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Abstract

We show how to predict the basic word-order
facts of a novel language given only a cor-
pus of part-of-speech (POS) sequences. We
predict how often direct objects follow their
verbs, how often adjectives follow their nouns,
and in general the directionalities of all depen-
dency relations. Such typological properties
could be helpful in grammar induction. While
such a problem is usually regarded as unsu-
pervised learning, our innovation is to treat it
as supervised learning, using a large collec-
tion of realistic synthetic languages as train-
ing data. The supervised learner must identify
surface features of a language’s POS sequence
(hand-engineered or neural features) that cor-
relate with the language’s deeper structure (la-
tent trees). In the experiment, we show: 1)
Given a small set of real languages, it helps to
add many synthetic languages to the training
data. 2) Our system is robust even when the
POS sequences include noise. 3) Our system
on this task outperforms a grammar induction
baseline by a large margin.

1 Introduction

Descriptive linguists often characterize a human
language by its typological properties. For instance,
English is an SVO-type language because its basic
clause order is Subject-Verb-Object (SVO), and
also a prepositional-type language because its
adpositions normally precede the noun. Identifying
basic word order must happen early in the acqui-
sition of syntax, and presumably guides the initial
interpretation of sentences and the acquisition of a
finer-grained grammar. In this paper, we propose
a method for doing this. While we focus on word
order, one could try similar methods for other typo-
logical classifications (syntactic, morphological, or
phonological).

The problem is challenging because the lan-
guage’s true word order statistics are computed from
syntax trees, whereas our method has access only
to a POS-tagged corpus. Based on these POS se-
quences alone, we predict the directionality of each
type of dependency relation. We define the direc-
tionality to be a real number in [0, 1]: the fraction
of tokens of this relation that are “right-directed,” in
the sense that the child (modifier) falls to the right
of its parent (head). For example, the dobj relation
points from a verb to its direct object (if any), so a di-
rectionality of 0.9—meaning that 90% of dobj de-
pendencies are right-directed—indicates a dominant
verb-object order. (See Table 1 for more such exam-
ples.) Our system is trained to predict the relative
frequency of rightward dependencies for each of 57
dependency types from the Universal Dependencies
project (UD). We assume that all languages draw on
the same set of POS tags and dependency relations
that is proposed by the UD project (see §3), so that
our predictor works across languages.

Why do this? Liu (2010) has argued for using
these directionality numbers in [0, 1] as fine-grained
and robust typological descriptors. We believe that
these directionalities could also be used to help de-
fine an initializer, prior, or regularizer for tasks like
grammar induction or syntax-based machine trans-
lation. Finally, the vector of directionalities—or
the feature vector that our method extracts in or-
der to predict the directionalities—can be regarded
as a language embedding computed from the POS-
tagged corpus. This language embedding may be
useful as an input to multilingual NLP systems, such
as the cross-linguistic neural dependency parser of
Ammar et al. (2016). In fact, some multilingual NLP
systems already condition on typological properties
looked up in the World Atlas of Language Struc-
tures, or WALS (Dryer and Haspelmath, 2013), as
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Typology Example

Verb-Object
(English) She gave me a raise

dobj

Object-Verb
(Hindi) She me a raise gave

vah mujhe ek uthaane diya

dobj

Prepositional
(English) She is in a car

case

Postpositional
(Hindi)

She a car in is
vah ek kaar mein hai

case

Adjective-Noun
(English) This is a red car

amod

Noun-Adjective
(French)

This is a car red
Ceci est une voiture rouge

amod

Table 1: Three typological properties in the World Atlas of Lan-
guage Structures (Dryer and Haspelmath, 2013), and how they
affect the directionality of Universal Dependencies relations.

we review in §8. However, WALS does not list all
properties of all languages, and may be somewhat
inconsistent since it collects work by many linguists.
Our system provides an automatic alternative as well
as a methodology for generalizing to new properties.

More broadly, we are motivated by the chal-
lenge of determining the structure of a language
from its superficial features. Principles & Parame-
ters theory (Chomsky, 1981; Chomsky and Lasnik,
1993) famously—if controversially—hypothesized
that human babies are born with an evolutionarily
tuned system that is specifically adapted to natural
language, which can predict typological properties
(“parameters”) by spotting telltale configurations in
purely linguistic input. Here we investigate whether
such a system can be tuned by gradient descent. It is
at least plausible that useful superficial features do
exist: e.g., if nouns often precede verbs but rarely
follow verbs, then the language may be verb-final.

2 Approach

We depart from the traditional approach to latent
structure discovery, namely unsupervised learning.
Unsupervised syntax learners in NLP tend to be
rather inaccurate—partly because they are failing to
maximize an objective that has many local optima,
and partly because that objective does not capture
all the factors that linguists consider when assigning

syntactic structure. Our remedy in this paper is a su-
pervised approach. We simply imitate how linguists
have analyzed other languages. This supervised ob-
jective goes beyond the log-likelihood of a PCFG-
like model given the corpus, because linguists do not
merely try to predict the surface corpus. Their de-
pendency annotations may reflect a cross-linguistic
theory that considers semantic interpretability and
equivalence, rare but informative phenomena, con-
sistency across languages, a prior across languages,
and linguistic conventions (including the choice of
latent labels such as dobj). Our learner does not
consider these factors explicitly, but we hope it will
identify correlates (e.g., using deep learning) that
can make similar predictions. Being supervised, our
objective should also suffer less from local optima.
Indeed, we could even set up our problem with a
convex objective, such as (kernel) logistic regres-
sion, to predict each directionality separately.

Why hasn’t this been done before? Our set-
ting presents unusually sparse data for supervised
learning, since each training example is an en-
tire language. The world presumably does not
offer enough natural languages—particularly with
machine-readable corpora—to train a good classi-
fier to detect, say, Object-Verb-Subject (OVS) lan-
guages, especially given the class imbalance prob-
lem that OVS languages are empirically rare, and
the non-IID problem that the available OVS lan-
guages may be evolutionarily related.1 We miti-
gate this issue by training on the Galactic Depen-
dencies treebanks (Wang and Eisner, 2016), a col-
lection of more than 50,000 human-like synthetic
languages. The treebank of each synthetic language
is generated by stochastically permuting the sub-
trees in a given real treebank to match the word or-
der of other real languages. Thus, we have many
synthetic languages that are Object-Verb like Hindi
but also Noun-Adjective like French. We know the
true directionality of each synthetic language and we
would like our classifier to predict that directional-
ity, just as it would for a real language. We will show
that our system’s accuracy benefits from fleshing out
the training set in this way, which can be seen as a
form of regularization.

1Properties shared within an OVS language family may ap-
pear to be consistently predictive of OVS, but are actually con-
founds that will not generalize to other families in test data.
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A possible criticism of our work is that obtaining
the input POS sequences requires human annotators,
and perhaps these annotators could have answered
the typological classification questions as well. In-
deed, this criticism also applies to most work on
grammar induction. We will show that our system
is at least robust to noise in the input POS sequences
(§7.4). In the future, we hope to devise similar meth-
ods that operate on raw word sequences.

3 Data

We use two datasets in our experiment:

UD: Universal Dependencies version 1.2 (et al.,
2015) A collection of dependency treebanks for 37
languages, annotated in a consistent style with POS
tags and dependency relations.

GD: Galactic Dependencies version 1.0 (Wang
and Eisner, 2016) A collection of projective de-
pendency treebanks for 53,428 synthetic languages,
using the same format as UD. The treebank of
each synthetic language is generated from the UD
treebank of some real language by stochastically
permuting the dependents of all nouns and/or verbs
to match the dependent orders of other real UD lan-
guages. Using this “mix-and-match” procedure, the
GD collection fills in gaps in the UD collection—
which covers only a few possible human languages.

4 Task Formulation

We now formalize the setup of the fine-grained typo-
logical prediction task. LetR be the set of universal
relation types, with N = |R|. We use r→ to denote a
rightward dependency token with label r ∈ R.

Input for language L: A POS-tagged corpus u.
(“u” stands for “unparsed.”)

Output for language L: Our system predicts
p(→| r, L), the probability that a token in language
L of an r-labeled dependency will be right-oriented.
It predicts this for each dependency relation type
r ∈ R, such as r = dobj. Thus, the output is a
vector of predicted probabilities p̂ ∈ [0, 1]N .

Training: We set the parameters of our system
using a collection of training pairs (u,p∗), each of
which corresponds to some UD or GD training lan-
guage L. Here p∗ denotes the true vector of proba-
bilities as empirically estimated from L’s treebank.

Evaluation: Over pairs (u,p∗) that correspond
to held-out real languages, we evaluate the expected
loss of the predictions p̂. We use ε-insensitive loss2

with ε = 0.1, so our evaluation metric is
∑

r∈R
p∗(r | L) · lossε(p̂(→| r, L), p∗(→| r, L)) (1)

where

• lossε(p̂, p
∗) ≡ max(|p̂− p∗| − ε, 0)

• p∗(→| r, L) = countL(
r→)

countL(r) is the empirical esti-
mate of p(→| r, L).
• p̂(→| r, L) is the system’s prediction of p∗

The aggregate metric (1) is an expected loss that is
weighted by p∗(r | L) = countL(r)∑

r′∈R countL(r′) , to empha-
size relation types that are more frequent in L.

Why this loss function? We chose an L1-style
loss, rather than L2 loss or log-loss, so that the ag-
gregate metric is not dominated by outliers. We took
ε > 0 in order to forgive small errors: if some pre-
dicted directionality is already “in the ballpark,” we
prefer to focus on getting other predictions right,
rather than fine-tuning this one. Our intuition is that
errors < ε in p̂’s elements will not greatly harm
downstream tasks that analyze individual sentences,
and might even be easy to correct by grammar rees-
timation (e.g., EM) that uses p̂ as a starting point.

In short, we have the intuition that if our pre-
dicted p̂ achieves small lossε on the frequent relation
types, then p̂ will be helpful for downstream tasks,
although testing that intuition is beyond the scope of
this paper. One could tune ε on a downstream task.

5 Simple “Expected Count” Baseline

Before launching into our full models, we warm
up with a simple baseline heuristic called expected
count (EC), which is reminiscent of Principles & Pa-
rameters. The idea is that if ADJs tend to precede
nearby NOUNs in the sentences of language L, then
amod probably tends to point leftward in L. After
all, the training languages show that when ADJ and
NOUN are nearby, they are usually linked by amod.

Fleshing this out, EC estimates directionalities as

p̂(→| r, L) =
ecountL(

r→)

ecountL(
r→) + ecountL(

r←)
(2)

2Proposed by V. Vapnik for support vector regression.
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where we estimate the expected r← and r→ counts by

ecountL(
r→) =

∑

u∈u

∑

1≤i<j≤|u|
j−i<w

p(
r→| ui, uj) (3)

ecountL(
r←) =

∑

u∈u

∑

1≤i<j≤|u|
j−i<w

p(
r←| ui, uj) (4)

Here u ranges over tag sequences (sentences) of u,
and w is a window size that characterizes “nearby.”3

In other words, we ask: given that ui and uj are
nearby tag tokens in the test corpus u, are they likely
to be linked? Formulas (3)–(4) count such a pair as a
“soft vote” for r→ if such pairs tended to be linked by
r→ in the treebanks of the training languages,4 and a

“soft vote” for r← if they tended to be linked by r←.
Training: For any two tag types t, t′ in the univer-

sal POS tagset T , we simply use the training tree-
banks to get empirical estimates of p(· | t, t′), taking

p(
r→| t, t′) =

∑
L sL · countL(t

r→ t′)∑
L sL · countL(t, t′)

(5)

and similarly for p( r←| t, t′). This can be interpreted
as the (unsmoothed) fraction of (t, t′) within a w-
word window where t is the r-type parent of t′, com-
puted by micro-averaging over languages. To get
a fair average over languages, equation (5) down-
weights the languages that have larger treebanks,
yielding a weighted micro-average in which we de-
fine the weight sL = 1/

∑
t∈T ,t′∈T countL(t, t′).

As we report later in Table 5, even this simple su-
pervised heuristic performs significantly better than
state-of-the-art grammar induction systems. How-
ever, it is not a trained heuristic: it has no free pa-
rameters that we can tune to optimize our evaluation
metric. For example, it can pay too much attention
to tag pairs that are not discriminative. We therefore
proceed to build a trainable, feature-based system.

6 Proposed Model Architecture

To train our model, we will try to minimize the eval-
uation objective (1) averaged over the training lan-

3In our experiment, we chose w = 8 by cross-validation
over w = 2, 4, 8, 16,∞.

4Thus, the EC heuristic examines the correlation between
relations and tags in the training treebanks. But our methods in
the next section will follow the formalization of §4: they do not
examine a training treebank beyond its directionality vector p∗.

 logistic

Figure 1: Basic predictive architecture from equations (6)–(7).
bW and bV are suppressed for readability.

guages, plus a regularization term given in §6.4.5

6.1 Directionality predictions from scores
Our predicted directionality for relation r will be

p̂(→| r, L) = 1/(1 + exp(−s(u)r)) (6)

s(u) is a parametric function (see §6.2 below) that
maps u to a score vector in RN . Relation type
r should get positive or negative score according
to whether it usually points right or left. The for-
mula above converts each score to a directionality—
a probability in (0, 1)—using a logistic transform.

6.2 Design of the scoring function s(u)

To score all dependency relation types given the cor-
pus u, we use a feed-forward neural network with
one hidden layer (Figure 1):

s(u) = V ψ(Wπ(u) + bW ) + bV (7)

π(u) extracts a d-dimensional feature vector from
the corpus u (see §6.3 below). W is a h × d ma-
trix that maps π(u) into a h-dimensional space and
bW is a h-dimensional bias vector. ψ is an element-
wise activation function. V is aN ×hmatrix whose
rows can be regarded as learned embeddings of the
dependency relation types. bV is a N -dimensional
bias vector that determines the default rightwardness
of each relation type. We give details in §7.5.

The hidden layer ψ(Wπ(u) + bW ) can be re-
garded as a latent representation of the language’s
word order properties, from which potentially cor-
related predictions p̂ are extracted.

5We gave all training languages the same weight. In prin-
ciple, we could have downweighted the synthetic languages as
out-of-domain, using cross-validation to tune the weighting.
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6.3 Design of the featurization function π(u)

Our current feature vector π(u) considers only the
POS tag sequences for the sentences in the unparsed
corpus u. Each sentence is augmented with a special
boundary tag # at the start and end. We explore both
hand-engineered features and neural features.

Hand-engineered features. Recall that §5 consid-
ered which tags appeared near one another in a given
order. We now devise a slew of features to measure
such co-occurrences in a variety of ways. By train-
ing the weights of these many features, our system
will discover which ones are actually predictive.

Let g(t | j) ∈ [0, 1] be some measure (to be de-
fined shortly) of the prevalence of tag t near token
j of corpus u. We can then measure the prevalence
of t, both overall and just near tokens of tag s:6

πt = mean
j

g(t | j) (8)

πt|s = mean
j:Tj=s

g(t | j) (9)

where Tj denotes the tag of token j. We now define
versions of these quantities for particular prevalence
measures g.

Givenw > 0, let the right windowWj denote the
sequence of tags Tj+1, . . . , Tj+w (padding this se-
quence with additional # symbols if it runs past the
end of j’s sentence). We define quantities πwt|s and
πwt via (8)–(9), using a version of g(t | j) that mea-
sures the fraction of tags in Wj that equal t. Also,
for b ∈ {1, 2}, we define πw,bt|s and πw,bt using a ver-
sion of g(t | j) that is 1 if Wj contains at least b
tokens of t, and 0 otherwise.

For each of these quantities, we also define a
corresponding mirror-image quantity (denoted by
negating w > 0) by computing the same feature on
a reversed version of the corpus.

We also define “truncated” versions of all quan-
tities above, denoted by writing ˆ over the w. In
these, we use a truncated window Ŵj , obtained
from Wj by removing any suffix that starts with #

6In practice, we do backoff smoothing of these means. This
avoids subsequent division-by-0 errors if tag t or s has count 0
in the corpus, and it regularizes πt|s/πt toward 1 if t or s is rare.
Specifically, we augment the denominators by adding λ, while
augmenting the numerator in (8) by adding λ ·meanj,t g(t | j)
(unsmoothed) and the numerator in (9) by adding λ times the
smoothed πt from (8). λ > 0 is a hyperparameter (see §7.5).

.	.	.

.	.	.
f1

.	.	.

.	.	.

.	.	.

.	.	.

.	.	.
f2

.	.	.	
soft-pooling

.	.	.

Figure 2: Extracting and pooling the neural features.

or with a copy of tag Tj (that is, s).7 As an example,

π8̂,2
N|V asks how often a verb is followed by at least 2

nouns, within the next 8 words of the sentence and
before the next verb. A high value of this is a plausi-
ble indicator of a VSO-type or VOS-type language.

We include the following features for each
tag pair s, t and each w ∈ {1, 3, 8, 100,
−1,−3,−8,−100, 1̂, 3̂, 8̂, ˆ100,−1̂,−3̂,−8̂,− ˆ100}:8

πwt , π
w
t|s, π

w
t|s · πws , πwt|s//πwt , πwt //πwt|s, πwt|s//π−wt|s

where we define x//y = min(x/y, 1) to prevent
unbounded feature values, which can result in poor
generalization. Notice that for w = 1, πwt|s is bigram
conditional probability, πwt|s·πws is bigram joint prob-
ability, the log of πwt|s/π

w
t is bigram pointwise mu-

tual information, and πwt|s/π
−w
t|s measures how much

more prevalent t is to the right of s than to the left.
By also allowing other values of w, we generalize
these features. Finally, our model also uses versions
of these features for each b ∈ 1, 2.

Neural features. As an alternative to the manu-
ally designedπ function above, we consider a neural
approach to detect predictive configurations in the
sentences of u, potentially including complex long-
distance configurations. Linguists working with
Principles & Parameters theory have supposed that a
single telltale sentence—a trigger—may be enough

7In the “fraction of tags” features, g(t | j) is undefined ( 0
0

)
when Ŵj is empty. We omit undefined values from the means.

8The reason we don’t include π−w
t|s //π

w
t|s is that it is in-

cluded when computing features for −w.
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to determine a typological parameter, at least given
the settings of other parameters (Gibson and Wexler,
1994; Frank and Kapur, 1996).

We map each corpus sentence ui to a finite-
dimensional real vector f i by using a gated recur-
rent unit (GRU) network (Cho et al., 2014), a type of
recurrent neural network that is a simplified variant
of an LSTM network (Hochreiter and Schmidhuber,
1997). The GRU reads the sequence of one-hot em-
beddings of the tags in ui (including the boundary
symbols #). We omit the part of the GRU that com-
putes an output sequence, simply taking f i to be the
final hidden state vector. The parameters are trained
jointly with the rest of our typology prediction sys-
tem, so the training procedure attempts to discover
predictively useful configurations.

The various elements of f i attempt to detect vari-
ous interesting configurations in sentence ui. Some
might be triggers (which call for max-pooling over
sentences); others might provide softer evidence
(which calls for mean-pooling). For generality,
therefore, we define our feature vector π(u) by soft-
pooling of the sentence vectors f i (Figure 2). The
tanh gate in the GRU implies fik ∈ (−1, 1) and we
transform this to the positive quantity f ′ik = fik+1

2 ∈
(0, 1). Given an “inverse temperature” β, define9

πβk =

(
mean

i
(f ′ik)

β

)1/β

(10)

This πβk is a pooled version of f ′ik, ranging from
max-pooling as β → −∞ (i.e., does f ′ik fire strongly
on any sentence i?) to min-pooling as β → −∞. It
passes through arithmetic mean at β = 1 (i.e., how
strongly does f ′ik fire on the average sentence i?), ge-
ometric mean as β → 0 (this may be regarded as an
arithmetic mean in log space), and harmonic mean
at β = −1 (an arithmetic mean in reciprocal space).

Our final π is a concatenation of the πβ vectors
for β ∈ {−4,−2,−1, 0, 1, 2, 4}. We chose these β
values experimentally, using cross-validation.

Combined model. We also consider a model

s(u) = α sH(u) + (1− α) sN(u) (11)

where sH(u) is the score assigned by the hand-
feature system, sN(u) is the score assigned by the

9For efficiency, we restrict the mean to i ≤ 1e4 (the first
10,000 sentences).

neural-feature system, and α ∈ [0, 1] is a hyperpa-
rameter to balance the two. sH(u) and sN(u) were
trained separately. At test time, we use (11) to com-
bine them linearly before the logistic transform (6).
This yields a weighted-product-of-experts model.

6.4 Training procedure

Length thresholding. By default, our feature vec-
tor π(u) is extracted from those sentences in u with
length ≤ 40 tokens. In §7.3, however, we try con-
catenating this feature vector with one that is ex-
tracted in the same way from just sentences with
length ≤ 10. The intuition (Spitkovsky et al., 2010)
is that the basic word order of the language can be
most easily discerned from short, simple sentences.

Initialization. We initialize the model of (6)–(7)
so that the estimated directionality p̂(→| r, L), re-
gardless of L, is initially a weighted mean of r’s di-
rectionalities in the training languages, namely

p̄r ≡
∑

L

wL(r) p∗(→| r, L) (12)

where wL(r) ≡ p∗(r|L)∑
L′ p
∗(r|L′) (13)

This is done by setting V = 0 and the bias (bV )r =
log p̄r

1−p̄r , clipped to the range [−10, 10]. As a result,
we make sensible initial predictions even for rare re-
lations r, which allows us to converge reasonably
quickly even though we do not update the parame-
ters for rare relations as often.

We initialize the recurrent connections in the
GRU to random orthogonal matrices. All other
weight matrices in Figure 1 and the GRU use
“Xavier initialization” (Glorot and Bengio, 2010).
All other bias weight vectors are initialized to 0.

Regularization. We add an L2 regularizer to the
objective. When training the neural network, we use
dropout as well. All hyperparameters (regularization
coefficient, dropout rate, etc.) are tuned via cross-
validation; see §7.5.

Optimization. We use different algorithms in dif-
ferent feature settings. With scoring functions that
use only hand features, we adjust the feature weights
by stochastic gradient descent (SGD). With scor-
ing functions that include neural features, we use
RMSProp (Tieleman and Hinton, 2012).

152



Train Test
cs, es, fr, hi,
de, it, la itt,
no, ar, pt

en, nl, da, fi,
got, grc, et,
la proiel,
grc proiel, bg

la, hr, ga, he, hu,
fa, ta, cu, el, ro,
sl, ja ktc, sv,
fi ftb, id, eu, pl

Table 2: Data split of the 37 real languages, adapted from Wang
and Eisner (2016). (Our “Train,” on which we do 5-fold cross-
validation, contains both their “Train” and “Dev” languages.)

7 Experiments

7.1 Data splits

We hold out 17 UD languages for testing (Table 2).
For training, we use the remaining 20 UD languages
and tune the hyperparameters with 5-fold cross-
validation. That is, for each fold, we train the system
on 16 real languages and evaluate on the remaining
4. When augmenting the 16 real languages with GD
languages, we include only GD languages that are
generated by “mixing-and-matching” those 16 lan-
guages, which means that we add 16 × 17 × 17 =
4624 synthetic languages.10

Each GD treebank u provides a standard split into
train/dev/test portions. In this paper, we primarily
restrict ourselves to the train portions (saving the
gold trees from the dev and test portions to tune and
evaluate some future grammar induction system that
consults our typological predictions). For example,
we write utrain for the POS-tagged sentences in the
“train” portion, and p∗train for the empirical probabil-
ities derived from their gold trees. We always train
the model to predict p∗train from utrain on each train-
ing language. To evaluate on a held-out language
during cross-validation, we can measure how well
the model predicts p∗train given utrain.11 For our fi-

10Why 16×17×17? As Wang and Eisner (2016, §5) explain,
each GD treebank is obtained from the UD treebank of some
substrate language S by stochastically permuting the depen-
dents of verbs and nouns to respect typical orders in the super-
strate languages RV and RN respectively. There are 16 choices
for S. There are 17 choices for RV (respectively RN), including
RV = S (“self-permutation”) and RV = ∅ (“no permutation”).

11In actuality, we measured how well it predicts p∗
dev given

udev. That was a slightly less sensible choice. It may have
harmed our choice of hyperparameters, since dev is smaller
than train and therefore p∗

dev tends to have greater sampling er-
ror. Another concern is that our typology system, having been
specifically tuned to predict p∗

dev, might provide an unrealisti-
cally accurate estimate of p∗

dev to some future grammar induc-
tion system that is being cross-validated against the same dev
set, harming that system’s choice of hyperparameters as well.

Architecture ε-insensitive loss
Scoring Depth UD +GD

EC - 0.104 0.099
sH 0 0.057 0.037*
sH 1 0.050 0.036*
sH 3 0.060 0.048
sN 1 0.062 0.048

α sH + (1− α) sN 1 0.050 0.032*

Table 3: Average expected loss over 20 UD languages, com-
puted by 5-fold cross-validation. The first column indicates
whether we score using hand-engineered features (sH), neural
features (sN), or a combination (see end of §6.3). As a baseline,
the first line evaluates the EC (expected count) heuristic from
§5. Within each column, we boldface the best (smallest) re-
sult as well as all results that are not significantly worse (paired
permutation test by language, p < 0.05). A starred result is
significantly better than the other model in the same row.

nal test, we evaluate on the 17 test languages using
a model trained on all training languages (20 tree-
banks for UD, plus 20 × 21 × 21 = 8840 when
adding GD) with the chosen hyperparameters. To
evaluate on a test language, we again measure how
well the model predicts p∗train from utrain.

7.2 Comparison of architectures

Table 3 shows the cross-validation losses (equa-
tion (1)) that are achieved by different scoring ar-
chitectures. We compare the results when the model
is trained on real languages (the “UD” column) ver-
sus on real languages plus synthetic languages (the
“+GD” column).

The sH models here use a subset of the hand-
engineered features, selected by the experiments in
§7.3 below and corresponding to Table 4 line 8.

Although Figure 1 and equation (7) presented an
“depth-1” scoring network with one hidden layer,
Table 3 also evaluates “depth-d” architectures with d
hidden layers. The depth-0 architecture simply pre-
dicts each directionality separately using logistic re-
gression (although our training objective is not the
usual convex log-likelihood objective).

Some architectures are better than others. We
note that the hand-engineered features outperform
the neural features—though not significantly, since
they make complementary errors—and that com-
bining them is best. However, the biggest benefit
comes from augmenting the training data with GD
languages; this consistently helps more than chang-
ing the architecture.
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ID Features Length Loss (+GD)
0 ∅ — 0.076
1 conditional 40 0.058
2 joint 40 0.057
3 PMI 40 0.039
4 asymmetry 40 0.041
5 rows 3+4 40 0.038
6 row 5+b 40 0.037
7 row 5+t 40 0.037
8* row 5+b+t 40 0.036
9 row 8 10 0.043
10 row 8 10+40 0.036

Table 4: Cross-validation losses with different subsets of hand-
engineered features from §6.3. “∅” is a baseline with no fea-
tures (bias feature only), so it makes the same prediction for all
languages. “conditional” = πw

t|s features, “joint” = πw
t|s ·πw

s fea-
tures, “PMI” = πw

t|s//π
w
t and πw

t //π
w
t|s features, “asymmetry”

= πw
t|s//π

−w
t|s features, “b” are the features superscripted by b,

and “t” are the features with truncated window. “+” means con-
catenation.The “Length” field refers to length thresholding (see
§6.4). The system in the starred row is the one that we selected
for row 2 of Table 3.

7.3 Contribution of different feature classes

To understand the contribution of different hand-
engineered features, we performed forward selec-
tion tests on the depth-1 system, including only
some of the features. In all cases, we trained in
the “+GD” condition. The results are shown in Ta-
ble 4. Any class of features is substantially better
than baseline, but we observe that most of the total
benefit can be obtained with just PMI or asymme-
try features. Those features indicate, for example,
whether a verb tends to attract nouns to its right or
left. We did not see a gain from length thresholding.

7.4 Robustness to noisy input

We also tested our directionality prediction system
on noisy input (without retraining it on noisy input).
Specifically, we tested the depth-1 sH system. This
time, when evaluating on the dev split of a held-out
language, we provided a noisy version of that input
corpus that had been retagged by an automatic POS
tagger (Nguyen et al., 2014), which was trained on
just 100 gold-tagged sentences from the train split
of that language. The average tagging accuracy over
the 20 languages was only 77.26%. Nonetheless, the
“UD”-trained and “+GD”-trained systems got re-
spective losses of 0.052 and 0.041—nearly as good
as in Table 3, which used gold POS tags.

MS13 N10 EC ∅ UD +GD
loss 0.166 0.139 0.098 0.083 0.080 0.039

Table 5: Cross-validation average expected loss of the two
grammar induction methods, MS13 (Mareček and Straka, 2013)
and N10 (Naseem et al., 2010), compared to the EC heuristic of
§5 and our architecture of §6 (the version from the last line of
Table 3). In these experiments, the dependency relation types
are ordered POS pairs. N10 harnesses prior linguistic knowl-
edge, but its improvement upon MS13 is not statistically signif-
icant. Both grammar induction systems are significantly worse
than the rest of the systems, including even our two baseline
systems, namely EC (the “expected count” heuristic from §5)
and ∅ (the no-feature baseline system from Table 4 line 0). Like
N10, these baselines make use of some cross-linguistic knowl-
edge, which they extract in different ways from the training tree-
banks. Among our own 4 systems, EC is significantly worse
than all others, and +GD is significantly better than all others.
(Note: When training the baselines, we found that including
the +GD languages—a bias-variance tradeoff— harmed EC but
helped ∅. The table reports the better result in each case.)

7.5 Hyperparameter settings
For each result in Tables 3–4, the hyperparameters
were chosen by grid search on the cross-validation
objective (and the table reports the best result). For
the remaining experiments, we select the depth-1
combined models (11) for both “UD” and “+GD,”
as they are the best models according to Table 3.

The hyperparameters for the selected models are
as follows: When training with “UD,” we took
α = 1 (which ignores sN), with hidden layer size
h = 256, ψ = sigmoid, L2 coeff = 0 (no L2
regularization), and dropout = 0.2. When training
with “+GD,” we took α = 0.7, with different hy-
perparameters for the two interpolated models: sH
uses h = 128, ψ = sigmoid, L2 coeff = 0, and
dropout = 0.4, while sN uses h = 128, emb size =
128, rnn size = 32, ψ = relu, L2 coeff = 0, and
dropout = 0.2. For both “UD” and “+GD”, we use
λ = 1 for the smoothing in footnote 6.

7.6 Comparison with grammar induction
Grammar induction is an alternative way to predict
word order typology. Given a corpus of a language,
we can first use grammar induction to parse it into
dependency trees, and then estimate the directional-
ity of each dependency relation type based on these
(approximate) trees.

However, what are the dependency relation types?
Current grammar induction systems produce unla-
beled dependency edges. Rather than try to obtain
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Figure 3: Cross-validation loss broken down by relation. We
plot each relation r with x coordinate = the proportion of r in
the average training corpus = meanL∈Train p

∗
train(r | L) ∈ [0, 1],

and with y coordinate = the weighted average∑
L∈Heldout wL(r) lossε(p̂dev(→|r, L), p∗dev(→|r, L)) (see (13)).

a UD label like r = amod for each edge, we la-
bel the edge deterministically with a POS pair such
as r = (parent = NOUN, child = ADJ). Thus,
we will attempt to predict the directionality of each
POS-pair relation type. For comparison, we retrain
our supervised system to do the same thing.

For the grammar induction system, we try the
implementation of DMV with stop-probability es-
timation by Mareček and Straka (2013), which is
a common baseline for grammar induction (Le and
Zuidema, 2015) because it is language-independent,
reasonably accurate, fast, and convenient to use. We
also try the grammar induction system of Naseem
et al. (2010), which is the state-of-the-art system
on UD (Noji et al., 2016). Naseem et al. (2010)’s
method, like ours, has prior knowledge of what typ-
ical human languages look like.

Table 5 shows the results. Compared to Mareček
and Straka (2013), Naseem et al. (2010) gets only
a small (insignificant) improvement—whereas our
“UD” system halves the loss, and the “+GD” sys-
tem halves it again. Even our baseline systems are
significantly more accurate than the grammar induc-
tion systems, showing the effectiveness of casting
the problem as supervised prediction.

7.7 Fine-grained analysis
Beyond reporting the aggregate cross-validation loss
over the 20 training languages, we break down the
cross-validation predictions by relation type. Fig-
ure 3 shows that the frequent relations are all quite
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Figure 4: The y coordinate is the average loss of our model
(Table 4 line 8), just as in Figure 3, whereas the x coordinate
is the average loss of a simple baseline model ∅ that ignores
the input corpus (Table 4 line 0). Relations whose directionality
varies more by language have higher baseline loss. Relations
that beat the baseline fall below the diagonal line. The marker
size for each relation is proportional to the x-axis in Figure 3.

predictable. Figure 4 shows that our success is not
just because the task is easy—on relations whose di-
rectionality varies by language, so that a baseline
method does poorly, our system usually does well.

To show that our system is behaving well across
languages and not just on average, we zoom in on
5 relation types that are particularly common or of
particular interest to linguistic typologists. These 5
relations together account for 46% of all relation to-
kens in the average language: nmod = noun-nominal
modifier order, nsubj = subject-verb order (feature
82A in the World Atlas of Language Structures),
dobj = object-verb order (83A), amod = adjective-
noun order (87A), and case = placement of both
adpositions and case markers (85A).

As shown in Figure 5, most points in the first
five plots fall in or quite near the desired region.
We are pleased to see that the predictions are robust
when the training data is unbalanced. For example,
the case relation points leftward in most real lan-
guages, yet our system can still predict the right di-
rectionality of “hi”, “et” and “fi.” The credit goes
to the diversity of our training set, which contains
various synthetic case-right languages: the system
fails on these three languages if we train on real lan-
guages only. That said, apparently our training set is
still not diverse enough to do well on the outlier “ar”
(Arabic); see Figure 4 in Wang and Eisner (2016).
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Figure 5: Scatterplots of predicted vs. true directionalities (by
cross-validation). In the plot for relation type r, each language
appears as a marker at (p∗, p̂) (see §4), with the marker size pro-
portional to wL(r) (see (13)). Points that fall between the solid
lines (|p̂ − p∗| ≤ ε) are considered “correct,” by the definition
of ε-insensitive loss. The last plot (bottom right) shows worse
predictions for case when the model is trained on UD only.

7.8 Binary classification accuracy

Besides ε-insensitive loss, we also measured how
the systems perform on the coarser task of binary
classification of relation direction. We say that re-
lation r is dominantly “rightward” in language L iff
p∗(→| r, L) > 0.5. We say that a system predicts
“rightward” according to whether p̂(→| r, L) > 0.5.

We evaluate whether this binary prediction is cor-
rect for each of the 20 most frequent relations r,
for each held-out language L, using 5-fold cross-
validation over the 20 training languages L as in the
previous experiment. Tables 6 and 7 respectively
summarize these results by relation (equal average

Relation Rate EC ∅ UD +GD
nmod 0.15 0.85 0.9 0.9 0.9
punct 0.11 0.85 0.85 0.85 0.85
case 0.11 0.75 0.85 0.85 1
nsubj 0.08 0.95 0.95 0.95 0.95
det 0.07 0.8 0.9 0.9 0.9
dobj 0.06 0.6 0.75 0.75 0.85
amod 0.05 0.6 0.6 0.75 0.9
advmod 0.05 0.9 0.85 0.85 0.85
cc 0.04 0.95 0.95 0.95 0.95

conj 0.04 1 1 1 1
mark 0.03 0.95 0.95 0.95 0.95
advcl 0.02 0.85 0.85 0.85 0.8
cop 0.02 0.75 0.75 0.65 0.75
aux 0.02 0.9 0.6 0.75 0.65
iobj 0.02 0.45 0.55 0.5 0.6
acl 0.01 0.45 0.85 0.85 0.8

nummod 0.01 0.9 0.9 0.9 0.9
xcomp 0.01 0.95 0.95 0.95 1
neg 0.01 1 1 1 1
ccomp 0.01 0.75 0.95 0.95 0.95

Avg. - 0.81 0.8475 0.855 0.8775

Table 6: Accuracy on the simpler task of binary classification of
relation directionality. The most common relations are shown
first: the “Rate” column gives the average rate of the relation
across the 20 training languages (like the x coordinate in Fig. 3).

over languages) and by language (equal average over
relations). Keep in mind that these systems had not
been specifically trained to place relations on the
correct side of the artificial 0.5 boundary.

Binary classification is an easier task. It is easy
because, as the ∅ column in Table 6 indicates,
most relations have a clear directionality preference
shared by most of the UD languages. As a result, the
better models with more features have less opportu-
nity to help. Nonetheless, they do perform better,
and the EC heuristic continues to perform worse.

In particular, EC fails significantly on dobj and
iobj. This is because nsubj, dobj, and iobj
often have different directionalities (e.g., in SVO
languages), but the EC heuristic will tend to pre-
dict the same direction for all of them, according to
whether NOUNs tend to precede nearby VERBs.

7.9 Final evaluation on test data

All previous experiments were conducted by cross-
validation on the 20 training languages. We now
train the system on all 20, and report results on the
17 blind test languages (Table 8). In our evaluation
metric (1), R includes all 57 relation types that ap-
pear in training data, plus a special UNK type for
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target EC ∅ UD +GD
ar 0.8 0.8 0.75 0.85
bg 0.85 0.95 0.95 0.95
cs 0.9 1 1 0.95
da 0.8 0.95 0.95 0.95
de 0.9 0.9 0.9 0.95
en 0.9 1 1 1
es 0.9 0.9 0.95 0.95
et 0.8 0.8 0.8 0.8
fi 0.75 0.85 0.85 0.85
fr 0.9 0.9 0.9 0.95

got 0.75 0.8 0.85 0.8
grc 0.6 0.7 0.7 0.75

grc proiel 0.8 0.8 0.85 0.9
hi 0.6 0.45 0.45 0.7
it 0.9 0.9 0.9 0.95

la itt 0.7 0.85 0.8 0.85
la proiel 0.7 0.7 0.75 0.7

nl 0.95 0.85 0.85 0.85
no 0.9 1 1 0.95
pt 0.8 0.85 0.9 0.9

Avg. 0.81 0.8475 0.855 0.8775

Table 7: Accuracy on the simpler task of binary classification
of relation directionality for each training language. A detailed
comparison shows that EC is significantly worse than UD and
+GD, and that ∅ is significantly worse than +GD (paired permu-
tation test over the 20 languages, p < 0.05). The improvement
from UD to +GD is insignificant, which suggests that this is an
easier task where weak models might suffice.

relations that appear only in test data. The results
range from good to excellent, with synthetic data
providing consistent and often large improvements.

These results could potentially be boosted in the
future by using an even larger and more diverse
training set. In principle, when evaluating on any
one of our 37 real languages, one could train a sys-
tem on all of the other 36 (plus the galactic lan-
guages derived from them), not just 20. Moreover,
the Universal Dependencies collection has contin-
ued to grow beyond the 37 languages used here (§3).
Finally, our current setup extracts only one training
example from each (real or synthetic) language. One
could easily generate a variant of this example each
time the language is visited during stochastic opti-
mization, by bootstrap-resampling its training cor-
pus (to add “natural” variation) or subsampling it (to
train the predictor to work on smaller corpora). In
the case of a synthetic language, one could also gen-
erate a corpus of new trees each time the language
is visited (by re-running the stochastic permutation
procedure, instead of reusing the particular permuta-
tion released by the Galactic Dependencies project).

Test Train
target UD +GD target UD +GD

cu 0.024 0.024 ar 0.116 0.057
el 0.056 0.011 bg 0.037 0.015
eu 0.250 0.072 cs 0.025 0.014
fa 0.220 0.134 da 0.024 0.017

fi ftb 0.073 0.029 de 0.046 0.025
ga 0.181 0.154 en 0.025 0.036
he 0.079 0.033 es 0.012 0.007
hr 0.062 0.011 et 0.055 0.014
hu 0.119 0.102 fi 0.069 0.070
id 0.099 0.076 fr 0.024 0.018

ja ktc 0.247 0.078 got 0.008 0.026
la 0.036 0.004 grc 0.026 0.007
pl 0.056 0.023 grc proiel 0.004 0.017
ro 0.029 0.009 hi 0.363 0.191
sl 0.015 0.031 it 0.011 0.008
sv 0.012 0.008 la itt 0.033 0.023
ta 0.238 0.053 la proiel 0.018 0.021

nl 0.069 0.066
no 0.008 0.010
pt 0.038 0.004

Test Avg. 0.106 0.050* All Avg. 0.076 0.040*

Table 8: Our final comparison on the 17 test languages appears
at left. We ask whether the average expected loss on these 17
real target languages is reduced by augmenting the training pool
of 20 UD languages with +20*21*21 GD languages. For com-
pleteness, we extend the table with the cross-validation results
on the training pool. The “Avg.” lines report the average of 17
test or 37 training+testing languages. We mark both “+GD” av-
erages with “*” as they are significantly better than their “UD”
counterparts (paired permutation test by language, p < 0.05).

8 Related Work
Typological properties can usefully boost the per-
formance of cross-linguistic systems (Bender, 2009;
O’Horan et al., 2016). These systems mainly aim
to annotate low-resource languages with help from
models trained on similar high-resource languages.
Naseem et al. (2012) introduce a “selective shar-
ing” technique for generative parsing, in which a
Subject-Verb language will use parameters shared
with other Subject-Verb languages. Täckström et al.
(2013) and Zhang and Barzilay (2015) extend this
idea to discriminative parsing and gain further im-
provements by conjoining regular parsing features
with typological features. The cross-linguistic neu-
ral parser of Ammar et al. (2016) conditions on ty-
pological features by supplying a “language embed-
ding” as input. Zhang et al. (2012) use typological
properties to convert language-specific POS tags to
UD POS tags, based on their ordering in a corpus.

Moving from engineering to science, lin-
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guists seek typological universals of human lan-
guage (Greenberg, 1963; Croft, 2002; Song, 2014;
Hawkins, 2014), e.g., “languages with domi-
nant Verb-Subject-Object order are always preposi-
tional.” Dryer and Haspelmath (2013) characterize
2679 world languages with 192 typological proper-
ties. Their WALS database can supply features to
NLP systems (see previous paragraph) or gold stan-
dard labels for typological classifiers. Daumé III and
Campbell (2007) take WALS as input and propose
a Bayesian approach to discover new universals.
Georgi et al. (2010) impute missing properties of a
language, not by using universals, but by backing
off to the language’s typological cluster. Murawaki
(2015) use WALS to help recover the evolutionary
tree of human languages; Daumé III (2009) consid-
ers the geographic distribution of WALS properties.

Attempts at automatic typological classification
are relatively recent. Lewis and Xia (2008) pre-
dict typological properties from induced trees, but
guess those trees from aligned bitexts, not by mono-
lingual grammar induction as in §7.6. Liu (2010)
and Futrell et al. (2015) show that the directional-
ity of (gold) dependencies is indicative of “basic”
word order and freeness of word order. Those papers
predict typological properties from trees that are au-
tomatically (noisily) annotated or manually (expen-
sively) annotated. An alternative is to predict the ty-
pology directly from raw or POS-tagged text, as we
do. Saha Roy et al. (2014) first explored this idea,
building a system that correctly predicts adposition
typology on 19/23 languages with only word co-
occurrence statistics. Zhang et al. (2016) evaluate
semi-supervised POS tagging by asking whether the
induced tag sequences can predict typological prop-
erties. Their prediction approach is supervised like
ours, although developed separately and trained on
different data. They more simply predict 6 binary-
valued WALS properties, using 6 independent bi-
nary classifiers based on POS bigram and trigrams.

Our task is rather close to grammar induction,
which likewise predicts a set of real numbers giv-
ing the relative probabilities of competing syntactic
configurations. Most previous work on grammar in-
duction begins with maximum likelihood estimation
of some generative model—such as a PCFG (Lari
and Young, 1990; Carroll and Charniak, 1992) or
dependency grammar (Klein and Manning, 2004)—

though it may add linguistically-informed inductive
bias (Ganchev et al., 2010; Naseem et al., 2010).
Most such methods use local search and must wres-
tle with local optima (Spitkovsky et al., 2013). Fine-
grained typological classification might supplement
this approach, by cutting through the initial com-
binatorial challenge of establishing the basic word-
order properties of the language. In this paper we
only quantify the directionality of each relation type,
ignoring how tokens of these relations interact lo-
cally to give coherent parse trees. Grammar induc-
tion methods like EM could naturally consider those
local interactions for a more refined analysis, when
guided by our predicted global directionalities.

9 Conclusions and Future Work
We introduced a typological classification task,
which attempts to extract quantitative knowledge
about a language’s syntactic structure from its sur-
face forms (POS tag sequences). We applied super-
vised learning to this apparently unsupervised prob-
lem. As far as we know, we are the first to utilize
synthetic languages to train a learner for real lan-
guages: this move yielded substantial benefits.12

Figure 5 shows that we rank held-out languages
rather accurately along a spectrum of directionality,
for several common dependency relations. Table 8
shows that if we jointly predict the directionalities
of all the relations in a new language, most of those
numbers will be quite close to the truth (low aggre-
gate error, weighted by relation frequency). This
holds promise for aiding grammar induction.

Our trained model is robust when applied to noisy
POS tag sequences. In the future, however, we
would like to make similar predictions from raw
word sequences. That will require features that ab-
stract away from the language-specific vocabulary.
Although recurrent neural networks in the present
paper did not show a clear advantage over hand-
engineered features, they might be useful when used
with word embeddings.

Finally, we are interested in downstream uses.
Several NLP tasks have benefited from typologi-
cal features (§8). By using end-to-end training, our
methods could be tuned to extract features (existing
or novel) that are particularly useful for some task.

12Although Wang and Eisner (2016) review uses of synthetic
training data elsewhere in machine learning.
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