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Abstract

Semantic word embeddings represent the
meaning of a word via a vector, and are cre-
ated by diverse methods. Many use non-
linear operations on co-occurrence statistics,
and have hand-tuned hyperparameters and
reweighting methods.

This paper proposes a new generative model, a
dynamic version of the log-linear topic model
of Mnih and Hinton (2007). The method-
ological novelty is to use the prior to com-
pute closed form expressions for word statis-
tics. This provides a theoretical justifica-
tion for nonlinear models like PMI, word2vec,
and GloVe, as well as some hyperparame-
ter choices. It also helps explain why low-
dimensional semantic embeddings contain lin-
ear algebraic structure that allows solution of
word analogies, as shown by Mikolov et al.
(2013a) and many subsequent papers.

Experimental support is provided for the gen-
erative model assumptions, the most impor-
tant of which is that latent word vectors are
fairly uniformly dispersed in space.

1 Introduction

Vector representations of words (word embeddings)
try to capture relationships between words as dis-
tance or angle, and have many applications in com-
putational linguistics and machine learning. They
are constructed by various models whose unify-
ing philosophy is that the meaning of a word is
defined by “the company it keeps” (Firth, 1957),
namely, co-occurrence statistics. The simplest meth-
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ods use word vectors that explicitly represent co-
occurrence statistics. Reweighting heuristics are
known to improve these methods, as is dimension
reduction (Deerwester et al., 1990). Some reweight-
ing methods are nonlinear, which include taking the
square root of co-occurrence counts (Rohde et al.,
2006), or the logarithm, or the related Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990).
These are collectively referred to as Vector Space
Models, surveyed in (Turney and Pantel, 2010).

Neural network language models (Rumelhart et
al., 1986; Rumelhart et al., 1988; Bengio et al.,
2006; Collobert and Weston, 2008a) propose an-
other way to construct embeddings: the word vec-
tor is simply the neural network’s internal repre-
sentation for the word. This method is nonlinear
and nonconvex. It was popularized via word2vec,
a family of energy-based models in (Mikolov et al.,
2013b; Mikolov et al., 2013c), followed by a ma-
trix factorization approach called GloVe (Penning-
ton et al., 2014). The first paper also showed how
to solve analogies using linear algebra on word em-
beddings. Experiments and theory were used to sug-
gest that these newer methods are related to the older
PMI-based models, but with new hyperparameters
and/or term reweighting methods (Levy and Gold-
berg, 2014b).

But note that even the old PMI method is a bit
mysterious. The simplest version considers a sym-
metric matrix with each row/column indexed by
a word. The entry for (w,w’) is PMI(w,w’) =
p(w,w’)

p(w)p(w’)’
ability of words w, w’ appearing within a window of

certain size in the corpus, and p(w) is the marginal

log where p(w,w') is the empirical prob-
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probability of w. (More complicated models could
use asymmetric matrices with columns correspond-
ing to context words or phrases, and also involve ten-
sorization.) Then word vectors are obtained by low-
rank SVD on this matrix, or a related matrix with
term reweightings. In particular, the PMI matrix is
found to be closely approximated by a low rank ma-
trix: there exist word vectors in say 300 dimensions,
which is much smaller than the number of words in
the dictionary, such that

(V, V) & PMI(w, w") (1.1)
where = should be interpreted loosely.

There appears to be no theoretical explanation
for this empirical finding about the approximate low
rank of the PMI matrix. The current paper addresses
this. Specifically, we propose a probabilistic model
of text generation that augments the log-linear topic
model of Mnih and Hinton (2007) with dynamics,
in the form of a random walk over a latent discourse
space. The chief methodological contribution is us-
ing the model priors to analytically derive a closed-
form expression that directly explains (1.1); see The-
orem 2.2 in Section 2. Section 3 builds on this in-
sight to give a rigorous justification for models such
as word2vec and GloVe, including the hyperparam-
eter choices for the latter. The insight also leads to
a mathematical explanation for why these word em-
beddings allow analogies to be solved using linear
algebra; see Section 4. Section 5 shows good empir-
ical fit to this model’s assumtions and predictions,
including the surprising one that word vectors are
pretty uniformly distributed (isotropic) in space.

1.1 Related work

Latent variable probabilistic models of language
have been used for word embeddings before, includ-
ing Latent Dirichlet Allocation (LDA) and its more
complicated variants (see the survey (Blei, 2012)),
and some neurally inspired nonlinear models (Mnih
and Hinton, 2007; Maas et al., 2011). In fact, LDA
evolved out of efforts in the 1990s to provide a gen-
erative model that “explains” the success of older
vector space methods like Latent Semantic Index-
ing (Papadimitriou et al., 1998; Hofmann, 1999).
However, none of these earlier generative models
has been linked to PMI models.
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Levy and Goldberg (2014b) tried to relate
word2vec to PMI models. They showed that if
there were no dimension constraint in word2vec,
specifically, the “skip-gram with negative sampling
(SGNS)” version of the model, then its solutions
would satisfy (1.1), provided the right hand side
were replaced by PMI(w, w') — 3 for some scalar /3.
However, skip-gram is a discriminative model (due
to the use of negative sampling), not generative. Fur-
thermore, their argument only applies to very high-
dimensional word embeddings, and thus does not
address low-dimensional embeddings, which have
superior quality in applications.

Hashimoto et al. (2016) focuses on issues simi-
lar to our paper. They model text generation as a
random walk on words, which are assumed to be
embedded as vectors in a geometric space. Given
that the last word produced was w, the probability
that the next word is w’ is assumed to be given by
h(|vw — vu|?) for a suitable function h, and this
model leads to an explanation of (1.1). By contrast
our random walk involves a latent discourse vector,
which has a clearer semantic interpretation and has
proven useful in subsequent work, e.g. understand-
ing structure of word embeddings for polysemous
words Arora et al. (2016). Also our work clarifies
some weighting and bias terms in the training objec-
tives of previous methods (Section 3) and also the
phenomenon discussed in the next paragraph.

Researchers have tried to understand why vec-
tors obtained from the highly nonlinear word2vec
models exhibit linear structures (Levy and Goldberg,
2014a; Pennington et al., 2014). Specifically, for
analogies like “man:woman::king:??,” queen hap-
pens to be the word whose vector vgyeer, 18 the most
similar to the vector vging — Vman + Vwoman- This
suggests that simple semantic relationships, such as
masculine vs feminine tested in the above example,
correspond approximately to a single direction in
space, a phenomenon we will henceforth refer to as
RELATIONS=LINES.

Section 4 surveys earlier attempts to explain this
phenomenon and their shortcoming, namely, that
they ignore the large approximation error in rela-
tionships like (1.1). This error appears larger than
the difference between the best solution and the sec-
ond best (incorrect) solution in analogy solving, so
that this error could in principle lead to a complete



failure in analogy solving. In our explanation, the
low dimensionality of the word vectors plays a key
role. This can also be seen as a theoretical expla-
nation of the old observation that dimension reduc-
tion improves the quality of word embeddings for
various tasks. The intuitive explanation often given
—that smaller models generalize better—turns out
to be fallacious, since the training method for cre-
ating embeddings makes no reference to analogy
solving. Thus there is no a priori reason why low-
dimensional model parameters (i.e., lower model ca-
pacity) should lead to better performance in anal-
ogy solving, just as there is no reason they are bet-
ter at some other unrelated task like predicting the
weather.

1.2 Benefits of generative approaches

In addition to giving some form of “unification” of
existing methods, our generative model also brings
more intepretability to word embeddings beyond tra-
ditional cosine similarity and even analogy solving.
For example, it led to an understanding of how the
different senses of a polysemous word (e.g., bank)
reside in linear superposition within the word em-
bedding (Arora et al., 2016). Such insight into em-
beddings may prove useful in the numerous settings
in NLP and neuroscience where they are used.

Another new explanatory feature of our model
is that low dimensionality of word embeddings
plays a key theoretical role —unlike in previous
papers where the model is agnostic about the di-
mension of the embeddings, and the superiority of
low-dimensional embeddings is an empirical finding
(starting with Deerwester et al. (1990)). Specifically,
our theoretical analysis makes the key assumption
that the set of all word vectors (which are latent vari-
ables of the generative model) are spatially isotropic,
which means that they have no preferred direction
in space. Having n vectors be isotropic in d dimen-
sions requires d < n. This isotropy is needed in
the calculations (i.e., multidimensional integral) that
yield (1.1). It also holds empirically for our word
vectors, as shown in Section 5.

The isotropy of low-dimensional word vectors
also plays a key role in our explanation of the
RELATIONS=LINES phenomenon (Section 4). The
isotropy has a “purification” effect that mitigates the
effect of the (rather large) approximation error in the
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PMI models.

2 Generative model and its properties

The model treats corpus generation as a dynamic
process, where the t-th word is produced at step ¢.
The process is driven by the random walk of a dis-
course vector ¢; € R?. Its coordinates represent
what is being talked about.! Each word has a (time-
invariant) latent vector v,, € R< that captures its cor-
relations with the discourse vector. We model this
bias with a log-linear word production model:

Pr{w emitted at time ¢ | ¢;] o< exp({ct, vy)). (2.1)

The discourse vector ¢; does a slow random walk
(meaning that c;;; is obtained from ¢; by adding a
small random displacement vector), so that nearby
words are generated under similar discourses. We
are interested in the probabilities that word pairs co-
occur near each other, so occasional big jumps in the
random walk are allowed because they have negligi-
ble effect on these probabilities.

A similar log-linear model appears in Mnih and
Hinton (2007) but without the random walk. The
linear chain CRF of Collobert and Weston (2008b) is
more general. The dynamic topic model of Blei and
Lafferty (2006) utilizes topic dynamics, but with a
linear word production model. Belanger and Kakade
(2015) have proposed a dynamic model for text us-
ing Kalman Filters, where the sequence of words is
generated from Gaussian linear dynamical systems,
rather than the log-linear model in our case.

The novelty here over such past works is a the-
oretical analysis in the method-of-moments tradi-
tion (Hsu et al., 2012; Cohen et al., 2012). Assuming
a prior on the random walk we analytically integrate
out the hidden random variables and compute a sim-
ple closed form expression that approximately con-
nects the model parameters to the observable joint
probabilities (see Theorem 2.2). This is reminis-
cent of analysis of similar random walk models in
finance (Black and Scholes, 1973).

Model details. Let n denote the number of words
and d denote the dimension of the discourse space,
where 1 < d < n. Inspecting (2.1) suggests word

"This is a different interpretation of the term “discourse”
compared to some other settings in computational linguistics.



vectors need to have varying lengths, to fit the empir-
ical finding that word probabilities satisfy a power
law. Furthermore, we will assume that in the bulk,
the word vectors are distributed uniformly in space,
earlier referred to as isotropy. This can be quantified
as a prior in the Bayesian tradition. More precisely,
the ensemble of word vectors consists of i.i.d draws
generated by v = s - ¥, where ¢ is from the spher-
ical Gaussian distribution, and s is a scalar random
variable. We assume s is a random scalar with ex-
pectation 7 = ©(1) and s is always upper bounded
by x, which is another constant. Here 7 governs the
expected magnitude of (v, ¢;), and it is particularly
important to choose it to be ©(1) so that the distribu-
tion Pr[w|c;] oc exp((vy, ) is interesting.? More-
over, the dynamic range of word probabilities will
roughly equal exp(x2), so one should think of  as
an absolute constant like 5. These details about s are
important for realistic modeling but not too impor-
tant in our analysis. (Furthermore, readers uncom-
fortable with this simplistic Bayesian prior should
look at Section 2.1 below.)

Finally, we clarify the nature of the random walk.
We assume that the stationary distribution of the ran-
dom walk is uniform over the unit sphere, denoted
by C. The transition kernel of the random walk can
be in any form so long as at each step the movement
of the discourse vector is at most ez / Vdin /5 norm.>
This is still fast enough to let the walk mix quickly
in the space.

The following lemma (whose proof appears in the
appendix) is central to the analysis. It says that un-
der the Bayesian prior, the partition function Z, =
> w €Xp((vw, ¢)), which is the implied normaliza-
tion in equation (2.1), is close to some constant Z
for most of the discourses c. This can be seen as a
plausible theoretical explanation of a phenomenon
called self-normalization in log-linear models: ig-
noring the partition function or treating it as a con-
stant (which greatly simplifies training) is known to
often give good results. This has also been studied

?A larger 7 will make Pr[w|c;] too peaked and a smaller one
will make it too uniform.

3More precisely, the proof extends to any symmetric prod-
uct stationary distribution C with sub-Gaussian coordinate sat-
isfying E. [[|c[|’] = 1, and the steps are such that for all ct,
Ep(crs1len) [€xp(kVd]ciy1 — ¢i])] < 1+ €2 for some small
€2.
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in (Andreas and Klein, 2014).

Lemma 2.1 (Concentration of partition functions).
If the word vectors satisfy the Bayesian prior de-
scribed in the model details, then

Prl-e)Z<Z.<(1+e)Z>1-6 22)

fore. = O(1/\/n), and § = exp(—Q(log? n)).

The concentration of the partition functions then
leads to our main theorem (the proof is in the ap-
pendix). The theorem gives simple closed form
approximations for p(w), the probability of word
w in the corpus, and p(w,w’), the probability
that two words w,w’ occur next to each other.
The theorem states the result for the window size
g = 2, but the same analysis works for pairs
that appear in a small window, say of size 10, as
stated in Corollary 2.3. Recall that PMI(w, w') =

log[p(w, w’) /(p(w)p(w’))].
Theorem 2.2. Suppose the word vectors satisfy the
inequality (2.2), and window size ¢ = 2. Then,

2
log p(w, w') = W;;w'? —2logZ +e, (2.3)
2
log p(w) = ‘U;d’b —log Z *+e. 2.4)

for € = O(e.) + O(1/d) + O(ey). Jointly these
imply:

<Uw7 vw’>

PMI (w,w') = y

+ O(e). (2.5)

Remarks 1. Since the word vectors have {5 norm
of the order of v/d, for two typical word vectors
Vus Vut ||V + Vo ||3 is of the order of ©(d). There-
fore the noise level € is very small compared to the
leading term % |0 + vy ||3. For PMI however, the
noise level O(e) could be comparable to the leading
term, and empirically we also find higher error here.

Remarks 2. Variants of the expression for joint
probability in (2.3) had been hypothesized based
upon empirical evidence in Mikolov et al. (2013b)
and also Globerson et al. (2007), and Maron et al.
(2010) .

Remarks 3. Theorem 2.2 directly leads to the ex-
tension to a general window size g as follows:



Corollary 2.3. Let p,(w,w’) be the co-occurrence
probability in windows of size q, and PMI,(w,w'")
be the corresponding PMI value. Then

2
log pg(w, w') = va—g;ng —2log Z + v *¢,
PMI, (w,w') = W £ 0().

where v = log (@).

It is quite easy to see that Theorem 2.2 implies
the Corollary 2.3, as when the window size is ¢
the pair w,w’ could appear in any of (4) positions
within the window, and the joint probability of w, w’
is roughly the same for any positions because the
discourse vector changes slowly. (Of course, the er-
ror term gets worse as we consider larger window
sizes, although for any constant size, the statement
of the theorem is correct.) This is also consistent
with the shift 3 for fitting PMI in (Levy and Gold-
berg, 2014b), which showed that without dimension
constraints, the solution to skip-gram with negative
sampling satisfies PMI (w, w') — 8 = (vy,, v,y ) for
a constant [3 that is related to the negative sampling
in the optimization. Our result justifies via a genera-
tive model why this should be satisfied even for low
dimensional word vectors.

2.1 Weakening the model assumptions

For readers uncomfortable with Bayesian priors, we
can replace our assumptions with concrete proper-
ties of word vectors that are empirically verifiable
(Section 5.1) for our final word vectors, and in fact
also for word vectors computed using other recent
methods.

The word meanings are assumed to be represented
by some “ground truth” vectors, which the experi-
menter is trying to recover. These ground truth vec-
tors are assumed to be spatially isotropic in the bulk,
in the following two specific ways: (i) For almost
all unit vectors ¢ the sum ), exp((vy, ¢)) is close
to a constant Z; (ii) Singular values of the matrix
of word vectors satisfy properties similar to those of
random matrices, as formalized in the paragraph be-
fore Theorem 4.1. Our Bayesian prior on the word
vectors happens to imply that these two conditions
hold with high probability. But the conditions may
hold even if the prior doesn’t hold. Furthermore,
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they are compatible with all sorts of local structure
among word vectors such as existence of cluster-
ings, which would be absent in truly random vectors
drawn from our prior.

3 Training objective and relationship to
other models

To get a training objective out of Theorem 2.2, we
reason as follows. Let X, be the number of
times words w and w’ co-occur within the same
window in the corpus. The probability p(w,w’) of
such a co-occurrence at any particular time is given
by (2.3). Successive samples from a random walk
are not independent. But if the random walk mixes
fairly quickly (the mixing time is related to the log-
arithm of the vocabulary size), then the distribution
of X, 4’s is very close to a multinomial distribu-
tion Mul(L, {p(w,w’)}), where L = 3"
is the total number of word pairs.
Assuming this approximation, we show below
that the maximum likelihood values for the word
vectors correspond to the following optimization,

/
w,w! “rw,w

min X!
{vw},C w’w,

2

(1o8(Xunr) = o +vuslf = C)

As is usual, empirical performance is improved by
weighting down very frequent word pairs, possibly
because very frequent words such as “the” do not fit
our model. This is done by replacing the weighting
Xy by its truncation min{X,, ,v, Xmax} where
Xmax 18 a constant such as 100. We call this objec-
tive with the truncated weights SN (Squared Norm).

We now give its derivation. Maximizing the like-
lihood of { X, .} is equivalent to maximizing

¢ =log H p(w, w')Xww’
(w,w’)

Denote the logarithm of the ratio between the ex-
pected count and the empirical count as

Lp(ww)) G

Aw,u)’ = log ( X
w,w’

Then with some calculation, we obtain the following
where c is independent of the empirical observations



vaw/’s.

{=c+ Z KXo w D (3.2)

(w,w’)

On the other hand, using e ~ 1 +z +22/2 when

x is small,* we have

Z prw’— Z wa’e w,w!

(w,w’)
A2
Z wa <1+Aww’+ ww)-
(w,w')
Note that L = Z Xy 80

E Xw,w/Aw,w’ ~ ——

(w,w’)

2
E X Dy

(w,w’)

Plugging this into (3.2) leads to
Z Xw,w/Aij,w’
(w,w’)

So maximizing the likelihood is approximately
equivalent to minimizing the right hand side, which
(by examining (3.1)) leads to our objective.

(3.3)

Objective for training with PMI. A similar ob-
jective PMI can be obtained from (2.5), by com-
puting an approximate MLE, using the fact that
the error between the empirical and true value of
PMI(w, w') is driven by the smaller term p(w, w'),
and not the larger terms p(w), p(w').

min

2
{vw},C (vu, vw/>)

Xow (PMI(w, w') —
w,w’

This is of course very analogous to classical VSM
methods, with a novel reweighting method.

Fitting to either of the objectives involves solving
a version of Weighted SVD which is NP-hard, but
empirically seems solvable in our setting via Ada-
Grad (Duchi et al., 2011).

*This Taylor series approximation has an error of the order
of =3, but ignoring it can be theoretically justified as follows.
For a large X, .., its value approaches its expectation and thus
the corresponding A, v is close to 0 and thus ignoring A3 !
is well justified. The terms where A,, ., is significant corre-
spond to X, ,,+’s that are small. But empirically, X,, ,,»’s obey
a power law distribution (see, e.g. Pennington et al. (2014)) us-
ing which it can be shown that these terms contribute a small
fraction of the final objective (3.3). So we can safely ignore
the errors. Full details appear in the ArXiv version of this pa-
per (Arora et al., 2015).
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Connection to GloVe. Compare SN with the ob-
jective used by GloVe (Pennington et al., 2014):

Z f(Xw,w’)(log<Xw,w’)_<vw; Uw’>_5w_5w’_c)2

w,w’

with f(Xyw) = m1n{X3/4,,100} Their weight-

ing methods and the need for bias terms Sws Sy C
were derived by trial and error; here they are all
predicted and given meanings due to Theorem 2.2,
specifically s, = [lvw|?.

Connection to word2vec(CBOW). The CBOW
model in word2vec posits that the probability of a
word w1 as a function of the previous k£ words

W1, W2,y ...y Wi

k

p (wk+1‘ {wi}§=1> X eXp(<ka+17 % ; Uwi>)

This expression seems mysterious since it de-
pends upon the average word vector for the previ-
ous k words. We show it can be theoretically jus-
tified. Assume a simplified version of our model,
where a small window of k& words is generated as
follows: sample ¢ ~ C, where C is a uniformly ran-
dom unit vector, then sample (wy,ws,...,wg) ~
exp((Zle U, , €))/Z.. Furthermore, assume Z, =
Z for any c.

Lemma 3.1. In the simplified version of our model,
the Maximum-a-Posteriori (MAP) estimate of c

: ; Zf 1 Yw;

iven (Wi, ws, ..., wg) is —==L"1—,
given (w1, wa, ..., wg) is S ou s
Proof. The ¢ maximizing p (c|wy,we,...,wy) is
the maximizer of p(c)p (w1, ws, ..., wg|c). Since

p(c) = p(d) for any ¢,, and we have
p(wi,wa,...,wklc) = exp({d_; vu,;,c))/Z, the
.. . Sk v,
a clearly c = —=i=1 i | O
maximizer is clearly ¢ = Sl

Thus using the MAP estimate of c¢; gives essen-
tially the same expression as CBOW apart from the
rescaling, which is often omitted due to computa-
tional efficiency in empirical works.

4 Explaining RELATIONS=LINES

As mentioned, word analogies like “a:b::c:??” can
be solved via a linear algebraic expression:

argmin ||v, —vb—vc'i-vng, 4.1
d



where vectors have been normalized such that
llvall, = 1. This suggests that the semantic rela-
tionships being tested in the analogy are character-
ized by a straight line,> referred to earlier as RELA-
TIONS=LINES.

Using our model we will show the following for
low-dimensional embeddings: for each such relation
R there is a direction pp in space such that for any
word pair a, b satisfying the relation, v, — vy, is like
ur plus some noise vector. This happens for rela-
tions satisfying a certain condition described below.
Empirical results supporting this theory appear in
Section 5, where this linear structure is further lever-
aged to slightly improve analogy solving.

A side product of our argument will be a
mathematical explanation of the empirically well-
established superiority of low-dimensional word
embeddings over high-dimensional ones in this set-
ting (Levy and Goldberg, 2014a). As mentioned ear-
lier, the usual explanation that smaller models gen-
eralize better is fallacious.

We first sketch what was missing in prior attempts
to prove versions of RELATIONS=LINES from first
principles. The basic issue is approximation er-
ror: the difference between the best solution and the
2nd best solution to (4.1) is typically small, whereas
the approximation error in the objective in the low-
dimensional solutions is larger. For instance, if one
uses our PMI objective, then the weighted average
of the termwise error in (2.5) is 17%, and the expres-
sion in (4.1) above contains six inner products. Thus
in principle the approximation error could lead to a
failure of the method and the emergence of linear
relationship, but it does not.

Prior explanations. Pennington et al. (2014) try
to propose a model where such linear relationships
should occur by design. They posit that gueen is a
solution to the analogy “man:woman::king:??” be-

Note that this interpretation has been disputed; e.g., it is
argued in Levy and Goldberg (2014a) that (4.1) can be under-
stood using only the classical connection between inner product
and word similarity, using which the objective (4.1) is slightly
improved to a different objective called 3COSMUL. However,
this “explanation” is still dogged by the issue of large termwise
error pinpointed here, since inner product is only a rough ap-
proximation to word similarity. Furthermore, the experiments
in Section 5 clearly support the RELATIONS=LINES interpreta-
tion.
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cause

plx| man)
p(x [ woman)’

p(x | king)
p(x | queen)

4.2)

where p(x | king) denotes the conditional proba-
bility of seeing word x in a small window of text
around king. Relationship (4.2) is intuitive since
both sides will be ~ 1 for gender-neutral y like
“walks” or “food”, will be > 1 when Y is like “he,
Henry” and will be < 1 when Y is like “dress, she,
Elizabeth.” This was also observed by Levy and
Goldberg (2014a). Given (4.2), they then posit that
the correct model describing word embeddings in
terms of word occurrences must be a homomorphism
from (R?, +) to (R*, x), so vector differences map
to ratios of probabilities. This leads to the expres-
sion
Pww = <'Uw; Uw’> + by + by,

and their method is a (weighted) least squares fit for
this expression. One shortcoming of this argument
is that the homomorphism assumption assumes the
linear relationships instead of explaining them from
a more basic principle. More importantly, the empir-
ical fit to the homomorphism has nontrivial approx-
imation error, high enough that it does not imply the
desired strong linear relationships.

Levy and Goldberg (2014b) show that empiri-
cally, skip-gram vectors satisfy

(U, Uy ) = PMI(w, w') (4.3)

up to some shift. They also give an argument sug-
gesting this relationship must be present if the so-
lution is allowed to be very high-dimensional. Un-
fortunately, that argument does not extend to low-
dimensional embeddings. Even if it did, the issue of
termwise approximation error remains.

Our explanation. The current paper has intro-
duced a generative model to theoretically explain the
emergence of relationship (4.3). However, as noted
after Theorem 2.2, the issue of high approximation
error does not go away either in theory or in the em-
pirical fit. We now show that the isotropy of word
vectors (assumed in the theoretical model and ver-
ified empirically) implies that even a weak version
of (4.3) is enough to imply the emergence of the ob-
served linear relationships in low-dimensional em-
beddings.



This argument will assume the analogy in ques-
tion involves a relation that obeys Pennington et al.’s
suggestion in (4.2). Namely, for such a relation R
there exists function vr(-) depending only upon R
such that for any a, b satisfying R there is a noise
function &g g (+) for which:

p(x | a)
p(x | b)

For different words x there is huge variation in (4.4),
so the multiplicative noise may be large.

Our goal is to show that the low-dimensional
word embeddings have the property that there is a
vector p such that for every pair of words a,b in
that relation, v, — v, = ppg + noise vector, where
the noise vector is small.

Taking logarithms of (4.4) results in:

p(x | a)
& <p(x | b)

Theorem 2.2 implies that the left-hand side sim-

plifies to log (Z((’S'Z))) = 2 (v, v0 — vp) + €ap(X)
where € captures the small approximation errors in-
duced by the inexactness of Theorem 2.2. This adds
yet more noise! Denoting by V' the n X d matrix

whose rows are the v, vectors, we rewrite (4.5) as:

=vRr(X) - &ap,R(X) (4.4)

) — log(vr() + Conr() (45)

V(va —vp) = dlog(vr) + (o g (4.6)
where log(vg) in the element-wise log of vector v
and (), g = d(Ca,b,r — €a,b,R) is the noise.

In essence, (4.6) shows that v, — vy, is a solution to
a linear regression in d variables and m constraints,
with CC’L’b’ r being the “noise.” The design matrix in
the regression is V', the matrix of all word vectors,
which in our model (as well as empirically) satisfies
an isotropy condition. This makes it random-like,
and thus solving the regression by left-multiplying
by V1, the pseudo-inverse of V, ought to “denoise”
effectively. We now show that it does.

Our model assumed the set of all word vectors
satisfies bulk properties similar to a set of Gaus-
sian vectors. The next theorem will only need the
following weaker properties. (1) The smallest non-
zero singular value of V' is larger than some constant
c1 times the quadratic mean of the singular values,
namely, ||V||r/v/d. Empirically we find ¢; ~ 1/3

392

holds; see Section 5. (2) The left singular vectors
behave like random vectors with respect to C:Lb’ R
namely, have inner product at most c2||(; ; zll/v/7
with ¢ L’w, p» for some constant co. (3) The max norm

of arow in V is O(v/d). The proof is included in the
appendix.

Theorem 4.1 (Noise reduction). Under the condi-
tions of the previous paragraph, the noise in the
dimension-reduced semantic vector space satisfies

Vd

[Caprll2 S ||sz,b,3”27-

As a corollary, the relative error in the dimension-

reduced space is a factor of \/d/n smaller.

5 Experimental verification

In this section, we provide experiments empirically
supporting our generative model.

Corpus. All word embedding vectors are trained
on the English Wikipedia (March 2015 dump). It is
pre-processed by standard approach (removing non-
textual elements, sentence splitting, and tokeniza-
tion), leaving about 3 billion tokens. Words that
appeared less than 1000 times in the corpus are ig-
nored, resulting in a vocabulary of 68, 430. The co-
occurrence is then computed using windows of 10
tokens to each side of the focus word.

Training method. Our embedding vectors are
trained by optimizing the SN objective using Ada-
Grad (Duchi et al., 2011) with initial learning rate of
0.05 and 100 iterations. The PMI objective derived
from (2.5) was also used. SN has average (weighted)
term-wise error of 5%, and PMI has 17%. We ob-
served that SN vectors typically fit the model bet-
ter and have better performance, which can be ex-
plained by larger errors in PMI, as implied by Theo-
rem 2.2. So, we only report the results for SN.

For comparison, GloVe and two variants of
word2vec (skip-gram and CBOW) vectors are
trained. GloVe’s vectors are trained on the same co-
occurrence as SN with the default parameter values.®
word2vec vectors are trained using a window size of
10, with other parameters set to default values.’

Shttp://nip.stanford.edu/projects/glove/
"https://code.google.com/p/word2vec/
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Figure 1: The partition function Z.. The figure shows the histogram of Z. for 1000 random vectors c of appropriate
norm, as defined in the text. The z-axis is normalized by the mean of the values. The values Z. for different c
concentrate around the mean, mostly in [0.9, 1.1]. This concentration phenomenon is predicted by our analysis.
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Figure 2: The linear relationship between the squared
norms of our word vectors and the logarithms of the word
frequencies. Each dot in the plot corresponds to a word,
where x-axis is the natural logarithm of the word fre-
quency, and y-axis is the squared norm of the word vec-
tor. The Pearson correlation coefficient between the two
is 0.75, indicating a significant linear relationship, which
strongly supports our mathematical prediction, that is,
equation (2.4) of Theorem 2.2.

5.1 Model verification

Experiments were run to test our modeling assump-
tions. First, we tested two counter-intuitive proper-
ties: the concentration of the partition function Z,
for different discourse vectors ¢ (see Theorem 2.1),
and the random-like behavior of the matrix of word
embeddings in terms of its singular values (see The-
orem 4.1). For comparison we also tested these
properties for word2vec and GloVe vectors, though
they are trained by different objectives. Finally, we
tested the linear relation between the squared norms
of our word vectors and the logarithm of the word
frequencies, as implied by Theorem 2.2.

Partition function. Our theory predicts the
counter-intuitive concentration of the partition func-
tion Z. = ),/ exp(c ' vy,y) for a random discourse
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vector ¢ (see Lemma 2.1). This is verified empiri-
cally by picking a uniformly random direction, of
norm ||¢|| = 4/, Where pi,, is the average norm of
the word vectors.? Figure 1(a) shows the histogram
of Z. for 1000 such randomly chosen c¢’s for our
vectors. The values are concentrated, mostly in the
range [0.9,1.1] times the mean. Concentration is
also observed for other types of vectors, especially
for GloVe and CBOW.

Isotropy with respect to singular values. Our
theoretical explanation of RELATIONS=LINES as-
sumes that the matrix of word vectors behaves like
a random matrix with respect to the properties of
singular values. In our embeddings, the quadratic
mean of the singular values is 34.3, while the min-
imum non-zero singular value of our word vectors
is 11. Therefore, the ratio between them is a small
constant, consistent with our model. The ratios for
GloVe, CBOW, and skip-gram are 1.4, 10.1, and 3.1,
respectively, which are also small constants.

Squared norms v.s. word frequencies. Figure 2
shows a scatter plot for the squared norms of our
vectors and the logarithms of the word frequencies.
A linear relationship is observed (Pearson correla-
tion 0.75), thus supporting Theorem 2.2. The cor-
relation is stronger for high frequency words, pos-
sibly because the corresponding terms have higher
weights in the training objective.

This correlation is much weaker for other types

8Note that our model uses the inner products between the
discourse vectors and word vectors, so it is invariant if the dis-
course vectors are scaled by s while the word vectors are scaled
by 1/s for any s > 0. Therefore, one needs to choose the norm
of ¢ properly. We assume ||c||p = v/d/k = 4 for a constant
Kk = 5 so that it gives a reasonable fit to the predicted dynamic
range of word frequencies according to our theory; see model
details in Section 2.



[ Relations [ SN GloVe CBOW  skip-gram relation [ cap-com cap-wor | adj-adv opp

semantic 0.84 0.85 0.79 0.73 1st 0.65+0.07 0.61+0.09 | 0.35+0.17 042+£0.16
G | syntactic 0.61 0.65 0.71 0.68 2nd 0.024+0.28 0.00+0.23 | 0.07+£0.24 0.01 £0.25

total 0.71 0.73 0.74 0.70

adjective | 050  0.56 0.58 0.58 Table 2: The verification of relation directions on 2 se-
M | foun 069 0.70 0.56 0.58 mantic and 2 syntactic relations in the GOOGLE testbed.

verb 0.48 0.53 0.64 0.56 Relati includ . ital .

total 053 057 0.62 0.57 elations include cap-com: capital-common-countries;

Table 1: The accuracy on two word analogy task testbeds:
G (the GOOGLE testbed); M (the MSR testbed). Per-
formance is close to the state of the art despite using a
generative model with provable properties.

of word embeddings. This is possibly because they
have more free parameters (“knobs to turn”), which
imbue the embeddings with other properties. This
can also cause the difference in the concentration of
the partition function for the two methods.

5.2 Performance on analogy tasks

We compare the performance of our word vec-
tors on analogy tasks, specifically the two
testbeds GOOGLE and MSR (Mikolov et
al.,, 2013a; Mikolov et al., 2013c). The for-
mer contains 7874 semantic questions such as
“man:woman::king:1?”, and 10167 syntactic ones
such as “run:runs::walk:??” The latter has 8000
syntactic questions for adjectives, nouns, and verbs.

To solve these tasks, we use linear algebraic
queries.’ That is, first normalize the vectors to unit
norm and then solve “a:b::c:77” by

(5.1)

argmin [|v, — vy — ve + vall3 -
d

The algorithm succeeds if the best d happens to be
correct.

The performance of different methods is pre-
sented in Table 1. Our vectors achieve performance
comparable to the state of art on semantic analogies
(similar accuracy as GloVe, better than word2vec).
On syntactic tasks, they achieve accuracy 0.04 lower
than GloVe and skip-gram, while CBOW typically
outperforms the others.!® The reason is probably

°One can instead use the 3COSMUL in (Levy and Goldberg,
2014a), which increases the accuracy by about 3%. But it is not
linear while our focus here is the linear algebraic structure.

Tt was earlier reported that skip-gram outperforms
CBOW (Mikolov et al., 2013a; Pennington et al., 2014). This
may be due to the different training data sets and hyperparame-
ters used.
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cap-wor: capital-world; adj-adv: graml-adjective-to-
adverb; opp: gram2-opposite. For each relation, take
Vab = Vg — v for pairs (a,d) in the relation, and then
calculate the top singular vectors of the matrix formed by
these v,;’s. The row with label “1st”/*2nd” shows the co-
sine similarities of individual v,y to the 1st/2nd singular
vector (the mean and standard deviation).

that our model ignores local word order, whereas
the other models capture it to some extent. For ex-
ample, a word “she” can affect the context by a lot
and determine if the next word is “thinks” rather than
“think”. Incorporating such linguistic features in the
model is left for future work.

5.3 Verifying RELATIONS=LINES

The theory in Section 4 predicts the existence of
a direction for a relation, whereas earlier Levy
and Goldberg (2014a) had questioned if this phe-
nomenon is real. The experiment uses the analogy
testbed, where each relation is tested using 20 or
more analogies. For each relation, we take the set
of vectors vy, = v, — vp Where the word pair (a, b)
satisfies the relation. Then calculate the top singu-
lar vectors of the matrix formed by these v,;’s, and
compute the cosine similarity (i.e., normalized in-
ner product) of individual vy, to the singular vec-
tors. We observed that most (v, — vp)’s are corre-
lated with the first singular vector, but have inner
products around 0 with the second singular vector.
Over all relations, the average projection on the first
singular vector is 0.51 (semantic: 0.58; syntactic:
0.46), and the average on the second singular vector
is 0.035. For example, Table 2 shows the mean sim-
ilarities and standard deviations on the first and sec-
ond singular vectors for 4 relations. Similar results
are also obtained for word embedings by GloVe and
word2vec. Therefore, the first singular vector can be
taken as the direction associated with this relation,
while the other components are like random noise,
in line with our model.



[ SN GloVe CBOW  skip-gram
w/o RD 0.71 0.73 0.74 0.70
RD(k=20) | 0.74 0.77 0.79 0.75
RD(k =30) | 0.79 0.80 0.82 0.80
RD(k =40) | 0.76 0.80 0.80 0.77

Table 3: The accuracy of the RD algorithm (i.e., the
cheater method) on the GOOGLE testbed. The RD al-
gorithm is described in the text. For comparison, the row
“w/o RD” shows the accuracy of the old method without
using RD.

Cheating solver for analogy testbeds. The above
linear structure suggests a better (but cheating) way
to solve the analogy task. This uses the fact that
the same semantic relationship (e.g., masculine-
feminine, singular-plural) is tested many times in the
testbed. If a relation R is represented by a direction
g then the cheating algorithm can learn this direc-
tion (via rank 1 SVD) after seeing a few examples
of the relationship. Then use the following method
of solving “a:b::c:?7”: look for a word d such that
V. — vq has the largest projection on p g, the relation
direction for (a, b). This can boost success rates by
about 10%.

The testbed can try to combat such cheating by
giving analogy questions in a random order. But
the cheating algorithm can just cluster the presented
analogies to learn which of them are in the same
relation. Thus the final algorithm, named analogy
solver with relation direction (RD), is: take all vec-
tors v, — vy, for all the word pairs (a, b) presented
among the analogy questions and do k-means clus-
tering on them; for each (a,b), estimate the rela-
tion direction by taking the first singular vector of its
cluster, and substitute that for v, — v in (5.1) when
solving the analogy. Table 3 shows the performance
on GOOGLE with different values of k; e.g. using
our SN vectors and k£ = 30 leads to 0.79 accuracy.
Thus future designers of analogy testbeds should re-
member not to test the same relationship too many
times! This still leaves other ways to cheat, such as
learning the directions for interesting semantic rela-
tions from other collections of analogies.

Non-cheating solver for analogy testbeds. Now
we show that even if a relationship is tested only
once in the testbed, there is a way to use the above
structure. Given “a:b::c:?7?)” the solver first finds
the top 300 nearest neighbors of a and those of
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[ SN GloVe CBOW skip-gram
w/o RD-nn 0.71 0.73 0.74 0.70
RD-nn (k=10) | 0.71 0.74 0.77 0.73
RD-nn (k=20) | 0.72 0.75 0.77 0.74
RD-nn (k=30) | 0.73 0.76 0.78 0.74

Table 4: The accuracy of the RD-nn algorithm on the
GOOGLE testbed. The algorithm is described in the text.
For comparison, the row “w/o RD-nn” shows the accu-
racy of the old method without using RD-nn.

b, and then finds among these neighbors the top k
pairs (a’,b’) so that the cosine similarities between
vy — vy and v, — vy are largest. Finally, the solver
uses these pairs to estimate the relation direction (via
rank 1 SVD), and substitute this (corrected) estimate
for v, —vyp in (5.1) when solving the analogy. This al-
gorithm is named analogy solver with relation direc-
tion by nearest neighbors (RD-nn). Table 4 shows
its performance, which consistently improves over
the old method by about 3%.

6 Conclusions

A simple generative model has been introduced to
explain the classical PMI based word embedding
models, as well as recent variants involving energy-
based models and matrix factorization. The model
yields an optimization objective with essentially “no
knobs to turn”, yet the embeddings lead to good per-
formance on analogy tasks, and fit other predictions
of our generative model. A model with fewer knobs
to turn should be seen as a better scientific explana-
tion (Occam’s razor), and certainly makes the em-
beddings more interpretable.

The spatial isotropy of word vectors is both an
assumption in our model, and also a new empir-
ical finding of our paper. We feel it may help
with further development of language models. It
is important for explaining the success of solv-
ing analogies via low dimensional vectors (RELA-
TIONS=LINES). It also implies that semantic rela-
tionships among words manifest themselves as spe-
cial directions among word embeddings (Section 4),
which lead to a cheater algorithm for solving anal-
ogy testbeds.

Our model is tailored to capturing semantic sim-
ilarity, more akin to a log-linear dynamic topic
model. In particular, local word order is unim-



portant. Designing similar generative models (with
provable and interpretable properties) with linguistic
features is left for future work.
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A Proof sketches

Here we provide the proof sketches, while the com-
plete proof can be found in the full version (Arora et
al., 2015).
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Proof sketch of Theorem 2.2 Let w and w’ be two
arbitrary words. Let ¢ and ¢’ denote two consecutive
context vectors, where ¢ ~ C and ¢/|c is defined by
the Markov kernel p(c’ | ¢).

We start by using the law of total expectation, in-
tegrating out the hidden variables ¢ and ¢’:

p(w,w') = E [Prw,uw'|c,]]

c,C

= E [p(wle)p(w'|c)]

c,C

/

exp({vy, ¢)) exp((vyr, ')
L

(A.1)

An expectation like (A.1) would normally be dif-
ficult to analyze because of the partition functions.
However, we can assume the inequality (2.2), that is,
the partition function typically does not vary much
for most of context vectors c. Let I be the event that
both ¢ and ¢’ are within (1 & €,)Z. Then by (2.2)
and the union bound, event F' happens with proba-
bility at least 1 — 2 exp(—Q(log?n)). We will split
the right-hand side (RHS) of (A.1) into the parts ac-
cording to whether F'" happens or not.

RHS of (A.1) = E [exp((vw, C>) eXp(<Uw’7 C/>) 1F:|

c,c! Ze Zc/
T
g [l en( ), ]
c,c c c
Ty

(A2)

where I’ denotes the complement of event F' and
17 and 1 denote indicator functions for F' and F,
respectively. When F' happens, we can replace Z,
by Z with a 1 & ¢, factor loss: The first term of the
RHS of (A.2) equals to

7 = 25 b Lexp (00, ) exp((var, )15

A c,C
(A.3)

On the other hand, we can use E[1 ;] = Pr[F] <
exp(—Q(log?n)) to show that the second term of
RHS of (A.2) is negligible,

|Ty| = exp(—Q(log"®n)). (A4)



This claim must be handled somewhat carefully
since the RHS does not depend on d at all. Briefly,
the reason this holds is as follows: in the regime
when d is small (v/d = o(log®n)), any word vec-
tor v,, and discourse ¢ satisfies that exp({vy,, c))
exp(vu]l) = exp(O(vd)). and since E[1p]
exp(—Q(log?n)), the claim follows directly; In
the regime when d is large (vVd = Q(log?n)),
we can use concentration inequalities to show that
except with a small probability exp(—Q(d)) =
exp(—Q(log? n)), a uniform sample from the sphere
behaves equivalently to sampling all of the coor-
dinates from a standard Gaussian distribution with
mean O and variance %, in which case the claim is
not too difficult to show using Gaussian tail bounds.

Therefore it suffices to only consider (A.3). Our
model assumptions state that ¢ and ¢’ cannot be too
different. We leverage that by rewriting (A.3) a little,
and get that it equals

lIA

T = 1:l:ZOQ(6Z)ICE exp((vu, c)) CI’ETZC [exp((vw/, C/>)]
= oA a9)
where A(c) := E [exp((vyr, c))]. We claim that

e
A(e) = (1 £ O(e2)) exp({vyr, ¢)). Doing some al-
gebraic manipulations,

A(e) = exp((vyr, 0)) E [exp({vu, ¢ = ¢))] .

e

Furthermore, by our model assumptions, ||¢ — /|| <

62/\/&. So
(vw,c =) < vllle — €|l = Oe2)

and thus A(c) = (1 £ O(e2)) exp({vyr, ¢)). Plug-
ging the simplification of A(c) to (A.5),

1+ 0(e
T, = Zz(Z) Elexp({(vy + vyr, ¢))]. (A.6)
Since ¢ has uniform distribution over the sphere,
the random variable (v, + vy, c) has distribution
pretty similar to Gaussian distribution N (0, ||v,, +
vw||?/d), especially when d is relatively large. Ob-

serve that [E[exp(X )] has a closed form for Gaussian
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random variable X ~ N(0,0?),

33‘2
Blexp(X)] = [ —— exp(— ) expla)ds
= exp(0?/2). (A7)

Bounding the difference between (v, + vy, ¢)
from Gagssian random variable, we can show that
fore = 0(1/4d),

U + Vo ||

Elexp({u + vur, )] = (1 £ €) exp (”“’de”
(A.8)

Therefore, the  series of  simplifica-

tion/approximation above (concretely, combining
equations (A.1), (A.2), (A.4), (A.6), and (A.8))
lead to the desired bound on log p(w,w’) for the
case when the window size ¢ = 2. The bound on
log p(w) can be shown similarly.

Proof sketch of Lemma 2.1 Note that for fixed c,
when word vectors have Gaussian priors assumed as
in our model, Z. = ), exp((vw,c)) is a sum of
independent random variables.

We first claim that using proper concentration
of measure tools, it can be shown that the vari-
ance of Z, are relatively small compared to its
mean [E,, [Z:], and thus Z. concentrates around
its mean. Note this is quite non-trivial: the ran-
dom variable exp((vy,,c)) is neither bounded nor
subgaussian/sub-exponential, since the tail is ap-
proximately inverse poly-logarithmic instead of in-
verse exponential. In fact, the same concentration
phenomenon does not happen for w. The occur-
rence probability of word w is not necessarily con-
centrated because the £ norm of v,, can vary a lot in
our model, which allows the frequency of the words
to have a large dynamic range.

So now it suffices to show that E,, [Z,] for differ-
ent c are close to each other. Using the fact that the
word vector directions have a Gaussian distribution,
Ev,, [Zc] turns out to only depend on the norm of ¢
(which is equal to 1). More precisely,

E[Z] = f(llell3) = £(1)

w

(A9)

where f is defined as f(a) = nEs[exp(s?a/2)] and
s has the same distribution as the norms of the word



vectors. We sketch the proof of this. In our model,
Uw = Sw * Uy, Where 0,, is a Gaussian vector with
identity covariance I. Then
E [Zc] =nk [exp((vw, C))}

Vw

Vw

=nE | E [exp((vw;0)) | su]
Sw | vy |Sw
where the second line is just an application of the
law of total expectation, if we pick the norm of the
(random) vector v, first, followed by its direction.
Conditioned on sy, (vy,c) is a Gaussian random
variable with variance ||c||3s2, and therefore using
similar calculation as in (A.7), we have

E  [exp({vu, ) | su] = exp(s?[cll3/2).

lesw
Hence, Ky, [Z.] = nEslexp(s?||c/|3/2)] as needed.

Proof of Theorem 4.1 The proof uses the standard
analysis of linear regression. Let V = PXQ” be the
SVDof V and let oy, ..., 04 be the left singular val-
ues of V' (the diagonal entries of >3). For notational
ease we omit the subscripts in ¢ and ¢’ since they are
not relevant for this proof. Since VI = QX 1PT
and thus ¢ = V¢’ = QX1 PT(¢’, we have

ICll2 < o IPTC o (A.10)
We claim
5 1
o7t <y —. (A.11)
cin
Indeed, Zle 0? = O(nd), since the average

squared norm of a word vector is d. The claim then

follows from the first assumption. Furthermore, by
: T

the second assumption, || P* ('||c < %HC/HQ, SO

IPT¢N3 <

c3d
ol (]2 (A.12)

Plugging (A.11) and (A.12) into (A.10), we get

2
1Ells </ — ) 2 Cmuc’uz
canVon Vven

as desired. The last statement follows because the
norm of the signal, which is d log(vr) originally and
is Vidlog(vr) = v, — vy after dimension reduction,
also gets reduced by a factor of /n.
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