts from supervised segmentations
in advance. However, this solution is not perfect
because these supervised counts will eventually be
overwhelmed by the unsupervised counts, because
the overall objective function remains unsupervised.

To resolve this issue, we must resort to an explicit
semi-supervised learning framework that combines
both discriminative and generative models. We used
JESS-CM (Suzuki and Isozaki, 2008), currently the
best such framework for this purpose, which we will
briefly introduce below.

3 Integration with a Discriminative Model

JESS-CM (Joint probability model Embedding style
Semi-Supervised Conditional Model) is a semi-
supervised learning framework that outperforms
other generative and log-linear models (Druck and
McCallum, 2010). In JESS-CM, the probability of a
label sequence y given an input sequence X is writ-
ten as follows:

)G
where pprsc and pgen are respectively the discrim-
inative and generative models, and A and © are their
corresponding parameters. Equation (5) is the prod-
uct of the experts, where each expert works as a
“constraint” to the other with a relative geometrical
interpolation weight 1: \g. If we take pprgc to be a
log-linear model like CRF (Lafferty et al., 2001):

ppisc(y|x) oc exp (25:1 Akfk(y7X)> , (6

Equation (5) can be also expressed as a log-
linear model with a new “feature function”

log paen(y, x):
p(ylx) o< exp <>\0 log pGEN (Y, X) + S iy A fr(y, X))
=exp(A- F(y,x)) . (7)

p(y|x) o< ppisc(y|x; A) pcen (¥, x; ©



Here, the parameter A = (X\g, A1, -+ , Ax) includes
the interpolation weight Ay and
F(Yax): (IngGEN(yvx)a fl(Y7X)> T

JESS-CM interleaves the optimization of A and ©
to maximize the objective function

p(Y1, Xu| X35 A, 0) = p(Y1| X35 A) - p(Xu; ©) (8)
where (X;,Y]) is the labeled dataset and X, is the
unlabeled dataset.

Suzuki and Isozaki (2008) conducted semi-
supervised learning on a combination of a CRF and
an HMM, as shown in Figure 4. Since CRF and
HMM have the same Markov model structure, they
interpolate two weights

Zszl Mefe(Ye, ye—1,%x) and
Ao log pGEN (yelye—1,%)

€
(10)

on the corresponding path, altenately

e fixing © and optimizing A of CRF on (X}, Y]),
and
e fixing A and optimizing © of HMM on X,,

until convergence, and thereby iteratively maximiz-
ing the two terms in (8).

Through this optimization, ppigc and pgen will
“teach each other” to make the feature log pgrn
more accurate, and further rectified by pprsc with
respect to the labeled data. Note that the interpo-
lation weight )\ is automatically computed through
this process.

4 Connecting Two Worlds: NPYCRF

We wish to integrate NPYLM and CRF, applying
semi-supervised learning via JESS-CM. Note that
Suzuki and Isozaki (2008) implicitly assumed that
the discriminative and generative models have the
same structure as shown in Figure 4. Since NPYLM
is a semi-Markov model as described in Section 2, a
naive approach would be to combine it with a semi-
Markov CRF (Sarawagi and Cohen, 2005) as the dis-
criminative model.

However, this strategy does not work well for
two reasons: First, since a semi-Markov CRF is a
model for transitions between segments, it cannot
deal with character-level transitions and thus per-
forms suboptimally on its own. In fact, our pre-
liminary supervised word segmentation experiments
showed a F; measure of around 95%, whereas a
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Figure 5: Equivalence of semi-Markov (left) and Markov
(right) potentials. The potential of substring “3H{#E”
(Tokyo prefecture) being a word on the left is equivalent
to the sum of potentials along the U-shaped path on the
right.

character-wise Markov CRF achieves >99%. Sec-
ond, the semi-Markov CRF was originally designed
to chunk at most a few words (Sarawagi and Cohen,
2005). However, in word segmentation of Japanese,
for example, we often encounter long proper nouns
or Katakana sequences that are more than ten char-
acters, requiring a huge amount of memory even for
a small dataset.

In this paper we instead transparently exchange
information between the Markov model (CRF) on
characters and the semi-Markov model (NPYLM)
on words to perform a semi-supervised learning on
different model structures. Called NPYCRE, this
unified statistical model makes good use of the dis-
criminative model (CRF) from the labeled data and
the generative model (NPYLM) from the unlabeled
data.

4.1 CRF—NPYLM

To convert from a CRF to NPYLM, we can easily
translate Markov potentials into semi-Markov po-
tentials as shown in Andrew (2006) for the super-
vised learning case.

Consider the situation depicted in Figure 5. Here
we can see that the potential of the substring “H 5T
#5” (Tokyo prefecture) in the semi-Markov model
(left) corresponds to the sum of the potentials in
the Markov model (right) along the path shown in
bold. Here, we introduce binary hidden states in the
Markov model for each character, similarly to the BI
tags used in supervised learning, where state 1 repre-
sents the beginning of a word and state 0 represents
a continuation of the word.

Mathematically, we define v[a, b) as the sum of
the potentials along a U-shaped path over an inter-
val [a,b) (a<b) as shown in Figure 5, which begins
with state 1 and ends with (but does not include) 1.
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Figure 6: Substring transitions for marginalization.
Using this notation, the potential that corresponds to
aft|[k] is y[t —k+1,t + 1) covering ¢y 1 - ¢
and thus the forward recursion of the inside proba-
bility a/[t][k] that incorporates the information from
the CRF can be written as follows, instead of (4):

L
aft][k] =3 exp| Ao log p(cl g1l =f i)
Ty lt—kt L4 1)| - aft =K. (D)

Backward sampling can be performed in a similar
fashion. In this way, we can incorporate information
from the character-wise discriminative model (CRF)
into the language model segmentation of NPYLM.

4.2 NPYLM—CRF

On the other hand, translating the information from
the semi-Markov to Markov model, i.e., translat-
ing a potential from the word-based language model
into the character-wise discriminative classifier, is
not trivial. However, as we describe below, it is ac-
tually possible to do so by extending the technique
proposed in Andrew (2006).

Note that for the inference of CRF, from the stan-
dard theory of log-linear models we only have to
compute its gradient with respect to the expectation
of each feature in the current model. This reduces
the problem to a computation of the marginal prob-
ability of each path, which can be derived within the
framework of semi-Markov models as follows:

Semi-Markov feature )\o. Following the line of
argument presented in the Section 4.1, the po-
tential with respect to the semi-Markov feature
weight A\ that is associated with the word transi-
tion ci ],j 1 - k41> shown in Figure 6, can
be expressed as an expectation using the standard

forward-backward formula:
P(ct i1, &k 18) = alt—KI[] BIEI[K] -

exp o log plcf_yqalel Tk 1) +y[t—k+1,2+1)]

/Z(s) (12)
Here, Z(s) is a normalizing constant associated with
each input string s, and [3[t][k] is a backward proba-
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bility similar to (11) computed by

Blt] Zexp[)\o 10gp(¢t+1|ct ki)
1t +2)] - Bleall] (1)

Markov features A1, --- ,\g. Note that the fea-
tures associated with label bigrams in our binary
CREF can be divided into four types: 1-1,1-0,0-1, and
0-0, as shown in Figure 7.

Case 1-1: As shown in Figure 8(a), this case means
that a word of length 1 begins at time ¢, which is
equivalent to the probability of substring ¢! being
a word:

p(2=1,z11=1[s) = p(cils). (14)
Here, p(ck|s) is the marginal probability of a sub-
string ¢y - - - ¢, being a word, which can be derived

from equation (12):

Zp o ey
= Z all—1][j]

e;p [)\g logp(cif]cﬁ_l.) + (¢, k—i—l)] /Z(s)
_ St ZGXP Ao log p(cf| ;- i)

Z(s)
+W k+1)]alt—1][/]
alk][k—0+1] - B[K][k—€+1]
Z(s)

Case 1-0: As shown in Figure 8(b), this case means
that a word begins at time ¢ and has length at
least 2. Since we do not know the endpoint of
this word, we can obtain the probability p(z; =
1, z;41 = 0) by marginalizing over the endpoint j
(- - - means values all 0):

Ce|

Blk][k—£+1] -

(15)

p(ze=1,241=0|s)
= Zp(thl, Zt+1 :07 tee

_Zpt—l—jl
FARERN S U )
-
0

2t ZtH

»Zt+j:1|5)

(16)

Figure 7: Four types of label transitions in Markov CRF.
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Figure 8: Label bigram potentials for marginalization.
The probability of each label bigram (bold) of the Markov
model can be obtained by marginalizing the probability
of the U-shaped path including it, which is computed in
the semi-Markov model.

t+j—1

where p(c, |s) is obtained from (15).

Case 0-1: Similarly, as shown in Figure 8(c) this
case means that a word of length at least 2 begins
before time ¢ and ends at time ¢. Therefore, we
can marginalize over the start point of a possible
word to obtain the marginal probability:

p(2:=0, z¢41=1]s)
= plaj=1,--+ ,%=0,z11=1Js) (7
7j=1

= ZP(Ci—j\S) :
j=1

Case 0-0: In principle, this means that a word be-
gins before time ¢ and ends later than (and includ-
ing) time ¢+ 1. Therefore, we can marginalize
over both the start and end time of a possible word
spanning [¢, t+ 1] to obtain:

p(2¢=0, 2441 =0]s) = ZZp(ciff]s) (19)

j=1 k=1

(18)

However, in fact we can avoid this nested compu-
tation because the probability of p(z, z¢11) over
the possible values of z; and z;4; must sum to
1. We can therefore simply calculate it as follows
(Andrew, 2006):

p(ztzoa Zt+1 :O‘S) = 1_p(]~7 1)_p(17 0)_p(07 1)
(20)
where p(x,y) means p(z; =z, 2141 =y|s).
4.3 Inference

Finally, we obtain the inference algorithm for NPY-
CREF as a variant of the MCMC-EM algorithm (Wei
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and Tanner, 1990) shown in Figure 9.> In learning of
a NPYLM, we add the CRF potentials as described
in Section 4.1, and sample a possible segmenta-
tion from the posterior through Forward filtering-
Backward sampling to update the model parameters.
On the basis of this improved language model, the
CRF weights are then optimized by incorporating
language model features as explained in Section 4.2.
We iterate this process until convergence.

Note that we first have to learn an unsupervised
segmentation in Step 2 before training the CRF
Since our inference algorithm includes an optimiza-
tion of CRF and thus is not a true MCMC, the learn-
ing of word segmentation affer the supervised infor-
mation will be severely constrained and likely to get
stuck in local minima.

In practice, we found that the EM-style batch
learning of CRF described above often fails because
our objective function is non-convex. Therefore, we
switched to ADF below (Sun et al., 2014), an adap-
tive stochastic gradient descent that yields state-of-
the-art accuracies for natural language processing
problems including word segmentation. In this case,
A in Figure 9 was optimized with each minibatch
through the labeled data (X, Y;), while incorporat-
ing information from the unlabeled data X, by the
language model.

Because of its heavy computational demands,

1: Add (Y}, X;) to NPYLM.
2: Optimize A on (Y7, X;). (pure CRF)
3: forj=1---Mdo

4:  for i = randperm(1l---N) do

5 if 7 > 1 then

6: Remove customers of X 75’) from NPYLM ©
7. end if )

8: Draw segmentations of X' ff) from NPYCRF

9: Add customers of X to NPYLM ©
10:  end for

11:  Optimize A of NPYCRF on (Y}, X;).

12: end for

Figure 9: Basic learning algorithm for NPYCRF. Xl(f)
denotes the i-th sentence in the unlabeled data X,,. We
can also iterate steps 4 to 10 several times until © approx-
imately converges, before updating A.

21t is possible to fix NPYLM and just use this as a feature
to CRF: this amounts to running only the first iteration (5 = 1)
of the EM algorithm. However, it still requires NPYLM—CRF
conversion in Section 4.2, and we found that the performance is
not optimal while slightly better than plain CRF.



Language ‘ Dataset ‘ Labeled Unlabeled Test Name ‘ Labels F Filtered
Chinese MSR 86,924 865,679 3,985 Sun+ (2009) 2 N/A 0.973
Weibo |10K-40K  880,920° 30,000 Sun+ (2014) 3 N/A 0.975

Japanese | Twitter | 59,931 600,000 444 Chen+ (2015) | 4 (Neural) 0.976 -
Thai |InterBEST | 10,000 30,133 10,000 Zhang+ (2016) | 2 (Neural) 0.977 -
NPYCRF 2 0970 0.973

Table 1: Statistics of the datasets for the experiments. NPYCREF 3 0.973 0.976

we parallelized the NPYLM sampling over sev-
eral processors and because of the possible corre-
lation of segmentations within the samples, used the
Metropolis-Hastings algorithm to correct them. The
acceptance rate in our experiments was over 99%.
For decoding, we can simply find a Viterbi path in
the integrated semi-Markov model while fixing all
the sampled segmentations on the unlabeled data.

S Experiments

We conducted experiments on several corpora of un-
segmented languages: Japanese, Chinese, and Thai.
The corpora included standard corpora as well as
text from Twitter and its equivalent, Weibo, in Chi-
nese.

5.1 Data

Chinese For Chinese, we first used a standard
dataset from the SIGHAN Bakeoff 2005 (Emerson,
2005) for the labeled and test data, and Chinese gi-
gaword version 2 (LDC2009T14) for the unlabeled
data. We chose the MSR subset of SIGHAN Bakeoff
written in simplified Chinese together with the pro-
vided training and test splits, which contain about
87K/40K sentences, respectively. For the unlabeled
data, i.e., a collection of raw strings, we used a ran-
dom subset of 880K sentences from Chinese giga-
word with all spaces removed. We chose this size to
be about 10 times larger than the labeled data, con-
sidering current computational requirements. We
used the part from the Xinhua news agency 2004 and
split the data into sentences at the end-of-sentence
character “,”.

Because the MSR and Xinhua datasets were com-
piled from newspapers, to meet our objective on in-
formal text we conducted further experiments using

3This is the total number of sentences in the experiment: the

actual number of unsupervised sentences is this set minus the
different number of supervised sentences.
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Table 2: Accuracies of Bakeoff MSR dataset in Chinese.
“Filtered” are the results with a simple post-hoc filter de-
scribed in Sun et al. (2009).

Data ‘Label Unlabel IV OOV F

Topline 880K -  0.981 0.699 0.977
Sup 10K 10K - 0949 0.690 0.928
Sup20K | 20K - 0.957 0.683 0.941
Sup40K | 40K - 0.963 0.682 0.951
Semi 10K | 10K 870K 0.954 0.698 0.933
Semi 20K | 20K 860K 0.961 0.690 0.945
Semi 40K | 40K 840K 0.970 0.648 0.955

Table 3: Accuracies on Leiden Weibo corpus in Chinese.
‘Label” and ‘Unlabel’ are the amounts of labeled and un-
labeled data, respectively. “Topline” is an ideal situation
of complete supervision, and K= 103 sentences.

the Leiden Weibo corpus* from Weibo, a Twitter
equivalent in China. From this dataset, we used the
sentences that have exact correspondence between
the provided segmented-unsegmented pair, yielding
about 880K sentences. Since we did not know how
much supervision would be necessary for a decent
performance, we conducted experiments with dif-
ferent amounts of labeled data: 10K, 20K, 40K and
880K(all). Note that the final case amounts to com-
plete supervision, an ideal situation that is not likely
in practice.

Japanese Word segmentation accuracies around
99% have already been reported for newspaper do-
mains in Japanese (Kudo et al., 2004). Therefore, we
only conducted experiments on segmenting Twitter
text. In addition to our random Twitter crawl in April
2014, we used a corpus of Japanese Twitter text
compiled by the Tokyo Metropolitan University>.
This corpus is actually very small, 944 sentences. It
mainly targets transfer learning and is segmented ac-
cording to BCCWJ (Basic Corpus of Contemporary

4http://www.leidenweibocorpus.nl/openaccess.php
5https://github.com/tmufnlp/TwitterCorpus



Written Japanese) standards from the National Insti-
tute of Japanese Language (Maekawa, 2007). There-
fore, for the labeled data we used the “core” subset
of BCCW]J consisting of about 59K sentences plus
500 random sentences from the Twitter dataset. We
used the remaining 444 sentences for testing. For
the unlabeled data, we used a random crawl of 600K
Japanese sentences collected from Twitter in March-
April, 2014.

Thai Unsegmented languages, such as Thai, Lao,
Myanmar, and Kumer, are also prevalent in South
East Asia and are becoming increasingly important
targets of natural language processing. Thus we also
conducted an experiment on Thai, using the standard
InterBEST 2009 dataset (Kosawat, 2009). Since it
is reported that the “novel” subset of InterBEST has
relatively low precision, we used this part with a ran-
dom split of 10K sentences for supervised learning,
30K sentences for unsupervised learning, and a fur-
ther 10K sentences for testing.

5.2 Training Settings

Because Sun et al. (2012) report increased accuracy
with three tags, {B,LE}%, we also tried these tags
in place of the binary tags described in Section 4.2.
This modification resulted in 6 possible transitions
out of 32 = 9 transitions, whose computation fol-
lows from the binary case in Section 4.2. We used
normal priors of truncated N(1,0%) and N(0,0?)
for \g and A;--- Ak, respectively, and fixed the
CREF regularization parameter C' to 1.0, and o to 1.0
by preliminary experiments on the same data.

For the feature templates, we followed Sun et al.
(2012). In addition to those templates, we used char-
acter type bigrams, where the ‘character type’ was
defined by Unicode blocks (like Hiragana or CJK
Unified Ideographs for Chinese and Japanese) or
Unicode character categories (Thai).

To reduce computations by restricting the search
space appropriately, we employed a Negative Bi-
nomial generalized linear model on string features
(Uchiumi et al., 2015) to predict the maximum
length of a possible word for each character position
in the training data. Therefore, the upper limit of L
in (11) and (13) was L, for each position ¢, obtained

®The B, I, and E tags mean the beginning, internal part, and
end of a word, respectively.
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(a) MSR (Simplified Chinese) (b) Twitter (Japanese)

Figure 10: New words acquired by NPYCREF. For each
figure, the left column is the words that did not appear
in the provided labeled data, and the right column is the
frequencies NPYCREF recognized in the test data. In Chi-
nese, we found many proper names including company
and person name, and in Japanese, we found many novel
slang words and proper names.

from this statistical model trained on labeled seg-
mentations. We observed that this prediction made
the computation several times faster than, for exam-
ple, using a fixed threshold in Japanese where quite
long words are occasionally encountered.

5.3 Experimental results

Chinese Tables 2 and 3 show IV (in-vocabulary)
and OOV (out-of-vocabulary) precision and F-
measure, computed against segmented tokens. The
results for standard newspaper text indicate that
NPYCREF is basically comparable in performance to
state-of-the-art supervised neural networks (Chen et
al., 2015; Zhang et al., 2016) that require hand tun-
ing of hyperparameters or model architectures. Fig-
ure 10 shows some of the learned words in the test-
set of the Bakeoff MSR corpus. As shown in Ta-
ble 3, NPYCREF also yields higher precision than su-
pervised learning on non-standard text like Weibo,
which is the main objective for this study. Con-
trary to ordinary supervised learning, we can see that
NPYCREF effectively learns many “new words” from
the large amount of unlabeled data thanks to the gen-
erative model, while observing human standards of
segmentation by the discriminative model. Note that
in Weibo segmentation, complete supervision is not



CRF | NPYLM | NPYCRF |  Gold
1Lk LS fLk (S
R KRR REAE KA

iR AR i3 R
T R
(s {9
AT AEE | AR A
a:
i i i fix
7N 7N /N 7\
HE i S L
R E E RO E RO
o5y
by
5 5 3 3
194!;‘!?1())'] IQ’49¢F~ 1949”'3?1()}'] 1&)49"!?1()”
101
4 4 4 4
Figure 11: Example of segmentation of the SIGHAN

Bakeoff MSR dataset made with supervised (CRF), un-
supervised (NPYLM), and semi-supervised (NPYCRF)
models in comparison with gold segmentations (Gold).
“lRE K is a proverb and “FE A" is a full name of a
person.

available in practice. In fact, we realized that the
Weibo segmentations were given automatically by
an existing classifier, and contain many inappropri-
ate segmentations, while NPYCREF finds much “bet-
ter” segmentations.

Figure 11 compares the results of CRF, NPYLM,
and NPYCRF with the gold segmentation. While
proverbs like “[R{5 X" (wide vision without ac-
tion) are correctly captured from the unlabeled data
by NPYLM, it is sometimes broken by CRF through
integration. In another case, the name of a per-
son is properly connected because of the informa-
tion provided by the CRF. This comparison shows
that there is still room for improvement in NPYCRF.
Section 6 discusses future research directions for im-
provements.

Japanese and Thai Figure 12 shows an example
of the analysis of Japanese Twitter text. Shaded
words are those that are not contained in labeled
data (BCCWIJ core) but were found by NPYCRFE
Many segmentations, including new words, are cor-
rect. We expect NPYCRF would perform better with
more unlabeled data that are easily obtained.

Tables 4 and 5 show the segmentation accuracies
of the Twitter data in Japanese and novel data in
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Figure 12: Samples of NPYCRF segmentation of Twit-
ter text in Japanese that are difficult to analyze by ordi-
nary supervised segmentation. It contains a lot of novel
words, emoticons, and colloquial expressions that are not
contained in the BCCW] core text (shaded).

Thai. While there are no publicly available results
for these data (the InterBEST testset is closed dur-
ing competition), NPYCREF achieved better accura-
cies than vanilla supervised segmentation based on
CREF. Considering that many new words were found
in Figure 12, for example, we believe NPYCREF is
quite competitive thanks to its ability to learn the in-
finite vocabulary, which it inherits from NPYLM.

6 Analysis

As shown in Figure 11, NPYCRF makes good use
of NPYLM but sometimes ignores its prediction by
falling back to CREF, yielding suboptimal perfor-
mance. This is mainly because the geometric in-
terpolation weight \g is always constant and does
not vary according to the input. For example, even
if the substring to segment is very rare in the la-
beled data, NPYCREF trusts the supervised classi-
fier (CRF) with a constant rate of 1/(1+ ) in the
log probability domain. To alleviate this problem,

Model | IV OOV F

CRF 0.939 0.706 0.916

NPYCRF | 0.947 0.708 0.921
Table 4: Accuracies for Twitter text in Japanese.

Model | IV OOV F

CRF ‘ 0.961 0.409 0.948

NPYCRF | 0.959 0.362 0.954

Table 5: Accuracies for InterBEST novel dataset in Thai.



it is necessary to change Ag depending on the in-
put string in a log-linear framework.” While this
might be achieved through Density Ratio estimation
framework (Sugiyama et al., 2012; Tsuboi et al.,
2009), we believe it is a general problem of semi-
supervised learning and is beyond the scope of this
paper.

This issue also affects the estimation of \g as a
scalar: that is, we found that \g often fluctuates dur-
ing training because A (which includes \g) is esti-
mated using only limited (X;,Y;). In practice, we
terminated the EM algorithm in Figure 9 early af-
ter a few iterations. Therefore, with a more adaptive
semi-supervised learning framework, we expect that
NPYCREF will achieve higher accuracy than the cur-
rent performance.

7 Conclusion

In this paper, we presented a hybrid genera-
tive/discriminative model of word segmentation,
leveraging a nonparametric Bayesian model for un-
supervised segmentation. By combining CRF and
NPYLM within the semi-supervised framework of
JESS-CM, our NPYCREF not only works as well
as the state-of-the-art neural segmentation without
hand tuning of hyperparameters on standard cor-
pora, but also appropriately segments non-standard
texts found in Twitter and Weibo, for example, by
automatically finding “new words” thanks to a non-
parametric model of infinite vocabulary.

We believe that our model lays the foundation for
developing a methodology of combining nonpara-
metric Bayesian models and discriminative classi-
fiers, as well as providing an example of semi-
supervised learning on different model structures,
i.e. Markov and semi-Markov models for word seg-
mentation.
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