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Abstract

The field of grammatical error correction
(GEC) has grown substantially in recent years,
with research directed at both evaluation met-
rics and improved system performance against
those metrics. One unvisited assumption,
however, is the reliance of GEC evaluation
on error-coded corpora, which contain spe-
cific labeled corrections. We examine cur-
rent practices and show that GEC’s reliance on
such corpora unnaturally constrains annota-
tion and automatic evaluation, resulting in (a)
sentences that do not sound acceptable to na-
tive speakers and (b) system rankings that do
not correlate with human judgments. In light
of this, we propose an alternate approach that
jettisons costly error coding in favor of unan-
notated, whole-sentence rewrites. We com-
pare the performance of existing metrics over
different gold-standard annotations, and show
that automatic evaluation with our new anno-
tation scheme has very strong correlation with
expert rankings (ρ = 0.82). As a result, we ad-
vocate for a fundamental and necessary shift
in the goal of GEC, from correcting small, la-
beled error types, to producing text that has
native fluency.

1 Introduction

What is the purpose of grammatical error correction
(GEC)? One response is that GEC aims to help peo-
ple become better writers by correcting grammatical
mistakes in their writing. In the NLP community,
the original scope of GEC was correcting targeted
error types with the goal of providing feedback to
non-native writers (Chodorow and Leacock, 2000;

Dale and Kilgarriff, 2011; Leacock et al., 2014). As
systems improved and more advanced methods were
applied to the task, the definition evolved to whole-
sentence correction, or correcting all errors of every
error type (Ng et al., 2014). With this pivot, we urge
the community to revisit the original question.

It is often the case that writing exhibits problems
that are difficult to ascribe to specific grammatical
categories. Consider the following example:

Original: From this scope , social media has
shorten our distance .
Corrected: From this scope , social media has
shortened our distance .
If the goal is to correct verb errors, the grammat-

ical mistake in the original sentence has been ad-
dressed and we can move on. However, when we
aim to correct the sentence as a whole, a more vex-
ing problem remains. The more prominent error has
to do with how unnaturally this sentence reads. The
meanings of words and phrases like scope and the
corrected shortened our distance are clear, but this
is not how a native English speaker would use them.
A more fluent version of this sentence would be the
following:

Fluent: From this perspective , social media has
shortened the distance between us .
This issue argues for a broader definition of gram-

maticality that we will term native-language flu-
ency, or simply fluency. One can argue that tradi-
tional understanding of grammar and grammar cor-
rection encompasses the idea of native-language flu-
ency. However, the metrics commonly used in eval-
uating GEC undermine these arguments. The per-
formance of GEC systems is typically evaluated us-
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ing metrics that compute corrections against error-
coded corpora, which impose a taxonomy of types
of grammatical errors. Assigning these codes can be
difficult, as evidenced by the low agreement found
between annotators of these corpora. It is also quite
expensive. But most importantly, as we will show
in this paper, annotating for explicit error codes
places a downward pressure on annotators to find
and fix concrete, easily-identifiable grammatical er-
rors (such as wrong verb tense) in lieu of addressing
the native fluency of the text.

A related problem is the presence of multiple
evaluation metrics computed over error-annotated
corpora. Recent work has shown that metrics like
M2 and I-measure, both of which require error-
coded corpora, produce dramatically different re-
sults when used to score system output and produce
a ranking of systems in conventional competitions
(Felice and Briscoe, 2015).

In light of all of this, we suggest that the GEC task
has overlooked a fundamental question: What are
the best practices for corpus annotation and system
evaluation? This work attempts to answer this ques-
tion. We show that native speakers prefer text that
exhibits fluent sentences over ones that have only
minimal grammatical corrections. We explore dif-
ferent methods for corpus annotation (with and with-
out error codes, written by experts and non-experts)
and different evaluation metrics to determine which
configuration of annotated corpus and metric has the
strongest correlation with the human ranking. In so
doing, we establish a reliable and replicable evalu-
ation procedure to help further the advancement of
GEC methods.1 To date, this is the only work to un-
dertake a comprehensive empirical study of annota-
tion and evaluation. As we will show, the two areas
are intimately related.

Fundamentally, this work reframes grammati-
cal error correction as a fluency task. Our pro-
posed evaluation framework produces system rank-
ings with strong to very strong correlations with hu-
man judgments (Spearman’s ρ = 0.82, Pearson’s
r = 0.73), using a variation of the GLEU metric
(Napoles et al., 2015)2 and two sets of “fluent” sen-

1All the scripts and new data we collected are available at
https://github.com/keisks/reassess-gec.

2This metric should not be confused with the method of the
same name presented in Mutton et al. (2007) for sentence-level

tence rewrites as a gold standard, which are simpler
and cheaper to collect than previous annotations.

2 Current issues in GEC

In this section, we will address issues of the GEC
task, reviewing previous work with respect to error
annotation and evaluation metrics.

2.1 Annotation methodologies

Existing corpora for GEC are annotated for er-
rors using fine-grained coding schemes. To create
error-coded corpora, trained annotators must iden-
tify spans of text containing an error, assign codes
corresponding to the error type, and provide correc-
tions to those spans for each error in the sentence.

One of the main issues with coded annotation
schemes is the difficulty of defining the granularity
of error types. These sets of error tags are not easily
interchangeable between different corpora. Specif-
ically, two major GEC corpora have different tax-
onomies: the Cambridge Learner Corpus (CLC)
(Nicholls, 2003) has 80 tags, which generally repre-
sent the word class of the error and the type of error
(such as replace preposition, unnecessary pronoun,
or missing determiner). In contrast, the NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier et al.,
2013) has only 27 error types. A direct conversion
between them, if possible, would be very complex.
Additionally, it is difficult for annotators to agree on
error annotations, which complicates the annotation
validity as a gold standard (Leacock et al., 2014).
This is due to the nature of grammatical error cor-
rection, where there can be diverse correct edits for
a sentence (Figure 1). In other words, there is no
single gold-standard correction. The variety of error
types and potential correct edits result in very low
inter-annotator agreement (IAA), as reported in pre-
vious studies (Tetreault and Chodorow, 2008; Ro-
zovskaya and Roth, 2010; Bryant and Ng, 2015).

This leads to a more fundamental question: why
do we depend so much on fine-grained, low-
consensus error-type annotations as a gold standard
for evaluating GEC systems?

One answer is that error tags can be informative
and useful to provide feedback to language learn-
ers, especially for specific closed-class error types

fluency evaluation.
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As the development of the technology  , social media  becomes more and more significant role  in the  whole world  .

With the development of technology
As the technology develops

As technology develops

plays a more and more significant role
becomes more and more significant

world

Figure 1: An ungrammatical sentence that can be corrected in different ways.

(such as determiners and prepositions). Indeed, the
CLC, the first large-scale corpus of annotated gram-
matical errors, was coded specifically with the intent
of gathering statistics about errors to inform the de-
velopment of tools to help English language learn-
ers (Nicholls, 2003). Later GEC corpora adhered to
the same error-coding template, if not the same error
types (Rozovskaya and Roth, 2010; Yannakoudakis
et al., 2011; Dahlmeier et al., 2013).

The first shared task in GEC aspired to the CLC’s
same objective: to develop tools for language learn-
ers (Dale and Kilgarriff, 2011). Subsequent shared
tasks (Dale et al., 2012; Ng et al., 2013) followed
suit, targeting specific error types. Error-coded
corpora are effective training and evaluation data
for targeted error correction, and statistical classi-
fiers have been developed to handle errors involving
closed-class words (Rozovskaya and Roth, 2014).
However, the 2014 CoNLL shared task engendered
a sea change in GEC: in this shared task, systems
needed to correct all errors in a sentence, of all er-
ror types, including ones more stylistic in nature (Ng
et al., 2014). The evaluation metrics and annotated
data from the previous shared task were used; how-
ever we argue that they do not align with the use
case of this reframed task. What is the use case of
whole-sentence correction? It should not be to pro-
vide specific targeted feedback on error types, but
rather to rewrite sentences as a proofreader would.

The community has already begun to view whole-
sentence correction as a task, with the yet unstated
goal of improving the overall fluency of sentences.
Independent papers published human evaluations of
the shared task system output (Napoles et al., 2015;
Grundkiewicz et al., 2015), asking judges to rank
systems based on their grammaticality. As GEC
moves toward correcting an entire sentence instead
of targeted error types, the myriad acceptable edits
will result in much lower IAA, compromising eval-
uation metrics based on the precision and recall of

coded errors. At this juncture, it is crucial that we
examine whether error-coded corpora and evalua-
tion are necessary for this new direction of GEC.

Finally, it would be remiss not to address the
cost and time of corpus annotation. Tetreault and
Chodorow (2008) noted that it would take 80 hours
to correct 1,000 preposition errors by one trained
annotator. Bryant and Ng (2015) reported that it
took about three weeks (504 hours) to collect 7
independent annotations for 1,312 sentences, with
all 28 CoNLL-2014 error types annotated. Clearly,
constructing a corpus with fine-grained error an-
notations is a labor-intensive process. Due to the
time and cost of annotation, the corpora currently
used in the community are few and tend to be
small, hampering robust evaluations as well as lim-
iting the power of statistical models for generat-
ing corrections. If an effective method could be
devised to decrease time or cost, larger corpora—
and more of them—could be created. There has
been some work exploring this, namely Tetreault
and Chodorow (2008), which used a sampling ap-
proach that would only work for errors involving
closed-class words. Pavlick et al. (2014) also de-
scribe preliminary work into designing an improved
crowdsourcing interface to expedite data collection
of coded errors.

Section 3 outlines our annotation approach, which
is faster and cheaper than previous approaches be-
cause it does not make use of error coding.

2.2 Evaluation practices

Three evaluation metrics3 have been proposed for
GEC: MaxMatch (M2) (Dahlmeier and Ng, 2012),
I-measure (Felice and Briscoe, 2015), and GLEU
(Napoles et al., 2015). The first two compare the
changes made in the output to error-coded spans of
the reference corrections. M2 was the metric used

3Not including the metrics of the HOO shared tasks, which
were precision, recall, and F-score.
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for the 2013 and 2014 CoNLL GEC shared tasks
(Ng et al., 2013; Ng et al., 2014). It captures word-
and phrase-level edits by building an edit lattice and
calculating an F-score over the lattice.

Felice and Briscoe (2015) note problems with
M2: specifically, it does not distinguish between a
“do-nothing baseline” and systems that only pro-
pose wrong corrections; also, phrase-level edits can
be easily gamed because the lattice treats the dele-
tion of a long phrase as a single edit. To address
these issues, they propose I-measure, which gener-
ates a token-level alignment between the source sen-
tence, system output, and gold-standard sentences,
and then computes accuracy based on the alignment.

Unlike these approaches, GLEU does not use
error-coded references4 (Napoles et al., 2015).
Based on BLEU (Papineni et al., 2002), it computes
n-gram precision of the system output against refer-
ence sentences. GLEU additionally penalizes text in
the output that was unchanged from the source but
changed in the reference sentences.

Recent work by Napoles et al. (2015) and Grund-
kiewicz et al. (2015) evaluated these metrics against
human evaluations obtained using methods bor-
rowed from the Workshop on Statistical Machine
Translation (Bojar et al., 2014). Both papers found
a moderate to strong correlation with human judg-
ments for GLEU and M2, and a slightly negative cor-
relation for I-measure. Importantly, however, none
of these metrics achieved as a high correlation with
the human oracle ranking as desired in a fully reli-
able metric.

In Section 4, we examine the available metrics
over different types of reference sets to identify an
evaluation setup nearly as reliable as human experts.

3 Creating a new, fluent GEC corpus

We hypothesize that human judges, when presented
with two versions of a sentence, will favor fluent ver-
sions over ones that exhibit only technical grammat-
icality.

By technical grammaticality, we mean adherence
to an accepted set of grammatical conventions. In
contrast, we consider a text to be fluent when it

4We use the term references to refer to the corrected sen-
tences, since the term gold standard suggests that there is just
one right correction.

looks and sounds natural to a native-speaking pop-
ulation. Both of these terms are hard to define pre-
cisely, and fluency especially is a nuanced concept
for which there is no checklist of criteria to be met.5

To carry the intuitions, Table 1 contains examples of
sentences that are one, both, or neither. A text does
not have to be technically grammatical to be consid-
ered fluent, although in almost all cases, fluent texts
are also technically grammatical. In the rest of this
paper, we will demonstrate how they are quantifiably
different with respect to GEC.

Annotating coded errors encourages a minimal set
of edits because more substantial edits often address
overlapping and interacting errors. For example, the
annotators of the NUCLE corpus, which was used
for the recent shared tasks, were explicitly instructed
to select the minimal text span of possible alterna-
tives (Dahlmeier et al., 2013). There are situations
where error-coded annotations are useful to help stu-
dents correct specific grammatical errors. The abil-
ity to do this with the non-error-coded, fluent an-
notations we advocate here is no longer direct, but
is not lost entirely. For this purpose, some recent
studies have proposed post hoc automated error-
type classification methods (Swanson and Yamangil,
2012; Xue and Hwa, 2014), which compare the orig-
inal sentence to its correction and deduce the error
types.

We speculate that, by removing the error-coding
restraint, we can obtain edits that sound more fluent
to native speakers while also reducing the expense
of annotation, with diminished time and training re-
quirements. Chodorow et al. (2012) and Tetreault et
al. (2014) suggested that it is better to have a large
number of annotators to reduce bias in automatic
evaluation. Following this recommendation, we col-
lected additional annotations without error codes,
written by both experts and non-experts.

5It is important to note that both grammaticality and fluency
are determined with respect to a particular speaker population
and setting. In this paper, we focus on Standard Written En-
glish, which is the standard used in education, business, and
journalism. While judgments of individual sentences would
differ for other populations and settings (for example, spoken
African-American Vernacular English), the distinction between
grammaticality and fluency would remain.
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Technically grammatical Not technically grammatical

Fluent In addition, it is impractical to make such a law. I don’t like this book, it’s really boring.

Not fluent Firstly , someone having any kind of disease be-
longs to his or her privacy .

It is unfair to release a law only point to the ge-
netic disorder.

Table 1: Examples and counterexamples of technically grammatical and fluent sentences.

Original Genetic disorder may or may not be hirataged hereditary disease and it is sometimes hard to find
out one has these kinds of diseases .

Expert
fluency

A genetic disorder may or may not be
e

a hereditary disease , and it is sometimes hard to find out
whether one has these kinds of diseases .

Non-expert
fluency

Genetic
e

factors can manifest overtly as disease
e

, or simply be carried , making it
e

hard ,
sometimes , to find out if one has

e
a genetic predisposition to disease .

Table 2: An example sentence with expert and non-expert fluency edits. Moved and changed or inserted spans are
underlined and

e
indicates deletions.

3.1 Data collection

We collected a large set of additional human correc-
tions to the NUCLE 3.2 test set, 6 which was used
in the 2014 CoNLL Shared Task on GEC (Ng et al.,
2014) and contains 1,312 sentences error-coded by
two trained annotators. Bryant and Ng (2015) col-
lected an additional eight annotations using the same
error-coding framework, referred to here as BN15.

We collected annotations from both experts and
non-experts. The experts7 were three native En-
glish speakers familiar with the task. To ensure
that the edits were clean and meaning-preserving,
each expert’s corrections were inspected by a dif-
ferent expert in a second pass. For non-experts, we
used crowdsourcing, which has shown potential for
annotating closed-class errors as effectively as ex-
perts (Tetreault et al., 2010; Madnani et al., 2011;
Tetreault et al., 2014). We hired 14 participants on
Amazon Mechanical Turk (MTurk) who had a HIT
approval rate of at least 95% and were located in
the United States. The non-experts went through
an additional screening process: before completing
the task, they wrote corrections for five sample sen-
tences, which were checked by the three experts.8

6www.comp.nus.edu.sg/˜nlp/conll14st.html
7All of the expert annotators are authors of this work.
8The experts verified that the participants were following the

instructions and not gaming the HITs.

We collected four complete sets of annotations by
both types of annotators: two sets of minimal edits,
designed to make the original sentences technically
grammatical (following the NUCLE annotation in-
structions but without error coding), and two sets of
fluency edits, designed to elicit native-sounding, flu-
ent text. The instructions were:

• Minimal edits: Make the smallest number of
changes so that each sentence is grammatical.

• Fluency edits: Make whatever changes neces-
sary for sentences to appear as if they had been
written by a native speaker.

In total, we collected 8 (2 × 2 × 2) annotations
from each original sentence (minimal and fluency,
expert and non-expert, two corrections each). Of
the original 1,312 sentences, the experts flagged 34
sentences that needed to be merged together, so we
skipped these sentences in our analysis and experi-
ments. In the next two subsections we compare the
changes made under both the fluency and minimal
edit conditions (Section 3.2) and show how humans
rate corrections made by experts and non experts in
both settings (Section 3.3).

3.2 Edit analysis
When people (both experts and non-experts) are
asked to make minimal edits, they make few changes
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Original Some family may feel hurt , with regards to their family pride or reputation , on having the knowl-
edge of such genetic disorder running in their family .

NUCLE Some family members may feel hurt
e

with regards to their family pride or reputation
e

on having
the knowledge of a genetic disorder running in their family .

Expert
fluency

On
e

learning of such a genetic disorder running in their family , some family members may
feel hurt

e
regarding their family pride or reputation .

Non-expert
fluency

Some relatives may
e

be concerned about the family ’s
e

reputation – not to mention their own
pride – in relation to this news of

e
familial genetic defectiveness

e
.

Expert
minimal

Some families may feel hurt
e

with regards to their family pride or reputation , on having
e

knowledge of such a genetic disorder running in their family .

Non-expert
minimal

Some family may feel hurt
e

with regards to their family pride or reputation
e

on having the
knowledge of such genetic disorder running in their family .

Table 3: An example sentence with the original NUCLE correction and fluency and minimal edits written by experts
and non-experts. Moved and changed or inserted spans are underlined and

e
indicates deletions.

to the sentences and also change fewer of the sen-
tences. Fluency edits show the opposite effect, with
non-experts taking more liberties than experts with
both the number of sentences changed and the de-
gree of change within each sentence (see Table 2 for
an extreme example of this phenomenon).

In order to quantify the extent of changes made
in the different annotations, we look at the percent
of sentences that were left unchanged as well as the
number of changes needed to transform the original
sentence into the corrected annotation. To calculate
the number of changes, we used a modified Trans-
lation Edit Rate (TER), which measures the number
of edits needed to transform one sentence into an-
other (Snover et al., 2006). An edit can be an inser-
tion, deletion, substitution, or shift. We chose this
metric because it counts the movement of a phrase
(a shift) as one change, which the Levenshtein dis-
tance would heavily penalize. TER is calculated as
the number of changes per token, but instead we re-
port the number of changes per sentence for ease of
interpretation, which we call the sTER.

We compare the original set of sentences to the
new annotations and the existing NUCLE and BN15
reference sets to determine the relative extent of
changes made by the fluency and minimal edits (Fig-
ure 2). Compared to the original, non-experts had a
higher average sTER than experts, meaning that they

made more changes per sentence. For fluency ed-
its, experts and non-experts changed approximately
the same number of sentences, but the non-experts
made about seven edits per sentence compared to
the experts’ four. Minimal edits by both experts and
non-experts exhibit a similar degree of change from
the original sentences, so further qualitative assess-
ment is necessary to understand whether the annota-
tors differ. Table 3 contains an example of how the
same ungrammatical sentence was corrected using
both minimal and fluency edits, as well as one of the
original NUCLE corrections.

The error-coded annotations of NUCLE and
BN15 fall somewhere in between the fluency and
minimal edits in terms of sTER. The most conser-
vative set of sentences is the system output of the
CoNLL 2014 shared task, with sTER = 1.4, or ap-
proximately one change made per sentence. In con-
trast, the most conservative human annotations, the
minimal edits, edited a similar percent of the sen-
tences but made about two changes per sentence.

When there are multiple annotators working on
the same data, one natural question is the inter-
annotator agreement (IAA). For GEC, IAA is of-
ten low and arguably not an appropriate measure of
agreement (Bryant and Ng, 2015). Additionally, it
would be difficult, if possible, to reliably calculate
IAA without coded alignments between the new and
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Figure 2: Amount of changes made by different annota-
tion sets compared to the original sentences.

original sentences. Therefore, we look at two al-
ternate measures: the percent of sentences to which
different annotators made the same correction(s) and
the sTER between two annotators’ corrections, re-
ported in Table 4.

As we expect, there is notably lower agreement
between the annotators for fluency edits than for
minimal edits, due to the presumably smaller set of
required versus optional stylistic changes. Expert
annotators produced the same correction on 15% of
the fluency edits, but more than 38% of their min-
imal edits were identical. Half of these identical
sentences were unchanged from the original. There
was lower agreement between non-expert annotators
than experts on both types of edits. We performed
the same calculations between the two NUCLE an-
notators and found that they had agreement rates
similar to the non-expert minimal edits. However,
the experts’ minimal edits have much higher con-
sensus than both the non-experts’ and NUCLE, with
twice as many identical corrected sentences and half
the sTER.

From this analysis, one could infer that the expert
annotations are more reliable than the non-expert be-
cause there are fewer differences between annotators

Edit type Annotator Identical sTER
Fluency E1 v. E2 15.3% 5.1

N1 v. N2 5.9% 10.0
E v. N 8.5% 7.9

Minimal E1 v. E2 38.7% 1.7
N1 v. N2 21.8% 2.9
E v. N 25.9% 2.4

NUCLE A v. B. 18.8% 3.3

Table 4: A comparison of annotations across different
annotators (E for expert, N for non-expert). Where there
were more than two annotators, statistics are over the full
pairwise set. Identical refers to the percentage of sen-
tences where both annotators made the same correction
and sTER is the mean sTER between the annotators’ cor-
rections.

and fewer changes per sentence.

3.3 Human evaluation

As an additional validation, we ran a task to establish
the relative quality of the new fluency and minimal-
edit annotations using crowdsourcing via MTurk.
Participants needed to be in the United States with
a HIT approval rate of at least 95% and pass a pre-
liminary ranking task, graded by the authors. We
randomly selected 300 sentences and asked partici-
pants to rank the new annotations, one randomly se-
lected NUCLE correction, and the original sentence
in order of grammaticality and meaning preservation
(that is, a sentence that is well-formed but changes
the meaning of the original source should have a
lower rank than one that is equally well-formed but
maintains the original meaning). Since we were
comparing the minimal edits to the fluency edits, we
did not define the term grammaticality, but instead
relied on the participants’ understanding of the term.
Each sentence was ranked by two different judges,
for a total of 600 rankings, yielding 7,795 pairwise
comparisons.

To rank systems, we use the TrueSkill approach
(Herbrich et al., 2006; Sakaguchi et al., 2014), based
on a protocol established by the Workshop on Ma-
chine Translation (Bojar et al., 2014; Bojar et al.,
2015). For each competing system, TrueSkill infers
the absolute system quality from the pairwise com-
parisons, representing each as the mean of a Gaus-
sian. These means can then be sorted to rank sys-
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# Score Range Annotation type
1 1.164 1–2 Expert fluency

0.976 1–2 Non-expert fluency
3 0.540 3 NUCLE
4 0.265 4 Expert minimal
5 -0.020 5 Non-expert minimal
6 -2.925 6 Original sentence

Table 5: Human ranking of the new annotations by gram-
maticality. Lines between systems indicate clusters ac-
cording to bootstrap resampling at p ≤ 0.05. Systems in
the same cluster are considered to be tied.

tems. By running TrueSkill 1,000 times using boot-
strap resampling and producing a system ranking
each time, we collect a range of ranks for each sys-
tem. We can then cluster systems according to non-
overlapping rank ranges (Koehn, 2012) to produce
the final ranking, allowing ties.

Table 5 shows the ranking of “grammatical” judg-
ments for the additional annotations and the orig-
inal NUCLE annotations. While the score of the
expert fluency edits is higher than the non-expert
fluency, they are within the same cluster, suggest-
ing that the judges perceived them to be just as
good. The fluency rewrites by both experts and non-
experts are clearly preferable over the minimal edit
corrections, although the error-coded NUCLE cor-
rections are perceived as more grammatical than the
minimal corrections.

4 Automatic metrics

We have demonstrated that humans prefer fluency
edits to error-coded and minimal-edit corrections,
but it is unclear whether these annotations are an
effective reference for automatic evaluation. The
broad range of changes that can be made with non-
minimal edits may make it especially challenging
for current automatic evaluation metrics to use. In
this section, we investigate the impact that differ-
ent reference sets have on the system ranking found
by different evaluation metrics. With reference
sets having such different characteristics, the natural
question is: which reference and evaluation metric
pairing best reflects human judgments of grammati-
cality?

To answer this question, we performed a compre-
hensive investigation of existing metrics and anno-
tation sets to evaluate the 12 system outputs made

public from the 2014 CoNLL Shared Task. To our
knowledge, this is the first time that the interplay
of annotation scheme and evaluation metric, as well
as the rater expertise, has been evaluated jointly for
GEC.

4.1 Experimental setup

The four automatic metrics that we investigate are
M2, I-measure,9 GLEU, and BLEU. We include the
machine-translation metric BLEU because evaluat-
ing against our new non-coded annotations is similar
to machine-translation evaluation, which considers
overlap instead of absolute alignment between the
output and reference sentences.

For the M2 and I-measure evaluations, we aligned
the fluency and minimal edits to the original sen-
tences using a Levenshtein edit distance algorithm.10

Neither metric makes use of the annotation labels, so
we simply assigned dummy error codes.

Our GLEU implementation differs from that of
Napoles et al. (2015). We use a simpler, modified
version: Precision is the number of candidate (C)
n-grams that match the reference (R) n-grams, mi-
nus the counts of n-grams found more often in the
source (S) than the reference (Equation 1). Because
the number of possible reference n-grams increases
as more reference sets are used, we calculate an in-
termediate GLEU by drawing a random sample from
one of the references and report the mean score over
500 iterations.11

We compare the system outputs to each of the six
annotation sets and a seventh set containing all of
the annotations, using each metric. We ranked the
systems based on their scores using each metric–
annotation-set pair, and thus generated a total of 28
different rankings (4 metrics × 7 annotation sets).

To determine the best metric, we compared the
system-level ranking obtained from each evaluation
technique against the expert human ranking reported
in Grundkiewicz et al. (2015), Table 3c.

9We ran I-measure with the -nomix flag, preventing the al-
gorithm from finding the optimal alignment across all possible
edits. Alignment was very memory-intensive and time consum-
ing, even when skipping long sentences.

10Costs for insertion, deletion, and substitution are set to 1,
allowing partial match (e.g. same lemma).

11Running all iterations, it takes less than 30 seconds to eval-
uate 1,000 sentences.
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p∗n =

(
∑

ngram∈{C∩R}
countC,R(ngram)− ∑

ngram∈{C∩S}
max [0, countC,S(ngram)− countC,R(ngram)]

)

∑
ngram∈{C}

count(ngram)

countA,B(ngram) = min (# occurrences of ngram in A, # occurrences of ngram in B)
(1)

M2 GLEU I-measure BLEU
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8 NUCLE (2)

BN15 (10)
E-fluency (2)
N-fluency (2)
E-minimal (2)
N-minimal (2)
All (20)

Figure 3: Correlation of the human ranking with metric scores over different reference sets (Spearman’s ρ). The
number of annotations per sentence in each set is in parentheses. See Table 6 for the numeric values.

M2 GLEU I-measure BLEU

NUCLE 0.725 0.626 -0.423 -0.456
0.677* 0.646 -0.313 -0.310

BN15 0.692 0.720 -0.066 -0.319*
0.641 0.697 -0.007 -0.255

E-fluency 0.758 0.819* -0.297 -0.385
0.665 0.731* -0.256 -0.230*

N-fluency 0.703 0.676 -0.451 -0.451
0.655 0.668 -0.319 -0.388

E-min. 0.775* 0.786 -0.467 -0.456
0.655 0.676 -0.385 -0.396

N-min. 0.769 -0.187 -0.467 -0.495
0.641 -0.110 -0.402 -0.473

All 0.692 0.725 -0.055* -0.462
0.617 0.724 0.061* -0.314

Table 6: Correlation between the human ranking and
metric scores over different reference sets. The first line
of each cell is Spearman’s ρ and the second line is Pear-
son’s r. The strongest correlations for each metric are
starred, and the overall strongest correlations are in bold.

4.2 Results

Figure 3 and Table 6 show the correlation of the
expert rankings with all of the evaluation configu-
rations. For the leading metrics, M2 and GLEU,
the expert annotations had stronger positive corre-
lations than the non-expert annotations. Using just
two expert fluency annotations with GLEU has the

strongest correlation with the human ranking out
of all other metric–reference pairings (ρ = 0.819,
r = 0.731), and it is additionally cheaper and faster
to collect. E-fluency is the third-best reference set
with M2, which does better with minimal changes:
the reference sets with the strongest correlations for
M2 are E-minimal (ρ = 0.775) and NUCLE (r =
0.677). Even though the non-expert fluency edits
had more changes than the expert fluency edits, they
still did reasonably well using both M2 and GLEU.

The GLEU metric has strongest correlation when
comparing against the E-fluency, BN15, E-minimal,
and “All” reference sets. One could argue that, ex-
cept for E-minimal, these references all have greater
diversity of edits than NUCLE and minimal edits.
Although BN15 has fewer changes made per sen-
tence than the fluency edits, because of the number
of annotators, the total pool of n-grams seen per sen-
tence increases. E-minimal edits also have strong
correlation, suggesting there may be a trade-off be-
tween quantity and quality of references.

A larger number of references could improve per-
formance for GLEU. Because fluency edits tend to
have more variations than error-coded minimal-edit
annotations, it is not obvious how many fluency ed-
its are necessary to cover the full range of possible
corrections. To address this question, we ran an ad-
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ditional small-scale experiment, where we collected
10 non-expert fluency edits for 20 sentences and
computed the average GLEU scores of the submit-
ted systems against an increasing number of these
fluency references. The result (Figure 5) shows that
the GLEU score with more fluency references, but
the effect starts to level off when there are at least
4 references, suggesting that 4 references cover the
majority of possible changes. A similar pattern was
observed by Bryant and Ng (2015) in error-coded
annotations with the M2 metric.

The reference sets against which M2 has the
strongest correlation are NUCLE, expert fluency,
and expert minimal edits. Even non-expert fluency
annotations result in a stronger correlation with the
human metric than BN15. These findings support
the use of fluency edits even with a metric designed
for error-coded corpora.

One notable difference between M2 and GLEU
is their relative performance using non-expert mini-
mal edits as a metric. M2 is robust to the non-expert
minimal edits and, as a reference set, this achieves
the second strongest Spearman’s correlation for this
metric. However, pairing the non-expert minimal
edits with GLEU results in slightly negative correla-
tion. This is an unexpected result, as there is sizable
overlap between the non-expert and expert minimal
edits (Table 4). We speculate that this difference
may be due to the quality of the non-expert minimal
edits. Recall that humans perceived these sentences
to be worse than the other annotations, and better
only than the original sentence (Table 5).

I-measure and BLEU are shown to be unfavorable
for this task, having negative correlation with the hu-
man ranking, which supports the findings of Napoles
et al. (2015) and Grundkiewicz et al. (2015). Even
though BLEU and GLEU are both based on the n-
gram overlap between the hypothesis and original
sentences, GLEU has strong positive correlations
with human rankings while BLEU has a moderate
negative correlation. The advantage of GLEU is
that it penalizes n-grams in the system output that
were present in the input sentence and absent from
the reference. In other words, a system loses credit
for missing n-grams that should have been changed.
BLEU has no such penalty and instead only rewards
n-grams that occur in the references and the output,
which is a problem in same-language text rewriting

CAMB
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CUUI
AMU
PKU
RAC
UMC
SJTU
NTHU
UFC
IITB
IPN
input 
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CAMB
RAC
CUUI
POST
PKU
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UFC
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NTHU

IPN

Expert
GLEU
E-fluency

Figure 4: System rankings produced by GLEU with ex-
pert fluency (E-fluency) as the reference compared to the
expert human ranking.

Figure 5: Mean GLEU scores with different numbers of
fluency references. The red line corresponds to the aver-
age GLEU score of the 12 GEC systems and the vertical
bars show the maximum and minimum GLEU scores.

tasks where there is significant overlap between the
reference and the original sentences. For this data,
BLEU assigns a higher score to the original sen-
tences than to any of the systems.12

Figure 4 shows the system ranking for the most
strongly correlated annotation–evaluation combi-
nation (GLEU with E-fluency) compared to the
“ground truth” human rankings. The automatic met-
ric clusters the systems into the correct upper and
lower halves, and the input is correctly placed in the
lower half of the rankings.

12Of course, it could be that the input sentences are the best,
but the human ranking in Figure 4 suggests otherwise.
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Even though automatic metrics strongly correlate
with human judgments, they still do not have the
same reliability as manual evaluation. Like error-
coded annotations, judgment by specialists is expen-
sive, so we investigate a more practical alternative in
the following section.

5 Human evaluation

Automatic metrics are only a proxy for human judg-
ments, which are crucial to truthfully ascertain the
quality of systems. Even the best result in Section
4.2, which is state of the art and has very strong
rank correlation (ρ = 0.819) with the expert rank-
ing, makes dramatic errors in the system ranking.
Given the inherent imperfection of automatic eval-
uation (and possible over-optimization to the NU-
CLE data set), we recommend that human evalua-
tion be produced alongside metric scores whenever
possible. However, human judgments can be ex-
pensive to obtain. Crowdsourcing may address this
problem and has been shown to yield reasonably
good judgments for several error types at a relatively
low cost (Tetreault et al., 2014). Therefore, we ap-
ply crowdsourcing to sentence-level grammaticality
judgments, by replicating previous experiments that
reported expert rankings of system output (Napoles
et al., 2015; Grundkiewicz et al., 2015) using non-
experts on MTurk.

5.1 Experimental setup

Using the same data set as those experiments and
the work described in this paper, we asked screened
participants13 on MTurk to rank five randomly se-
lected systems and NUCLE corrections from best to
worst, with ties allowed. 294 sentences were ran-
domly selected for evaluation from the NUCLE sub-
section used in Grundkiewicz et al. (2015), and the
output for each sentence was ranked by two different
participants. The 588 system rankings yield 26,265
pairwise judgments, from which we inferred the ab-
solute system ranking using TrueSkill.

5.2 Results

Figure 6 compares the system ranking by non-
experts to the same expert ranking used in Sec-

13Participants in the United States with a HIT approval rate
≥ 95% had to pass a sample ranking task graded by the authors.
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Figure 6: Output of system rankings by experts and non-
experts, from best to worst. Dotted lines indicate clusters
according to bootstrap resampling (p ≤ 0.05).

Judges κ κw

Non-experts 0.29 0.43
Experts 0.29 0.45
Non-experts and Experts 0.15 0.23

Table 7: Inter-annotator agreement of pairwise system
judgments within non-experts, experts and between them.
We show Cohen’s κ and quadratic-weighted κ.15

tion 4.1. The rankings have very strong correla-
tion (ρ = 0.917, r = 0.876), indicating that non-
expert grammaticality judgments are comparably as
reliable as those by experts. Compared to the best
metric ranking shown in Figure 4, the non-expert
ranking appears significantly better. No system has
a rank more than two away from the expert rank,
while GLEU has six systems with ranks that are
three away. The non-expert correlation can be seen
as an upper bound for the task, which is approached
but not yet attained by automatic metrics.

Systems in the same cluster, indicated by dotted
lines in Figure 6, can be viewed as ties. From this
perspective the expert and non-expert rankings are
virtually identical. In addition, experts and non-
experts have similar inter-annotator agreement in
their pairwise system judgments (Table 7). The
agreement between experts and non-experts is lower
than the agreement between just experts or just non-

15In addition to Cohen’s κ, we report weighted κ because
A > B and A < B should have less agreement than A > B
and A = B.
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experts, which may be due to the difference of these
experimental settings for experts (Grundkiewicz et
al., 2015) and for non-experts (this work). However,
this finding is not overly concerning since the corre-
lation between the rankings is so strong.

In all, judgments cost approximately $140 ($0.2
per sentence) and took a total of 32 hours to com-
plete. Because the non-expert ranking very strongly
correlates to the expert ranking and non-experts
have similar IAA as experts, we conclude that ex-
pensive expert judgments can be replaced by non-
experts, when those annotators have been appropri-
ately screened.

6 Conclusion

There is a real distinction between technical gram-
maticality and fluency. Fluency is a level of mastery
that goes beyond knowledge of how to follow the
rules, and includes knowing when they can be bro-
ken or flouted. Language learners—who are a prime
constituency motivating the GEC task—ultimately
care about the latter. But crucially, the current ap-
proach of collecting error-coded annotations places
downward pressure on annotators to minimize edits
in order to neatly label them. This results in anno-
tations that are less fluent, and therefore less use-
ful, than they should be. We have demonstrated this
with the collection of both minimally-edited and flu-
ent rewrites of a common test set (Section 3.1); the
preference for fluent rewrites over minimal edits is
clear (Table 5).

To correct this, the annotations and associated
metrics used to score automated GEC systems
should be brought more in line with this broad-
ened goal. We advocate for the collection of flu-
ent sentence-level rewrites of ungrammatical sen-
tences, which is cheaper than error-coded annota-
tions and provides annotators with the freedom to
produce fluent edits. In the realm of automatic met-
rics, we found that a modified form of GLEU com-
puted against expert fluency rewrites correlates best
with a human ranking of the systems; a close runner-
up collects the rewrites from non-experts instead of
experts.

Finally, to stimulate metric development, we
found that we were able to produce a new human
ranking of systems using non-expert judges. These

judges produced a ranking that was highly corre-
lated with the expert ranking produced in earlier
work (Grundkiewicz et al., 2015). The implication
is further reduced costs in producing a gold-standard
ranking for new sets of system outputs against both
existing and new corpora.

As a result, we make the following recommenda-
tions:

• GEC should be evaluated against 2–4 whole-
sentence rewrites, which can be obtained by
non-experts.

• Automatic metrics that rely on error coding
are not necessary, depending on the use case.
Of the automatic metrics that have been pro-
posed, we found that a modified form of GLEU
(Napoles et al., 2015) is the best-correlated.

• The field of GEC is in danger from over-
reliance on a single annotated corpus (NU-
CLE). New corpora should be produced in a
regular fashion, similar to the Workshop on
Statistical Machine Translation.

Fortunately, collecting annotations in the form of
unannotated sentence-level rewrites is much cheaper
than error-coding, facilitating these practices.

By framing grammatical error correction as flu-
ency, we can reduce the cost of annotation while cre-
ating a more reliable gold standard. We have clearly
laid improved practices for annotation and evalua-
tion, demonstrating that better quality results can be
achieved for less cost using fluency edits instead of
error coding. All of the source code and data, in-
cluding templates for data collection, will be pub-
licly available, which we believe is crucial for sup-
porting the improvement of GEC in the long term.
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