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Abstract

Named entity recognition is a challenging task
that has traditionally required large amounts
of knowledge in the form of feature engineer-
ing and lexicons to achieve high performance.
In this paper, we present a novel neural net-
work architecture that automatically detects
word- and character-level features using a hy-
brid bidirectional LSTM and CNN architec-
ture, eliminating the need for most feature en-
gineering. We also propose a novel method
of encoding partial lexicon matches in neu-
ral networks and compare it to existing ap-
proaches. Extensive evaluation shows that,
given only tokenized text and publicly avail-
able word embeddings, our system is com-
petitive on the CoNLL-2003 dataset and sur-
passes the previously reported state of the art
performance on the OntoNotes 5.0 dataset by
2.13 F1 points. By using two lexicons con-
structed from publicly-available sources, we
establish new state of the art performance with
an F1 score of 91.62 on CoNLL-2003 and
86.28 on OntoNotes, surpassing systems that
employ heavy feature engineering, proprietary
lexicons, and rich entity linking information.

1 Introduction

Named entity recognition is an important task in
NLP. High performance approaches have been dom-
inated by applying CRF, SVM, or perceptron models
to hand-crafted features (Ratinov and Roth, 2009;
Passos et al., 2014; Luo et al., 2015). However,
Collobert et al. (2011b) proposed an effective neu-
ral network model that requires little feature engi-
neering and instead learns important features from
word embeddings trained on large quantities of un-
labelled text — an approach made possible by recent
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advancements in unsupervised learning of word em-
beddings on massive amounts of data (Collobert and
Weston, 2008; Mikolov et al., 2013) and neural net-
work training algorithms permitting deep architec-
tures (Rumelhart et al., 1986).

Unfortunately there are many limitations to the
model proposed by Collobert et al. (2011b). First,
it uses a simple feed-forward neural network, which
restricts the use of context to a fixed sized window
around each word — an approach that discards use-
ful long-distance relations between words. Second,
by depending solely on word embeddings, it is un-
able to exploit explicit character level features such
as prefix and suffix, which could be useful especially
with rare words where word embeddings are poorly
trained. We seek to address these issues by propos-
ing a more powerful neural network model.

A well-studied solution for a neural network to
process variable length input and have long term
memory is the recurrent neural network (RNN)
(Goller and Kuchler, 1996). Recently, RNNs have
shown great success in diverse NLP tasks such as
speech recognition (Graves et al., 2013), machine
translation (Cho et al., 2014), and language mod-
eling (Mikolov et al., 2011). The long-short term
memory (LSTM) unit with the forget gate allows
highly non-trivial long-distance dependencies to be
easily learned (Gers et al., 2000). For sequential la-
belling tasks such as NER and speech recognition, a
bi-directional LSTM model can take into account an
effectively infinite amount of context on both sides
of a word and eliminates the problem of limited con-
text that applies to any feed-forward model (Graves
et al., 2013). While LSTMs have been studied in
the past for the NER task by Hammerton (2003), the
lack of computational power (which led to the use
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Figure 1: The (unrolled) BLSTM for tagging named en-
tities. Multiple tables look up word-level feature vectors.
The CNN (Figure 2) extracts a fixed length feature vector
from character-level features. For each word, these vec-
tors are concatenated and fed to the BLSTM network and
then to the output layers (Figure 3).

of very small models) and quality word embeddings
limited their effectiveness.

Convolutional neural networks (CNN) have also
been investigated for modeling character-level in-
formation, among other NLP tasks. Santos et al.
(2015) and Labeau et al. (2015) successfully em-
ployed CNNs to extract character-level features for
use in NER and POS-tagging respectively. Collobert
etal. (2011b) also applied CNNs to semantic role la-
beling, and variants of the architecture have been ap-
plied to parsing and other tasks requiring tree struc-
tures (Blunsom et al., 2014). However, the effec-
tiveness of character-level CNNs has not been eval-
uated for English NER. While we considered using
character-level bi-directional LSTMs, which was re-
cently proposed by Ling et al. (2015) for POS-
tagging, preliminary evaluation shows that it does
not perform significantly better than CNNs while be-
ing more computationally expensive to train.

Our main contribution lies in combining these
neural network models for the NER task. We present
a hybrid model of bi-directional LSTMs and CNNs
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Figure 2: The convolutional neural network extracts char-
acter features from each word. The character embed-
ding and (optionally) the character type feature vector are
computed through lookup tables. Then, they are concate-
nated and passed into the CNN.
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that learns both character- and word-level features,
presenting the first evaluation of such an architec-
ture on well-established English language evalua-
tion datasets. Furthermore, as lexicons are crucial to
NER performance, we propose a new lexicon encod-
ing scheme and matching algorithm that can make
use of partial matches, and we compare it to the sim-
pler approach of Collobert et al. (2011b). Extensive
evaluation shows that our proposed method estab-
lishes a new state of the art on both the CoNLL-2003
NER shared task and the OntoNotes 5.0 datasets.

2 Model

Our neural network is inspired by the work of Col-
lobert et al. (2011b), where lookup tables transform
discrete features such as words and characters into
continuous vector representations, which are then
concatenated and fed into a neural network. Instead
of a feed-forward network, we use the bi-directional
long-short term memory (BLSTM) network. To in-
duce character-level features, we use a convolutional
neural network, which has been successfully applied
to Spanish and Portuguese NER (Santos et al., 2015)
and German POS-tagging (Labeau et al., 2015).

2.1 Sequence-labelling with BLSTM

Following the speech-recognition framework out-
lined by Graves et al. (2013), we employed
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Figure 3: The output layers (“Out” in Figure 1) decode
output into a score for each tag category.

a stacked! bi-directional recurrent neural network
with long short-term memory units to transform
word features into named entity tag scores. Figures
1, 2, and 3 illustrate the network in detail.

The extracted features of each word are fed into a
forward LSTM network and a backward LSTM net-
work. The output of each network at each time step
is decoded by a linear layer and a log-softmax layer
into log-probabilities for each tag category. These
two vectors are then simply added together to pro-
duce the final output.

We tried minor variants of output layer architec-
ture and selected the one that performed the best in
preliminary experiments.

2.2 Extracting Character Features Using a
Convolutional Neural Network

For each word we employ a convolution and a max
layer to extract a new feature vector from the per-
character feature vectors such as character embed-
dings (Section 2.3.2) and (optionally) character type
(Section 2.5). Words are padded with a number of
special PADDING characters on both sides depend-
ing on the window size of the CNN.

The hyper-parameters of the CNN are the window
size and the output vector size.

"For each direction (forward and backward), the input is
fed into multiple layers of LSTM units connected in sequence
(i.e. LSTM units in the second layer take in the output of the
first layer, and so on); the number of layers is a tuned hyper-
parameter. Figure 1 shows only one unit for simplicity.

359

Category SENNA | DBpedia
Location 36,697 709,772
Miscellaneous 4,722 328,575
Organization 6,440 231,868
Person 123,283 | 1,074,363
Total 171,142 | 2,344,578

Table 1: Number of entries for each category in the
SENNA lexicon and our DBpedia lexicon.

Dataset Train Dev Test
CoNLL-2003 204,567 51,578 46,666

(23,499) | (5,942) | (5,648)
OntoNotes 5.0 | 1,088,503 | 147,724 | 152,728
/ CoNLL-2012 (81,828) | (11,066) | (11,257)

Table 2: Dataset sizes in number of tokens (entities)

2.3 Core Features

2.3.1 Word Embeddings

Our best model uses the publicly available 50-
dimensional word embeddings released by Collobert
et al. (2011b)?, which were trained on Wikipedia
and the Reuters RCV-1 corpus.

We also experimented with two other sets of pub-
lished embeddings, namely Stanford’s GloVe em-
beddings? trained on 6 billion words from Wikipedia
and Web text (Pennington et al., 2014) and Google’s
word2vec embeddings* trained on 100 billion words
from Google News (Mikolov et al., 2013).

In addition, as we hypothesized that word em-
beddings trained on in-domain text may perform
better, we also used the publicly available GloVe
(Pennington et al., 2014) program and an in-house
re-implementation’ of the word2vec (Mikolov et
al., 2013) program to train word embeddings on
Wikipedia and Reuters RCV1 datasets as well.5

Following Collobert et al. (2011b), all words are
lower-cased before passing through the lookup table

http://ml.nec-labs.com/senna/

*http://nlp.stanford.edu/projects/glove/

*https://code.google.com/p/word2vec/

SWe used our in-house reimplementation to train word vec-
tors because it uses distributed processing to train much quicker
than the publicly-released implementation of word2vec and its
performance on the word analogy task was higher than reported
by Mikolov et al. (2013).

®While Collobert et al. (2011b) used Wikipedia text from
2007, we used Wikipedia text from 2011.


http://ml.nec-labs.com/senna/
http://nlp.stanford.edu/projects/glove/
https://code.google.com/p/word2vec/

Text | Hayao Tada , commander of the Japanese North China Area Army

LOC - - - - - B I - S - -
MISC - - - S B B I S S S S

ORG - - - - - B I B I I E
PERS B E - - - - - - S - -

Figure 4: Example of how lexicon features are applied. The B, I, E, markings indicate that the token matches the
Begin, Inside, and End token of an entry in the lexicon. S indicates that the token matches a single-token entry.

to convert to their corresponding embeddings. The
pre-trained embeddings are allowed to be modified
during training.”

2.3.2 Character Embeddings

We randomly initialized a lookup table with val-
ues drawn from a uniform distribution with range
[—0.5,0.5] to output a character embedding of
25 dimensions. The character set includes all
unique characters in the CONLL-2003 dataset® plus
the special tokens PADDING and UNKNOWN. The
PADDING token is used for the CNN, and the
UNKNOWN token is used for all other characters
(which appear in OntoNotes). The same set of ran-
dom embeddings was used for all experiments.’

2.4 Additional Word-level Features
2.4.1 Capitalization Feature

As capitalization information is erased during
lookup of the word embedding, we evaluate Col-
lobert’s method of using a separate lookup table to
add a capitalization feature with the following op-
tions: allCaps, upperInitial, lowercase,
mixedCaps, noinfo (Collobert et al., 2011Db).
This method is compared with the character type
feature (Section 2.5) and character-level CNNGs.

2.4.2 Lexicons

Most state of the art NER systems make use of
lexicons as a form of external knowledge (Ratinov

"Preliminary experiments showed that modifiable vectors
performed better than so-called “frozen vectors.”

8Upper and lower case letters, numbers, and punctuations

"We did not experiment with other settings because the En-
glish character set is small enough that effective embeddings
could be learned directly from the task data.

!By increments of 50.

"Determined by evaluating dev set performance.

1ZProbability of discarding any LSTM output node.

3Mini-batch size was excluded from the round 2 particle
swarm hyper-parameter search space due to time constraints.
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and Roth, 2009; Passos et al., 2014).

For each of the four categories (Person,
Organization, Location, Misc) defined by
the CoNLL 2003 NER shared task, we compiled a
list of known named entities from DBpedia (Auer
et al., 2007), by extracting all descendants of DB-
pedia types corresponding to the CoNLL -cate-
gories.!* We did not construct separate lexicons for
the OntoNotes tagset because correspondences be-
tween DBpedia categories and its tags could not be
found in many instances. In addition, for each entry
we first removed parentheses and all text contained
within, then stripped trailing punctuation,' and fi-
nally tokenized it with the Penn Treebank tokeniza-
tion script for the purpose of partial matching. Ta-
ble 1 shows the size of each category in our lexicon
compared to Collobert’s lexicon, which we extracted
from their SENNA system.

Figure 4 shows an example of how the lexicon
features are applied.'® For each lexicon category, we
match every n-gram (up to the length of the longest
lexicon entry) against entries in the lexicon. A match
is successful when the n-gram matches the prefix or
suffix of an entry and is at least half the length of
the entry. Because of the high potential for spuri-
ous matches, for all categories except Person, we
discard partial matches less than 2 tokens in length.
When there are multiple overlapping matches within
the same category, we prefer exact matches over par-
tial matches, and then longer matches over shorter
matches, and finally earlier matches in the sentence
over later matches. All matches are case insensitive.

For each token in the match, the feature is en-

4The Miscellaneous category was populated by entities
of the DBpedia categories Artifact and Work.

5The punctuation stripped was period, comma, semi-colon,
colon, forward slash, backward slash, and question mark.

16 As can been seen in this example, the lexicons — in partic-
ular Miscellaneous - still contain a lot of noise.



Hyper-parameter CoNLL-2003 (Round 2) | OntoNotes 5.0 (Round 1)
Final Range Final Range
Convolution width 3 [3,7] 3 [3,9]
CNN output size 53 [15, 84] 20 [15,100]
LSTM state size 275 | [100,500] 200 | [100,400]
LSTM layers 1 [1,4] 2 (2, 4]
Learning rate 0.0105 | [1073,10718] | 0.008 | [1073-5,10~15]
Epochs!! 80 18 -
Dropout!? 0.68 | [0.25,0.75] 0.63 [0,1]
Mini-batch size 9 -13 9 [5,14]

Table 3: Hyper-parameter search space and final values used for all experiments

Round | CoNLL-2003 | OntoNotes 5.0
1 93.82 (£ 0.15) | 84.57 (£ 0.27)
2 94.03 (£ 0.23) | 84.47 (£ 0.29)

Table 4: Development set F1 score performance of the
best hyper-parameter settings in each optimization round.

coded in BIOES annotation (Begin, Inside,
Outside, End, Single), indicating the position
of the token in the matched entry. In other words, B
will not appear in a suffix-only partial match, and E
will not appear in a prefix-only partial match.

As we will see in Section 4.5, we found that this
more sophisticated method outperforms the method
presented by Collobert et al. (2011b), which treats
partial and exact matches equally, allows prefix
but not suffix matches, allows very short partial
matches, and marks tokens with YES/ NO.

In addition, since Collobert et al. (2011b) released
their lexicon with their SENNA system, we also ap-
plied their lexicon to our model for comparison and
investigated using both lexicons simultaneously as
distinct features. We found that the two lexicons
complement each other and improve performance on
the CoNLL-2003 dataset.

Our best model uses the SENNA lexicon with ex-
act matching and our DBpedia lexicon with partial
matching, with BIOES annotation in both cases.

2.5 Additional Character-level Features
A lookup table was used to output a 4-dimensional

vector representing the type of the character (upper
case, lower case, punctuation, other).
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2.6 Training and Inference
2.6.1 Implementation

We implement the neural network using the
torch7 library (Collobert et al., 2011a). Training and
inference are done on a per-sentence level. The ini-
tial states of the LSTM are zero vectors. Except for
the character and word embeddings whose initializa-
tion has been described previously, all lookup tables
are randomly initialized with values drawn from the
standard normal distribution.

2.6.2 Objective Function and Inference

We train our network to maximize the sentence-
level log-likelihood from Collobert et al. (2011b).!”

First, we define a tag-transition matrix A where
A; ; represents the score of jumping from tag i to
tag j in successive tokens, and A ; as the score for
starting with tag 7. This matrix of parameters are
also learned. Define 6 as the set of parameters for
the neural network, and ' = 6 U {A4; ; Vi, j} as the
set of all parameters to be trained. Given an exam-
ple sentence, [z]7 , of length T', and define [f3];; as
the score outputted by the neural network for the ¢
word and i tag given parameters 6, then the score
of a sequence of tags [i]] is given as the sum of net-
work and transition scores:

T

ST, 17,6 =D (A, + Folie)

t=1

"Much later, we discovered that training with cross entropy
objective while performing Viterbi decoding to restrict output
to valid tag sequences also appears to work just as well.



Model CoNLL-2003 OntoNotes 5.0

Prec. | Recall F1 Prec. | Recall F1
FFNN + emb + caps + lex 89.54 | 89.80 | 89.67 (0.24) | 74.28 | 73.61 | 73.94 (£ 0.43)
BLSTM 80.14 | 72.81 | 76.29 (£0.29) | 79.68 | 75.97 | 77.77 (£ 0.37)
BLSTM-CNN 83.48 | 83.28 | 83.38 (+0.20) | 82.58 | 82.49 | 82.53 (£ 0.40)
BLSTM-CNN + emb 90.75 | 91.08 | 90.91 (£ 0.20) | 85.99 | 86.36 | 86.17 (£ 0.22)
BLSTM-CNN + emb + lex 91.39 | 91.85 | 91.62 (+0.33) | 86.04 | 86.53 | 86.28 (4 0.26)
Collobert et al. (2011b) - - 88.67 - - -
Collobert et al. (2011b) + lexicon - - 89.59 - - -
Huang et al. (2015) - - 90.10 - - -
Ratinov and Roth (2009)® 91.20 | 90.50 90.80 82.00 | 84.95 83.45
Lin and Wu (2009) - - 90.90 - - -
Finkel and Manning (2009)"° - - - 84.04 | 80.86 82.42
Suzuki et al. (2011) - - 91.02 - - -
Passos et al. (2014)%° - - 90.90 - - 82.24
Durrett and Klein (2014) - - - 85.22 | 82.89 84.04
Luo et al. (2015)%! 91.50 | 91.40 91.20 - - -

Table 5: Results of our models, with various feature sets, compared to other published results. The three sections

are, in order, our models, published neural network models, and published non-neural network models.

For the

features, emb = Collobert word embeddings, caps = capitalization feature, lex = lexicon features from both SENNA
and DBpedia lexicons. For F1 scores, standard deviations are in parentheses.

Then, letting [y]7 be the true tag sequence, the
sentence-level log-likelihood is obtained by normal-
izing the above score over all possible tag-sequences
[5]F using a softmax:

log P([y]] I[] )

= S(12]T, [T, 0") —log Y ST L0

visIT

This objective function and its gradients can be ef-
ficiently computed by dynamic programming (Col-
lobert et al., 2011b).

At inference time, given neural network out-
puts [fp]i+ we use the Viterbi algorithm to find

the tag sequence [i]7 that maximizes the score

S([=1, i1, 0).

2.6.3 Tagging Scheme

The output tags are annotated with BIOES (which
stand for Begin, Inside, Outside, End,
Single, indicating the position of the token in the

180ntoNotes results taken from (Durrett and Klein, 2014)

YEvaluation on OntoNotes 5.0 done by Pradhan et al. (2013)

2Not directly comparable as they evaluated on an earlier ver-
sion of the corpus with a different data split.

2'Numbers taken from the original paper (Luo et al., 2015).
While the precision, recall, and F1 scores are clearly inconsis-
tent, it is unclear in which way they are incorrect.
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entity) as this scheme has been reported to outper-
form others such as BIO (Ratinov and Roth, 2009).

2.6.4 Learning Algorithm

Training is done by mini-batch stochastic gradi-
ent descent (SGD) with a fixed learning rate. Each
mini-batch consists of multiple sentences with the
same number of tokens. We found applying dropout
to the output nodes*? of each LSTM layer (Pham
et al., 2014) was quite effective in reducing overfit-
ting (Section 4.4). We explored other more sophis-
ticated optimization algorithms such as momentum
(Nesterov, 1983), AdaDelta (Zeiler, 2012), and RM-
SProp (Hinton et al., 2012), and in preliminary ex-
periments they did not improve upon plain SGD.

3 Evaluation

Evaluation was performed on the well-established
CoNLL-2003 NER shared task dataset (Tjong
Kim Sang and De Meulder, 2003) and the much
larger but less-studied OntoNotes 5.0 dataset (Hovy
et al., 2006; Pradhan et al., 2013). Table 2 gives an
overview of these two different datasets.

For each experiment, we report the average and
standard deviation of 10 successful trials.

22 Adding dropout to inputs seems to have an adverse effect.



Features BLSTM BLSTM-CNN BLSTM-CNN + lex
CoNLL OntoNotes CoNLL OntoNotes CoNLL OntoNotes

none 76.29 (£0.29) | 77.77 (£ 0.37) | 83.38 (+0.20) 82.53 (= 0.40) 87.77 (£ 0.29) 83.82 (£ 0.19)
emb 88.23 (£ 0.23) | 82.72 (£ 0.23) 90.91 (£ 0.20) 86.17 (£ 0.22) 91.62 (+ 0.33) 86.28 (4 0.26)
emb + caps 90.67 (£ 0.16) | 86.19 (£ 0.25) | 90.98 (4 0.18) 86.35 (£ 0.28) | 91.55 (£ 0.19)* | 86.28 (£ 0.32)*
emb + caps + lex 91.43 (£ 0.17) | 86.21 (£ 0.16) | 91.55 (£ 0.19)* | 86.28 (£ 0.32)* | 91.55 (& 0.19)* | 86.28 (£ 0.32)*
emb + char - - 90.88 (£ 0.48) 86.08 (£ 0.40) 91.44 (£ 0.23) 86.34 (£ 0.18)
emb + char + caps - - 90.88 (£ 0.31) 86.41 (£ 0.22) 91.48 (£ 0.23) 86.33 (£ 0.26)

Table 6: F1 score results of BLSTM and BLSTM-CNN models with various additional features; emb = Collobert
word embeddings, char = character type feature, caps = capitalization feature, lex = lexicon features. Note that starred

results are repeated for ease of comparison.

3.1 Dataset Preprocessing

For all datasets, we performed the following pre-
processing:

o All digit sequences are replaced by a single “0”.

e Before training, we group sentences by word
length into mini-batches and shuffle them.

In addition, for the OntoNotes dataset, in order
to handle the Date, Time, Money, Percent,
Quantity,Ordinal, and Cardinal named en-
tity tags, we split tokens before and after every digit.

3.2 CoNLL 2003 Dataset

The CoNLL-2003 dataset (Tjong Kim Sang and
De Meulder, 2003) consists of newswire from the
Reuters RCV1 corpus tagged with four types of
named entities: location, organization, person, and
miscellaneous. As the dataset is small compared to
OntoNotes, we trained the model on both the train-
ing and development sets after performing hyper-
parameter optimization on the development set.

3.3 OntoNotes 5.0 Dataset

Pradhan et al. (2013) compiled a core portion of the
OntoNotes 5.0 dataset for the CoNLL-2012 shared
task and described a standard train/dev/test split,
which we use for our evaluation. Following Durrett
and Klein (2014), we applied our model to the por-
tion of the dataset with gold-standard named entity
annotations; the New Testaments portion was ex-
cluded for lacking gold-standard annotations. This
dataset is much larger than CoNLL-2003 and con-
sists of text from a wide variety of sources, such as
broadcast conversation, broadcast news, newswire,
magazine, telephone conversation, and Web text.
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3.4 Hyper-parameter Optimization

We performed two rounds of hyper-parameter opti-
mization and selected the best settings based on de-
velopment set performance®®. Table 3 shows the fi-
nal hyper-parameters, and Table 4 shows the dev set
performance of the best models in each round.

In the first round, we performed random search
and selected the best hyper-parameters over the de-
velopment set of the CoNLL-2003 data. We evalu-
ated around 500 hyper-parameter settings. Then, we
took the same settings and tuned the learning rate
and epochs on the OntoNotes development set. 24

For the second round, we performed independent
hyper-parameter searches on each dataset using Op-
tunity’s implementation of particle swarm (Claesen
et al., ), as there is some evidence that it is more
efficient than random search (Clerc and Kennedy,
2002). We evaluated 500 hyper-parameter settings
this round as well. As we later found out that train-
ing fails occasionally (Section 3.5) as well as large
variation from run to run, we ran the top 5 settings
from each dataset for 10 trials each and selected the
best one based on averaged dev set performance.

For CoNLL-2003, we found that particle swarm
produced better hyper-parameters than random
search. However, surprisingly for OntoNotes par-
ticle swarm was unable to produce better hyper-
parameters than those from the ad-hoc approach in
round 1. We also tried tuning the CoNLL-2003
hyper-parameters from round 2 for OntoNotes and
that was not any better® either.

We trained CoNLL-2003 models for a large num-

ZHyper-parameter optimization was done with the BLSTM-
CNN + emb + lex feature set, as it had the best performance.

2Selected based on dev set performance of a few runs.

Z5The result is 84.41 (+ 0.33) on the OntoNotes dev set.



Word Embeddings | CoNLL-2003 OntoNotes
Random 50d 87.77 (£ 0.29) | 83.82 (£ 0.19)
Random 300d 87.84 (£ 0.23) | 83.76 (£ 0.37)

GloVe 6B 50d

91.09 (£ 0.15)

86.25 (£ 0.24)

GloVe 6B 300d 90.71 (£ 0.21) | 86.26 (& 0.30)
Google 100B 300d | 90.60 (& 0.23) | 85.34 (£ 0.25)
Collobert 50d 91.62 (£ 0.33) | 86.28 (= 0.26)
Our GloVe 50d 91.41 (£ 0.21) | 86.24 (& 0.35)
Our Skip-gram 50d | 90.76 (& 0.23) | 85.70 (£ 0.29)

Table 7: F1 scores when the Collobert word vectors are
replaced. We tried 50- and 300-dimensional random vec-
tors (Random 50d, Random 300d); GloVe’s released vec-
tors trained on 6 billion words (GloVe 6B 50d, GloVe
6B 300d); Google’s released 300-dimensional vectors
trained on 100 billion words from Google News (Google
100B 300d); and 50-dimensional GloVe and word2vec
skip-gram vectors that we trained on Wikipedia and
Reuters RCV-1 (Our GloVe 50d, Our Skip-gram 50d).

ber of epochs because we observed that the models
did not exhibit overtraining and instead continued
to slowly improve on the development set long af-
ter reaching near 100% accuracy on the training set.
In contrast, despite OntoNotes being much larger
than CoNLL-2003, training for more than about 18
epochs causes performance on the development set
to decline steadily due to overfitting.

3.5 Excluding Failed Trials

On the CoNLL-2003 dataset, while BLSTM models
completed training without difficulty, the BLSTM-
CNN models fail to converge around 5~10% of
the time depending on feature set. Similarly, on
OntoNotes, 1.5% of trials fail. We found that using
a lower learning rate reduces failure rate. We also
tried clipping gradients and using AdaDelta and both
of them were effective at eliminating such failures
by themselves. AdaDelta, however, made training
more expensive with no gain in model performance.

In any case, for all experiments we excluded trials
where the final F1 score on a subset of training data
falls below a certain threshold, and continued to run
trials until we obtained 10 successful ones.

For CoNLL-2003, we excluded trials where the
final F1 score on the development set was less than
95; there was no ambiguity in selecting the threshold
as every trial scored either above 98 or below 90.
For OntoNotes, the threshold was a F1 score of 80
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on the last 5,000 sentences of the training set; every
trial scored either above 80 or below 75.

3.6 Training and Tagging Speed

On an Intel Xeon E5-2697 processor, training takes
about 6 hours while tagging the test set takes about
12 seconds for CoNLL-2003. The times are 10
hours and 60 seconds respectively for OntoNotes.

4 Results and Discussion

Table 5 shows the results for all datasets. To the
best of our knowledge, our best models have sur-
passed the previous highest reported F1 scores for
both CoNLL-2003 and OntoNotes. In particular,
with no external knowledge other than word em-
beddings, our model is competitive on the CoNLL-
2003 dataset and establishes a new state of the art
for OntoNotes, suggesting that given enough data,
the neural network automatically learns the relevant
features for NER without feature engineering.

4.1 Comparison with FFNNs

We re-implemented the FFNN model of Collobert
et al. (2011b) as a baseline for comparison. Ta-
ble 5 shows that while performing reasonably well
on CoNLL-2003, FFNNs are clearly inadequate for
OntoNotes, which has a larger domain, showing that
LSTM models are essential for NER.

4.2 Character-level CNNs vs. Character Type
and Capitalization Features

The comparison of models in Table 6 shows that on
CoNLL-2003, BLSTM-CNN models significantly?®
outperform the BLSTM models when given the
same feature set. This effect is smaller and not sta-
tistically significant on OntoNotes when capitaliza-
tion features are added. Adding character type and
capitalization features to the BLSTM-CNN mod-
els degrades performance for CoNLL and mostly
improves performance on OntoNotes, suggesting
character-level CNNs can replace hand-crafted char-
acter features in some cases, but systems with weak
lexicons may benefit from character features.

*Wilcoxon rank sum test, p < 0.05 when comparing the
four BLSTM models with the corresponding BLSTM-CNN
models using the same feature set. The Wilcoxon rank sum test
was selected for its robustness against small sample sizes when
the distribution is unknown.



Dropout CoNLL-2003 OntoNotes 5.0
Dev Test Dev Test

- 93.72 (£ 0.10) | 90.76 (4 0.22) | 82.02 (4 0.49) | 84.06 (& 0.50)
0.10 93.85 (£ 0.18) | 90.87 (£ 0.31) | 83.01 (£ 0.39) | 84.94 (+ 0.25)
0.30 94.08 (£ 0.17) | 91.09 (£ 0.18) | 83.61 (+0.32) | 85.44 (+ 0.33)
0.50 94.19 (£ 0.18) | 91.14 (£ 0.35) | 84.35 (%= 0.23) | 86.36 (& 0.28)
0.63 - - 84.47 (£ 0.23) | 86.29 (& 0.25)
0.68 94.31 (£ 0.15) | 91.23 (£ 0.16) - -
0.70 94.31 (£ 0.24) | 91.17 (£ 0.37) | 84.56 (4 0.40) | 86.17 (+ 0.25)
0.90 94.17 (£ 0.17) | 90.67 (£ 0.17) | 81.38 (= 0.19) | 82.16 (+ 0.18)

Table 8: F1 score results with various dropout values. Models were trained using only the training set for each dataset.
All other experiments use dropout = 0.68 for CONLL-2003 and dropout = 0.63 for OntoNotes 5.0.

4.3 Word Embeddings

Table 5 and Table 7 show that we obtain a large, sig-
nificant?’ improvement when trained word embed-
dings are used, as opposed to random embeddings,
regardless of the additional features used. This is
consistent with Collobert et. al. (2011b)’s results.

Table 7 compares the performance of different
word embeddings in our best model in Table 5
(BLSTM-CNN + emb + lex). For CoNLL-2003, the
publicly available GloVe and Google embeddings
are about one point behind Collobert’s embeddings.
For OntoNotes, GloVe embeddings perform close
to Collobert embeddings while Google embeddings
are again one point behind. In addition, 300 dimen-
sional embeddings present no significant improve-
ment over 50 dimensional embeddings — a result pre-
viously reported by Turian et al. (2010).

One possible reason that Collobert embeddings
perform better than other publicly available em-
beddings on CoNLL-2003 is that they are trained
on the Reuters RCV-1 corpus, the source of the
CoNLL-2003 dataset, whereas the other embed-
dings are not?®. On the other hand, we suspect that
Google’s embeddings perform poorly because of vo-
cabulary mismatch - in particular, Google’s embed-
dings were trained in a case-sensitive manner, and
embeddings for many common punctuations and

Y"Wilcoxon rank sum test, p < 0.001

To make a direct comparison to Collobert et al. (2011b),
we do not exclude the CoNLL-2003 NER task test data from the
word vector training data. While it is possible that this differ-
ence could be responsible for the disparate performance of word
vectors, the CoNLL-2003 training data comprises only 20k out
of 800 million words, or 0.00002% of the total data; in an un-
supervised training scheme, the effects are likely negligible.
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symbols were not provided. To test these hypothe-
ses, we performed experiments with new word em-
beddings trained using GloVe and word2vec, with
vocabulary list and corpus similar to Collobert et.
al. (2011b). As shown in Table 7, our GloVe
embeddings improved significantly>® over publicly
available embeddings on CoNLL-2003, and our
word2vec skip-gram embeddings improved signifi-
cantly? over Google’s embeddings on OntoNotes.
Due to time constraints we did not perform new
hyper-parameter searches with any of the word em-
beddings. As word embedding quality depends on
hyper-parameter choice during their training (Pen-
nington et al., 2014), and also, in our NER neural
network, hyper-parameter choice is likely sensitive
to the type of word embeddings used, optimizing
them all will likely produce better results and pro-
vide a fairer comparison of word embedding quality.

4.4 Effect of Dropout

Table 8 compares the result of various dropout val-
ues for each dataset. The models are trained using
only the training set for each dataset to isolate the
effect of dropout on both dev and test sets. All other
hyper-parameters and features remain the same as
our best model in Table 5. In both datasets and on
both dev and test sets, dropout is essential for state of
the art performance, and the improvement is statisti-
cally significant’!. Dropout is optimized on the dev
set, as described in Section 3.4. Hence, the chosen

PWilcoxon rank sum test, p < 0.01

39Wilcoxon rank sum test, p < 0.01

3'Wilcoxon rank sum test, no dropout vs. best setting:
p < 0.001 for the CoNLL-2003 test set, p < 0.0001 for the
OntoNotes 5.0 test set, p < 0.0005 for all others.
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Figure 5: Fraction of named entities of each tag category matched completely by entries in each lexicon category of
the SENNA/DBpedia combined lexicon. White = higher fraction.

value may not be the best-performing in Table 8.

4.5 Lexicon Features

Table 6 shows that on the CoNLL-2003 dataset, us-
ing features from both the SENNA lexicon and our
proposed DBpedia lexicon provides a significant®?
improvement and allows our model to clearly sur-
pass the previous state of the art.

Unfortunately the difference is minuscule for
OntoNotes, most likely because our lexicon does not
match DBpedia categories well. Figure 5 shows that
on CoNLL-2003, lexicon coverage is reasonable and
matches the tags set for everything except the catch-
all MISC category. For example, LOC entries in
lexicon match mostly LOC named entities and vice
versa. However, on OntoNotes, the matches are
noisy and correspondence between lexicon match
and tag category is quite ambiguous. For example,
all lexicon categories have spurious matches in un-
related named entities like CARDINAL, and LOC,
GPE, and LANGUAGE entities all get a lot of matches
from the LOC category in the lexicon. In addition,
named entities in categories like NORP, ORG, LAW,
PRODUCT receive little coverage. The lower cover-
age, noise, and ambiguity all contribute to the dis-
appointing performance. This suggests that the DB-
pedia lexicon construction method needs to be im-
proved. A reasonable place to start would be the
DBpedia category to OntoNotes NE tag mappings.

In order to isolate the contribution of each lexicon
and matching method, we compare different sources
and matching methods on a BLSTM-CNN model
with randomly initialized word embeddings and no

32Wilcoxon rank sum test, p < 0.001.
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other features or sources of external knowledge. Ta-
ble 9 shows the results. In this weakened model,
both lexicons contribute significant®} improvements
over the baseline.

Compared to the SENNA lexicon, our DBpe-
dia lexicon is noisier but has broader coverage,
which explains why when applying it using the same
method as Collobert et al. (2011b), it performs
worse on CoNLL-2003 but better on OntoNotes —
a dataset containing many more obscure named en-
tities. However, we suspect that the method of Col-
lobert et al. (2011b) is not noise resistant and there-
fore unsuitable for our lexicon because it fails to dis-
tinguish exact and partial matches®* and does not set
a minimum length for partial matching.®® Instead,
when we apply our superior partial matching algo-
rithm and BIOES encoding with our DBpedia lex-
icon, we gain a significant® improvement, allow-
ing our lexicon to perform similarly to the SENNA
lexicon. Unfortunately, as we could not reliably re-
move partial entries from the SENNA lexicon, we
were unable to investigate whether or not our lexi-
con matching method would help in that lexicon.

In addition, using both lexicons together as dis-
tinct features provides a further improvement?” on
CoNLL-2003, which we suspect is because the lexi-

$Wilcoxon rank sum test, p < 0.05 for SENNA-Exact-
BIOES, p < 0.005 for all others.

**We achieve this by using BIOES encoding and prioritizing
exact matches over partial matches.

3Matching only the first word of a long entry is not very
useful; this is not a problem in the SENNA lexicon because
99% of its entries contain only 3 tokens or less.

Wilcoxon rank sum test, p < 0.001.

3TWilcoxon rank sum test, p < 0.001.



Lexicon | Matching | Encoding | CoNLL-2003 OntoNotes
No lexicon - - 83.38 (£ 0.20) | 82.53 (£ 0.40)
SENNA Exact YN 86.21 (£ 0.39) | 83.24 (£ 0.33)
Exact BIOES | 86.14 (£ 0.48) | 83.01 (£ 0.52)
Exact YN 84.93 (£ 0.30) | 83.15 (£ 0.26)
Exact BIOES | 85.02 (£ 0.23) | 83.39 (£ 0.39)
DBpedia Partial YN 85.72 (£ 0.45) | 83.25 (£ 0.33)
Partial BIOES | 86.18 (£ 0.56) | 83.97 (+ 0.38)
Collobert’s method 85.01 (£ 0.31) | 83.24 (£ 0.26)
Both Best combination 87.77 (£ 0.29) | 83.82 (£ 0.19)

Table 9: Comparison of lexicon and matching/encoding methods over the BLSTM-CNN model employing random
embeddings and no other features. When using both lexicons, the best combination of matching and encoding is
Exact-BIOES for SENNA and Partial-BIOES for DBpedia. Note that the SENNA lexicon already contains “partial
entries” so exact matching in that case is really just a more primitive form of partial matching.

cons are complementary; the SENNA lexicon is rel-
atively clean and tailored to newswire, whereas the
DBpedia lexicon is noisier but has high coverage.

4.6 Analysis of OntoNotes Performance

Table 10 shows the per-genre breakdown of the
OntoNotes results. As expected, our model per-
forms best on clean text like broadcast news (BN)
and newswire (NW), and worst on noisy text like
telephone conversation (TC) and Web text (WB).
Our model also substantially improves over previous
work on all genres except TC, where the small size
of the training data likely hinders learning. Finally,
the performance characteristics of our model appear
to be quite different than the previous CRF mod-
els (Finkel and Manning, 2009; Durrett and Klein,
2014), likely because we apply a completely differ-
ent machine learning method.

5 Related Research

Named entity recognition is a task with a long his-
tory. In this section, we summarize the works we
compare with and that influenced our approach.

5.1 Named Entity Recognition

Most recent approaches to NER have been charac-
terized by the use of CRF, SVM, and perceptron
models, where performance is heavily dependent
on feature engineering. Ratinov and Roth (2009)
used non-local features, a gazetteer extracted from

33We downloaded their publicly released software and model
to perform the per-genre evaluation.
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Wikipedia, and Brown-cluster-like word representa-
tions, and achieved an F1 score of 90.80 on CoNLL-
2003. Lin and Wu (2009) surpassed them without
using a gazetteer by instead using phrase features
obtained by performing k-means clustering over a
private database of search engine query logs. Passos
et al. (2014) obtained nearly the same performance
using only public data by training phrase vectors in
their lexicon-infused skip-gram model. In order to
combat the problem of sparse features, Suzuki et al.
(2011) employed large-scale unlabelled data to per-
form feature reduction and achieved an F1 score of
91.02 on CoNLL-2003, which is the current state of
the art for systems without external knowledge.

Training an NER system together with related
tasks such as entity linking has recently been shown
to improve the state of the art. Durrett and Klein
(2014) combined coreference resolution, entity link-
ing, and NER into a single CRF model and added
cross-task interaction factors. Their system achieved
state of the art results on the OntoNotes dataset, but
they did not evaluate on the CoNLL-2003 dataset
due to lack of coreference annotations. Luo et al.
(2015) achieved state of the art results on CoNLL-
2003 by training a joint model over the NER and
entity linking tasks, the pair of tasks whose inter-
dependencies contributed the most to the work of
Durrett and Klein (2014).

5.2 NER with Neural Networks

While many approaches involve CRF models, there
has also been a long history of research involving
neural networks. Early attempts were hindered by



Model BC BN MZ NW TC WB
Test set size (# tokens) 32,576 | 23,557 | 18,260 | 51,667 | 11,015 | 19,348
Test set size (# entities) 1,697 2,184 1,163 4,696 380 1,137
Finkel and Manning (2009) | 78.66 87.29 82.45 85.50 | 67.27 72.56
Durrett and Klein (2014)38 78.88 87.39 82.46 87.60 | 72.68 | 76.17
BLSTM-CNN 81.26 86.87 | 79.94 85.27 67.82 | 72.11
BLSTM-CNN + emb 85.05 89.93 84.31 88.35 72.44 | 77.90
BLSTM-CNN + emb + lex 85.23 | 89.93 | 8445 88.39 | 7239 | 78.38

Table 10: Per genre F1 scores on OntoNotes. BC = broadcast conversation, BN = broadcast news, MZ = magazine,
NW = newswire, TC = telephone conversation, WB = blogs and newsgroups

lack of computational power, scalable learning algo-
rithms, and high quality word embeddings.

Petasis et al. (2000) used a feed-forward neural
network with one hidden layer on NER and achieved
state-of-the-art results on the MUC6 dataset. Their
approach used only POS tag and gazetteer tags for
each word, with no word embeddings.

Hammerton (2003) attempted NER with a single-
direction LSTM network and a combination of word
vectors trained using self-organizing maps and con-
text vectors obtained using principle component
analysis. However, while our method optimizes log-
likelihood and uses softmax, they used a different
output encoding and optimized an unspecified ob-
jective function. Hammerton’s (2003) reported re-
sults were only slightly above baseline models.

Much later, with the advent of neural word
embeddings, Collobert et al. (2011b) presented
SENNA, which employs a deep FFNN and word
embeddings to achieve near state of the art results on
POS tagging, chunking, NER, and SRL. We build on
their approach, sharing the word embeddings, fea-
ture encoding method, and objective functions.

Recently, Santos et al. (2015) presented their
CharWNN network, which augments the neural net-
work of Collobert et al. (2011b) with character level
CNN:ss, and they reported improved performance on
Spanish and Portuguese NER. We have successfully
incorporated character-level CNNs into our model.

There have been various other similar architec-
ture proposed for various sequential labeling NLP
tasks. Huang et al. (2015) used a BLSTM for
the POS-tagging, chunking, and NER tasks, but
they employed heavy feature engineering instead
of using a CNN to automatically extract character-
level features. Labeau et al. (2015) used a BRNN
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with character-level CNNs to perform German POS-
tagging; our model differs in that we use the more
powerful LSTM unit, which we found to perform
better than RNNs in preliminary experiments, and
that we employ word embeddings, which is much
more important in NER than in POS tagging. Ling
et al. (2015) used both word- and character-level
BLSTMs to establish the current state of the art for
English POS tagging. While using BLSTMs in-
stead of CNNs allows extraction of more sophisti-
cated character-level features, we found in prelim-
inary experiments that for NER it did not perform
significantly better than CNNs and was substantially
more computationally expensive to train.

6 Conclusion

We have shown that our neural network model,
which incorporates a bidirectional LSTM and a
character-level CNN and which benefits from robust
training through dropout, achieves state-of-the-art
results in named entity recognition with little feature
engineering. Our model improves over previous best
reported results on two major datasets for NER, sug-
gesting that the model is capable of learning com-
plex relationships from large amounts of data.

Preliminary evaluation of our partial matching
lexicon algorithm suggests that performance could
be further improved through more flexible appli-
cation of existing lexicons. Evaluation of existing
word embeddings suggests that the domain of train-
ing data is as important as the training algorithm.

More effective construction and application of
lexicons and word embeddings are areas that require
more research. In the future, we would also like to
extend our model to perform similar tasks such as
extended tagset NER and entity linking.
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