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Abstract

We introduce a new approach to training
a semantic parser that uses textual entail-
ment judgements as supervision. These
judgements are based on high-level in-
ferences about whether the meaning of
one sentence follows from another. When
applied to an existing semantic parsing
task, they prove to be a useful tool for
revealing semantic distinctions and back-
ground knowledge not captured in the tar-
get representations. This information is
used to improve the quality of the seman-
tic representations being learned and to
acquire generic knowledge for reasoning.
Experiments are done on the benchmark
Sportscaster corpus (Chen and Mooney,
2008), and a novel RTE-inspired infer-
ence dataset is introduced. On this new
dataset our method strongly outperforms
several strong baselines. Separately, we
obtain state-of-the-art results on the orig-
inal Sportscaster semantic parsing task.

1 Introduction

Semantic Parsing is the task of automatically
translating natural language text to formal mean-
ing representations (e.g., statements in a formal
logic). Recent work has centered around learning
such translations using parallel data, or raw col-
lections of text-meaning pairs, often by employ-
ing methods from statistical machine translation
(Wong and Mooney, 2006; Jones et al., 2012; An-
dreas et al., 2013) and parsing (Zettlemoyer and
Collins, 2009; Kwiatkowski et al., 2010). Ear-
lier attempts focused on learning to map natural
language questions to simple database queries for
database retrieval using collections of target ques-

tions and formal queries. A more recent focus
has been on learning representations using weaker
forms of supervision that require minimal amounts
of manual annotation effort (Clarke et al., 2010;
Liang et al., 2011; Krishnamurthy and Mitchell,
2012; Artzi and Zettlemoyer, 2013; Berant et al.,
2013; Kushman et al., 2014).

For example, Liang et al. (2011) train a seman-
tic parser in a question-answering domain using
the denotation (or answer) of each question as the
sole supervision. Particularly impressive is their
system’s ability to learn complex linguistic struc-
ture not handled by earlier methods that use more
direct supervision. Similarly, Artzi and Zettle-
moyer (2013) train a parser that generates higher-
order logical representations in a navigation do-
main using low-level navigation cues. What is
missing in such approaches, however, is an ex-
plicit account of entailment (e.g., learning entail-
ment rules from such corpora), which has long
been considered one of the basic aims of se-
mantics (Montague, 1970). An adequate seman-
tic parser that captures the core aspects of natu-
ral language meaning should support inferences
about sentence-level entailments (i.e., determining
whether the meaning of one sentence follows from
another). In many cases, the target representations
being learned remain inexpressive, making it diffi-
cult to learn the types of semantic generalizations
and world-knowledge needed for modeling entail-
ment (see discussion in Schubert (2015)).

Attempts to integrate more general knowledge
into semantic parsing pipelines have often in-
volved additional hand-engineering or external
lexical resources (Wang et al., 2014; Tian et al.,
2014; Beltagy et al., 2014). We propose a dif-
ferent learning-based approach that uses textual
inference judgements between sentences as addi-
tional supervision to learn semantic generaliza-
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Figure 1: The original Sportscaster training setup:
a text x paired with a set of meaning representa-
tions z derived from events occurring in a 2-d soc-
cer simulator. The goal is to learn a latent transla-
tion, y, from the text to the correct representation.

tions in a semantic parsing task. Our assumption
is that differences in sentence realizations provide
a strong, albeit indirect, signal about differences
in meaning. When paired with entailment judge-
ments, this evidence can reveal important semantic
distinctions (e.g., sense distinctions, modification)
that are not captured in target meaning representa-
tions. These judgements can also be used to learn
general knowledge about a domain (e.g., meaning
postulates or ontological relations).

In this paper, we introduce a novel recognizing
textual entailment (RTE) inspired inference task
for training and evaluating semantic parsers that
extends previous approaches. Our method learns
jointly using structured meaning representations
(as done in previous approaches) and raw textual
inference judgements as the main supervision. In
order to learn and model entailment phenomena,
we introduce a new method that integrates natu-
ral logic (symbolic) reasoning (MacCartney and
Manning, 2009) directly into a data-driven seman-
tic parsing model.

We perform experiments on the Sportscaster
corpus (Chen and Mooney, 2008), which we ex-
tend by annotating pairs of sentences in the origi-
nal dataset with inference judgements. On a new
inference task based on this extended dataset, we
achieve an accuracy of 73%, which is an im-
provement of 13 percentage points over a strong
baseline. As a separate result, part of our ap-
proach outperforms previously published results
(from around 89% accuracy to 96%) on the origi-
nal Sportscaster semantic parsing task.

Entailment

Text t Hypothesis h
t!h
h!t Naı̈ve

1.
Pink 3 quickly
kicks to pink 7
pass(pink3,pink7)

Pink 3 kicks over to
pink 7
pass(pink3,pink7)

Entail

Unknown
Entail

2.
Purple 10 kicks the
ball
kick(purple10)

Purple 10 shoots for
the goal
kick(purple10)

Unknown

Entail
Entail

3.
Pink 10 kicks the
ball
kick(pink10)

Pink 10
passes over to pink 7
pass(pink10,pink7)

Unknown

Entail
Contr.

4.
Purple 7 makes a
long kick
kick(purple7)

Purple team scores
another goal
playmode(goal l)

Unknown

Unknown
Contr.

Figure 2: Example sentence pairs and seman-
tic representations with textual inference judge-
ments. Naı̈ve entailments are a type of close-world
assumption that result from matching semantic
representations and assigning an entailment for
matches and a contradiction otherwise.

2 Motivation

In this section, we describe the idea of modeling
inference in a semantic parsing task using exam-
ples from the Sportscaster domain.

2.1 Problems of Representation

Figure 1 shows a training example from the origi-
nal Sportscaster corpus used in Chen and Mooney
(2008), consisting of a text x paired with a set of
formal meaning representations z. The goal for
training a semantic parser in this setup is to learn
a hidden translation y from the text to the correct
representation using such raw pairs as supervision.
In this case, human commentary (i.e., x) was col-
lected by having participants watch a 2-d simula-
tion of several Robocup1 soccer league games and
comment on events in the game.

Rather than hand annotating the verbal sports
commentary, sentences were paired with symbolic
(logical) representations underlying the original
simulator actions (André et al., 2000). These rep-
resentations serve as a proxy for the grounded
game context and the denotation of individual
events (shown as JzK). While the representations
capture the general events being discussed, they
often fail to capture other aspects of meaning and
additional details that the human commentators
found to be relevant and expressed verbally.

These issues are illustrated in Figure 2, where

1http://www.robocup.org/
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example sentences are shown with target meaning
representations. Sentence-level entailment judge-
ments2 between orderings of text are shown us-
ing a standard 3-way entailment scheme (Cooper
et al., 1996; Bentivogli et al., 2011), along with a
naı̈ve inference computed by comparing the target
labels. The mismatch between some of the naı̈ve
inferences and the actual entailment judgements
show that the target representations alone fail to
capture certain semantic distinctions. This is re-
lated to two problems:

Imprecise labels: The corpus representations
fail to account for certain aspects of meaning. For
example, the first two sentences in Figure 2 map
to the same formal meaning representation (i.e.,
pass(pink3,pink7)) despite having slightly
different semantics and divergent entailment pat-
terns. This shift in meaning is related to the adver-
bial modifier quickly, which is not explicitly an-
alyzed in the target representation. The same is
true for the modifier long in example 4, and for all
other forms of modification. For a semantic parser
or generator trained on this data, both sentences
are treated as having an identical meaning.

As shown in the example 2, other representa-
tions fail to capture important sense distinctions,
such as the difference between the two senses of
the kick relation. While shooting for the goal
in general entails kicking, such an entailment does
not hold in the reverse direction. Without making
this distinction explicit at the representation level,
such inferences and distinctions cannot be made.

Missing Domain Knowledge: Since the logi-
cal representations are not based on an underlying
logical theory or domain ontology, semantic re-
lations between different symbols are not known.
For example, computing the entailments in exam-
ple 3 requires knowing that in general, a pass
event entails or implies a kick event (i.e., the set
of things kicking at a given moment includes the
set of people passing). Other such factoids are in-
volved in reasoning about the sentences in exam-
ple 4: purple7 is part of the purple team,
and a score event entails a kick event (but not
conversely).

Our goal is to learn a semantic parser that can
capture the inferential properties of language de-

2We adopt the definition of entailment used in the RTE
challenges (Dagan et al., 2005): a text T entails a hypothesis
H if “typically, a human reading T would infer that H is most
likely True”

t: pink3 � passes to pink1

a:

h: pink3 quickly kicks �

y0: pink3 ⌘ pink3
(rel)

pink3 ⌘ pink3

� wvc

(mod)
� w quickly

pass v kick, pink1 v �
(infer)

passes to pink1 v kicks
(infer)

passes to pink 1 # quickly kicks
(infer)

pink3 passes to pink1 # pink3 quickly kicks

z0: Unknown (= #)

pink3/pink3

pink1/��/vc

pass/kick

Figure 3: The inference training setup: an ordered
pair (t, h) annotated with a sentence-level infer-
ence relation z0. The goal is to learn a hidden
alignment a between t, h, and a hidden proof (tree)
y0 that generates the target inference.

scribed above. Rather than re-annotating the cor-
pus and creating a domain ontology from scratch,
we use the raw entailment judgements to help im-
prove and learn about the existing representations.
We show that entailment judgements prove to be
a powerful tool for solving the two problems de-
scribed above.

2.2 Learning from Entailment
Our approach addresses the problems outlined
above by adding pairs of text annotated with in-
ference judgements (as shown in Figure 2) to the
original Sportscaster data (as shown in Figure 1).
While training an ordinary semantic parser, we use
such pairs to jointly reason about the Sportscaster
concepts/symbols and prove theorems about the
target entailments using a simple logical calculus.
The idea is that these proofs reveal distinctions not
captured in the original representations, and can be
used to improve the semantic parser’s internal rep-
resentations and acquire knowledge.

This training setup is illustrated in Figure 3,
where each training instance consists of a text t
and hypothesis h, and an entailment judgement
z0. The goal is to learn a hidden proof y0 that
derives the target entailment by transforming the
text into the hypothesis. Such a proof is driven
by latent semantic relationships (shown on the top
row in y0 and rel) between aligned pairs of sym-
bols (the arc labels in a, delimited by “/”). These
relations record the effect of substituting or insert-
ing/deleting symbols in the text with related sym-
bols in the hypothesis and compare the denotations
of these symbols. These relations are then pro-
jected up a proof tree using generic inference rules
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(infer and mod) to compute a global inference.
This proof gives rise to several new facts: the

pass symbol is found to forward entail or im-
ply (shown using the set inclusion symbol v) the
kick symbol. The adverbial modifier, which is
previously unanalyzed, is treated as an entailing
modifier vc, which results in a reverse entailment
or implication (shown using the symbol w) when
inserted (or substituted for the empty symbol �)
on the hypothesis side. The first fact can be used
for building a domain theory, and the second for
assigning more precise labels to modifiers for the
semantic parser. The overall effect of inserting the
adverbial modifier (shown in red) is then propa-
gated up the proof tree leading to an Uncertain
inference (shown using the # symbol).

Computing entailments is driven by learning the
correct semantic relations between primitive do-
main symbols, as well as the semantic effect of
deleting/inserting symbols. We focus on learning
the following very broad types of linguistic in-
ferences (Fyodorov et al., 2003): construction-
based inferences, or inferences generated from
specific (syntactic) constructions or lexical items
in the language, and lexical-based inferences, or
inferences generated between words or primitive
concepts due to their inherent lexical meaning.

Construction-based inferences are inferences
related to modifier constructions: quickly(pass)
v pass, goal w nice(goal), gets a(free
kick) ⌘ (equivalence) free kick, where the
entailments relate to default properties of partic-
ular modifiers when they are added or dropped.
Lexical-based inferences relate to general infer-
ences and implications between primitive seman-
tic symbols or concepts: kick w score, pass
v kick, and pink1 v pink team.

2.3 Outline of Approach

Experiments are done by first training a standard
semantic parser on the Sportscaster dataset, then
improving this parser using an extended corpus of
sentences annotated with entailment judgements.
Semantic parsing is done using a probabilistic
grammar induction approach (Börschinger et al.,
2011; Angeli et al., 2012), which we extend to
accommodate entailment modeling. The natural
logic calculus is used as the underlying logical in-
ference engine (MacCartney and Manning, 2009).

To evaluate the quality of our resulting seman-
tic parser and the acquired knowledge, we run our

system on a held-out set of inference pairs. The
results are compared to the naı̈ve inferences com-
puted by the initial semantic parser.

3 Semantic Parsing

In this section, we describe the technical details
behind the semantic parsing. We also describe the
underlying natural logic inference engine used for
computing inferences, and how to integrate this
into a standard semantic parsing pipeline for mod-
eling our extended corpus.

3.1 Base Semantic Grammars
Semantic grammars (Allen, 1987) are used to
perform the translation between text and logical
meaning representations. The rules in these gram-
mars are automatically constructed from the tar-
get corpus representations using a small set of rule
templates, building on Börschinger et al. (2011)
(henceforth BJJ).

Rule Templates and Extraction Figure 4
shows a set of rule templates in the form
of context-free productions, along with exam-
ples from the Sportscaster domain. Mean-
ings representations (MR) are atomic formulae
of predicate logic and take the following form:
Rel(xarg1,..,xargN). The production rules
break down each representation to smaller parts:
lexical rules associate MR constituents or symbols
(e.g., Rel,xarg1 instances) to individual words,
phrase rules associate these constituents to word
sequences, concept rules associate phrase rules
to domain concepts, and glue rules combine con-
cepts to build complete MRs.3

Lexical rules are created by breaking down all
MRs in a target corpus, and associating each con-
stituent with all words in the target corpus. Phrase
rules are from (Johnson et al., 2010) and allow ar-
bitrary word sequences to be associated with con-
stituents as opposed to single words. Such rules
can be used to skip words that don’t contribute di-
rect meaning to a constituent or are unanalyzed,
which is represented using the empty word sym-
bol �w. This is shown in the treatment of the ad-
verbial quickly in the phrase passes quickly to in
Figure 4.2a.

Glue rules are constructed by marking con-
stituent concepts with syntax-semantic roles and

3Capital letters (e.g., E, A, ..) are used as variables in the
grammar to refer to sets of symbol types, and x is used to
refer to all symbols in the grammar.
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Base Grammar Rule Templates Examples: derivation (a), input (b) and interpretation (c)

word orders ={sv, vs, os, vo}

Semx
glue���! { E Aarg1 } x 2 {sv,vs}

Semx
glue���! { E’ (Aarg2) } x 2 {ov,vo}

Sem
empty����! (�c) �w

E
glue���! { Rr (Aarg2) }

E’
glue���! { Rr Aarg1 }

Rr
concept�����! { Rc (�c) }

Ax
concept�����! { Ic (�c) } x 2 {arg1,arg2}

xc
atomic����! { C1c C2c, ... } x 2 {I,R}

xc
phrase����! xp x 2 {I, R, �, C}

xp
phrase����! (xphx) xw

xp
phrase����! xph (�w)

xph
phrase����! xph (�w)

xph
phrase����! xphx (xw)

xphx
skip���! (xphx) �w

xphx
phrase����! (xphx) xw

xw
lexical����! w 2 corpus x 2 {I, R, �, C}

1a.

Semsv

glue
play-intransitive

glue
kickr

concept

kickc

kickp

kickw

lexical
shoots

playerarg1

concept
purple10c

atomic

10c

10p

10w

lexical
10

purplec

phrase
purplep

purplew

lexical
purple 2a.

Semsv

glue
play-transitive

glue
playerarg2

concept
purple4c

...

purple 4

passr

concept

passc

phrase
passp

phrase
passw

lexical

to

passphx

�w

skip
quickly

passw

lexical
passes

playerarg1

concept
purple7c

atomic
...

purple 7

1b: Purple 10 shoots 2b: Purple 7 quickly passes to purple 4
1c: kick(purple10) 2c: pass(purple7,purple4)

3a.

Semsv

glue

play-intransitive
glue

blockr

concept

blockc

blocks p

phrase

blocks the ball

playerarg1

concept

pink1c

atomic

1c

1p

goalie

pinkc

phrase

pinkp

pink

�c

�p

�w

the 4a.

Semvs

glue

game-playarg1

concept

free kick lc

atomic

purple-teamc

atomic
teamc

team

purplec

purple

free kickc

free kick for the

playmode
concept

playmoder

�

3b: The pink goalie blocks the ball 4b: Free kick for the purple team
3c: block(pink1) 4c: playmode(free kick l)

Inference Rules
S 2 {⌘, |, #, w, v}; P 2 S \ {#, ⌘},M 2 {v, w, ⌘, #}; Y 2 {R, I}

(S ./ S’)x
join���! {SE S’Aarg1

} x 2 {sv, vs}
(S ./ S’)x

join���! {SE0 S’Aarg2
} x 2 {ov, vo}

|x
fun.���! {|E SA } x 2 {sv, vs, ...}

|x
fun.���! {|A SE }

(S ./ S’)E
join���! {SE (S’Aarg2

) }
(S ./ S’)E0

join���! {SE S’Aarg1
}

(S ./ M)x
mod.���! {Sx Mc}

|f
fun.���! {Sf |x} f 2 {E, A, c}

Px
sub.��! Yc / Y’c x 2 {E, A}

vc
delete����! x / �

⌘c
in/del����! ⌘c / � | � / ⌘c

wc
insert����! � / x

5a.

⌘play-intransitive (|playerarg1) = |sv
function

⌘play-intransitive

substitute

kickc

kickp

kickw

kicks

/kickc

phrase

kickp

kickw

lexical

kicks

|playerarg1

substitute

pink1c

pink 1

/pink3c

atomic

pink 3

6a.

⌘playerarg1 ./wplay-intr.=wsv

join

wplay-intr. ./wc=wplay-intr.

modifier

wc

insert

�/pink2

�/ pink2

wc ./wplay-intr.=wplay-intr.

modifier

wplay-intransitive

substitute

kick/pass

kicks / passes to

wc

insert

�/ vc

� / quickly

⌘playerarg1

substitute

pink1/pink1

pink 1 / pink 1

5b. (pink 3 kicks, pink 1 kicks) 6b. (pink 1 kicks, pink 1 quickly passes to pink2)
5c. Contradict 6c. Uncertain

Figure 4: The top are rule templates for building a semantic grammar with examples from the
Sportscaster domain. The bottom are templates for encoding natural logic inference rules as gram-
mar rules. Rules in {.} are expanded to all orders. Example derivations are shown on the right (some
derivations are collapsed using dashed lines).

combining these roles according to the structure
of the MRs. For example, the constituent symbol
block in Figure 4.3 is marked as an intransitive-
play relation and pink1 as a play-argument, both
of which combine to create a well-formed MR.
Here we diverge from BJJ, where such abstrac-
tions are not used and full MRs are encoded as
separate grammar symbols. As in BJJ, word-order
rules are used to account for regularities in the or-
der in which arguments combine with relations.

�c and Atomic Rules In addition to the skip
phrase rules, concept rules are padded with a
new empty concept �c, which are used for mod-
eling phrases and modifiers surrounding concept
phrases. For example, in The pink goalie in Fig-
ure 4.3a, the is treated as a separate phrase that
modifies pink goalie. As described later, these
phrases will get classified according to their effect
on entailment using our extended corpus, but in
the base semantic grammar get treated as not con-

tributing any additional meaning.
The atomic rules optionally break down some

of the domain symbols to smaller concepts, rather
than using the original corpus symbols directly as
in BJJ. For example, the concept pink3 is treated
as consisting of two concepts: pink and 3. Sim-
ilarly, the game symbol free kick l is broken
down to two concepts: free kick and purple
team (or l). Unlike in BJJ, some flexibility is per-
mitted in terms of dropping or skipping over some
constituent symbols that do not get realized in sen-
tences. For example, playmode in Figure 4.4a is
dropped, since it is not explicitly described in the
associated text.

Interpretation Using this grammar, a given sen-
tence input will generate a large space of output
derivations, each related to a particular semantic
representation. An interpretation of a derivation d
is the MR produced from the derivation by apply-
ing the glue rules. By assigning probabilities to
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Relation Symbol Definition Examples

forward entail v x ⇢ y

3

D

2

3
4
5

6
1 7

8

purple 3 v purple team

reverse entail w x � y
equivalence ⌘ x = y
independence # other
alternation | x \ y = ;,

x [ y 6= D

Entail: {⌘,v}, Contr.: {|},

Unknown: {#,w} D

pass to w bad pass to

Join Table:

./ ⌘ v w | #

⌘ ⌘ v w | #

v v v # | #

w w # w # #

| | # | # #

# # # # # #

D

blocks the ball | scoresExample Atomic Joins

R S R’ = R ./ S
pink3 v pink scores v shoots pink3 scores v pink shoots
pink2 ⌘ pink2 defends w blocks pink2 defends w pink2 blocks
kicks w passes on the side v � kicks on the side # passes

Functions on Relations

f R R’= f(R)
x passes to pink2 | pink4 x passes to pink2 | x passes to pink4
defend/block purple | pink purple defends | pink blocks
pink1 defends | scores pink1 defends | pink1 shoots

Figure 5: Components of the natural logic infer-
ence system. The top table shows primitive set-
theoretic inference relations with sports examples
(right), the middle table defines the join function
used for combining these relations, bottom table
show examples of functions on these relations.

the rules in our grammar, we can learn the correct
interpretations using our training data.

3.2 Entailment Modeling
The base semantic parser described in the previ-
ous section makes it possible to translate sentences
to formal representations. Entailment modeling
aims to discover abstract relations between sym-
bols in these representations. For example, know-
ing how the meaning, or denotation, of the sym-
bol purple7 in general relates to the meaning of
purple team, or how score relates to kick.

In this section, we describe our general frame-
work used for modeling textual entailment.

Natural Logic Calculus
We use a fragment of the natural logic calculus
to model entailment (MacCartney and Manning,
2009; Icard III, 2012). Natural logic derives from
work in linguistics on proof-theoretic approaches
to semantics (van Benthem, 2008; Moss, 2010).
More recently, it has been used in NLP for work
on RTE (MacCartney and Manning, 2008; Angeli
and Manning, 2014; Bowman et al., 2014).

Components of the calculus are shown in Fig-
ure 5. A small set of primitive set-theoretic rela-
tions are defined, which are used to relate the de-
notations of arbitrary lexical items (w.r.t to a do-
main of discourse D). We use a subset of the orig-
inal seven relations to relate symbols (and by ex-
tension, word/phrases) in our domain. For exam-
ple, purple3 (or “purple 3”) has a v (or subset)
relation to purple team (or “purple team”),
which is illustrated in Figure 5 using a Venn dia-
gram. These primitive relations are then composed
using two operations: atomic join rules, or generic
inference rules for combining two inference rela-
tions to create a new relation (shown in the join
table), and function rules, or inference rules as-
sociated with particular lexical items that project
certain properties onto other relations.

Sentence-level entailment recognition is done
by finding an alignment between a text and hy-
pothesis pair. Such an alignment transforms the
text into the hypothesis by substituting each part
of the text with lexical items in the hypothesis, and
inserting/deleting other items. Each local trans-
formation is marked with a semantic relation, and
these relations are composed using the join and
function rules. A proof tree records the result of
this overall process, and the top-most node shows
the overall inference relation (e.g., | in Figure 4.5a
or w in Figure 4.6a).

Semantic relations between symbols and func-
tions are usually recorded in a semantic lexicon.
Since we have no prior knowledge about how sym-
bols relate to one another, we learn these relations
using the resulting entailment judgements as su-
pervision. For example, since we do not know the
exact relation between kick and pass, we start
by assuming all semantic relations and find the
correct relation by looking into the (latent) proof
trees that produce the correct entailments in our
training data (e.g., the tree in Figure 3).

All actions in our domain are fixed in time and
place, and as such apply to a unique group of ob-
jects. For example, if a passing event is being
described, the person doing the passing or being
passed to at a particular moment must always be
a unique individual. Substituting this individual
with someone else will always result in a contra-
diction (see examples on the bottom of Figure 5).
We therefore use a single default function rule that
always projects negations | up the proof tree. See
(MacCartney, 2009) for more information about
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a:

Semsv

play-intr.

steal

steals the ball

playerarg1

pink5

5

5

pink

pink

Semvs

playerarg1

pink5

5

5

pink

pink

�c

at the goal by

play-intr

defense

good defense

y0:

(⌘playerarg1 ./ #play-intr.) = # = Uncertain

join

(wc ./vplay-intran.) = #play-intr.

modifier

vplay-intr.

steal/defense

steals the ball / good defense by

substitute

wc

�/ vc

� / at the goal by

insert

⌘playerarg1

pink5/pink5

pink 5 / pink 5

substitute

((t = “pink 5 steals the ball”, h = “good defense at the goal by pink 5”), z0 = Uncertain)

Figure 6: An example produced by our model: (t, h) are the text and hypothesis, z0 is the inference
annotation/relation that holds between t ! h, a is a phrase alignment between both sentences, and y0 is
a (simplified) proof tree that generates the target inference.

these types of functional relations.

Inference Grammar Rules
We encode natural logic operations as production
rules and add them to the base semantic gram-
mar described in Section 3.1. Rule templates are
shown on the bottom of Figure 4. Substitute rules
assign a semantic relation to a pair of symbols:
e.g., wplay-intr. ! kickc / passc, where the sub-
script on the semantic relation is the role of the
left concept being substituted. Substitutions oc-
cur between symbols with the same role, such as
all relation symbols or all argument symbols in a
domain and set of MRs. Function rules project
negations (regardless of role) up a proof tree. Join
rules compose relations using the join function ./
and, like the glue rules, are used to construct well-
formed MRs.

Substitution rules arbitrarily assign semantic re-
lations to pairs of symbols since the correct rela-
tion is not known at the start (as discussed previ-
ously). This set of relations can be constrained by
adding knowledge into the grammar. In our ex-
periments, we assume a single negation rule be-
tween all arguments of the same semantic type
(e.g., player arguments).

Modifiers and Senses We add two concept sym-
bols to the grammar: vc and ⌘c to replace the
�c/�w rules in the base grammar. These are used
to classify modifiers (e.g., the adverbial modifier
in Figure 2.1) and other expressions that are unan-
alyzed. The modifier rule allows these to combine
with other symbols to affect entailment in vari-
ous ways when added/dropped. With the empty
symbol �, other symbols can also be arbitrarily

added/dropped via the insert and delete rules.
We handle sense distinctions by allowing rela-

tion symbols (e.g., kick) in the base grammar to
break down into a fixed number of specific senses
in the grammar (e.g., kick1,kick2, . . . ). Using
the substitution rule, these different senses can be
compared in the standard way to account for the
semantic distinctions discussed in Section 2.1. In
our experiments, we assigned a random number of
senses to the most frequent events.

Since the inference grammar is built on top of
the base semantic grammar, these additional sense
and modifier distinctions can be used for improv-
ing the base parser. Figure 8 shows examples of
improvements in the semantic parse output after
training with the extended corpus.

Construction vs. Lexical The distinction be-
tween construction-based and lexical-based infer-
ences described in Section 2.2 is the difference be-
tween insert/delete and substitution rules in the in-
ference grammar rules.

Interpretation A given input will generate a
large set of proof trees and an even larger set of
semantic relations between different symbols. The
crucial aspect of the interpretation of the proof tree
is the overall inference relation marked at the root
node. These relations are mapped into particular
inference judgements as shown in Figure 5.

Tree Alignment
The inference grammar assumes as input a
word/phrase alignment between sentence pairs.
Such an alignment is done in a heuristic fashion
by parsing each sentence individually using the se-
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mantic grammar and aligning nodes in the result-
ing parse trees that have matching roles. A string
is produced by pairing the yield of each match-
ing subtree using a delimiter /. Subtrees that do
not have a matching role in the other tree or are
modifier expressions are isolated and aligned to
the empty symbol �.

An example tree alignment is shown in Fig-
ure 6a, where the relation nodes play-intr and ar-
gument1 nodes playerarg1 are aligned. Since there
are no modifiers in the argument subtrees, the
yields of the two trees are simply combined to cre-
ate the string pink 5 / pink 5. The modifier phrase
�c is removed from the second relation subtree
and aligned to the empty string: � / at the goal
by. The remaining part of the relation subtrees
are then aligned: good defense / steals the ball.
With this input, the standard phrase and concept
rules from the base grammar are used to tag each
phrase and inference rules are then applied to gen-
erate proofs.4

In our experiments, we use the tags from the se-
mantic parse trees used during the alignment step
to restrict the space of proofs considered. For ex-
ample, we already know from the semantic parser
output in Figure 6a that the text involves a steal
event and the hypothesis a defense event, so we
can constrain the search to consider only proofs
that involve these two types of events.

3.3 Learning

Semantic parsing and inference computation is
performed using a single generative probabilistic
framework as shown in Figure 7. A probabilistic
context-free grammar (PCFG) transforms input to
logical representations and entailment judgements
using the grammar rules defined above. Learn-
ing reduces to the problem of finding the opti-
mal parameters ✓ for our PCFG given example in-
put/output training pairs {(xi, Zi)}n

i=1.
This is done via a EM bootstrapping approach

that uses a k-best approximation of grammar
derivations to estimate ✓ (Angeli et al., 2012). At
each iteration in the EM procedure t = 1 . . . T ,
a set of k-best derivations is generated for each
input x, D(x) = {(dj , pj)}k

j=1, using the cur-
rent parameters ✓t. The set of valid derivations,

4For readability, substitute rules such as R ! X / Y
in many of the proof trees are simplified to the following:
R ! X/Y and X/Y ! x string/y string, without showing
the full concept/phrase analysis for X, Y . See Figure 4.5a for
a more precise example.

pink 3 kicks kick(pink3)

x y z

input d output

(t, h) y0 z0

(pink 3 kicks,pink 1 kicks)
⌘play-intr (|playerarg1) = |

⌘play�intr.

kick/kick

kicks/kicks

|playerarg1

pink3/pink1

pink 3/pink 1

Contradict

judgement

pink3/pink1 kicks/kicks

Parsing Model ✓

Semantic Grammar

Interpretation

|! Contr-

alignment

Figure 7: The prediction model: input is mapped
to a hidden derivation d using a PCFG (parame-
terized by ✓), which is then used to generate an
output semantic representation. In the case of se-
mantic parsing (top), d is a latent semantic parse
tree and the output is a logical representation. For
entailment detection, d is a latent proof tree and
the output is a human judgement about entailment.

C(x, Z) ✓ D(x), includes all derivations that,
when interpreted, are included in the set of train-
ing labels Z. From this set, C 0(x, Z) is computed
by normalizing the probabilities, each p, to create
a proper probability distribution.

For a given rule A ! �, the parameter updates
are computed using these sets of normalized valid
derivations. This is given by the following (unnor-
malized) formula (with Dirichlet prior ↵):

✓t+1
A!� = ↵+

nX

i=1

X

(d,p)2C0(xi,Zi)

count(d, A ! �) p

4 Experiments

In this section, we discuss the Sportscaster dataset
and our experimental setup.

4.1 Datasets
Sportscaster The Sportscaster corpus (Chen
and Mooney, 2008) consists of 4 simulated
Robocup soccer games annotated with human
commentary. The English portion includes 1872
sentences paired with sets of logical meaning rep-
resentations. On average, each training instance is
paired with 2.3 meaning representations. The rep-
resentations have 46 different types of concepts,
consisting of 22 entity types and 24 event (and
event-like) predicate types.

While the domain has a relatively small set of
concepts and limited scope, reasoning in this do-
main still requires a large set of semantic relations
and background knowledge. From this small set
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of concepts, the inference grammar described in
Section 3.2 encodes around 3,000 inference rules.
Since soccer is a topic that most people are famil-
iar with, it is also easy to get non-experts to pro-
vide judgements about entailment.

Extended Inference Corpus The extended cor-
pus consists of 461 unaligned pairs of texts from
the original Sportscaster corpus annotated with
sentence-level entailment judgements. We anno-
tated 356 pairs using local human judges an aver-
age of 2.5 times5. Following Dagan et al. (2005),
we discarded pairs without a majority agreement,
which resulted in 306 pairs (or 85% of the initial
set). We also annotated an additional 155 pairs
using Amazon Mechanical Turk, which were mit-
igated by a local annotator.

In addition to this core set of 461 entailment
pairs, we separately experimented with adding un-
labeled data (i.e., pairs without inference judge-
ments) and ambiguously labelled data (i.e., pairs
with multiple inference judgements) to train our
inference grammars (shown in the results as More
Data) and test the flexibility of our model. This in-
cluded 250 unlabeled pairs taken from the original
dataset, as well as 592 (ambiguous) pairs created
by deriving new conclusions from the annotated
set. This last group was constructed by exploiting
the transitive nature of various inference relations
and mapping pairs with matching labels in training
to {Entail,Unknown}.

4.2 Training and Evaluation

We perform two types of experiments: A se-
mantic parsing experiment (Task 1) to test our
approach on the original task of generating
Sportscaster representations. In addition, we in-
troduce an inference experiment (Task 2) to test
our approach on the problem of detecting entail-
ments/contradictions between sentences.

For the semantic parsing experiment, we follow
the original setup of Chen and Mooney (2008). 4-
fold cross validation is employed by training on all
variations of 3 games and evaluating on a left out
game. Each representation produced in the eval-
uation phrase is considered correct if it matches
exactly a gold representation.

The second experiment imitates an RTE-style
evaluation and tests the quality of the back-
ground knowledge being learned using our infer-

5We used a version of the elicitation instructions used in
the RTE experiments of Snow et al. (2008)

Task 1: Semantic Parsing Match F1

(Chen et al., 2010) 0.80
(Börschinger et al., 2011) (BJJ) 0.86
(Gaspers and Cimiano, 2014) 0.89
Base Grammar Only 0.96
Inference Grammar (IG) 0.96
IG – More Data 0.96

Task 2: Inference Task Accuracy
Majority Baseline 0.33
RTE classifier 0.52
Naı̈ve Inference 0.60
SVM Flat Classifier 0.64
IG – Lexical Inference Only 0.72
IG – Full 0.73
IG – More Data 0.72

Table 1: Results on the semantic parsing (top) and
inference (bottom) cross validation experiments.

ence grammars. Like in the semantic parsing task,
we perform cross-validation on the games using
both the original data and sentence pairs to jointly
train our models, and evaluate on left-out sets of
inference pairs. Each proof generated in the eval-
uation phrase is considered correct if the resulting
inference label matches a gold inference.

We implemented the learning algorithm in Sec-
tion 3.3 using the k-best algorithm by Huang and
Chiang (2005), with a beam size of 1,000. The
base semantic grammars were each trained for 3
iterations and re-trained using the additional infer-
ence grammar rules for 10 iterations. Two Dirich-
let priors were used, ↵1 = 0.05 (for lexical rules)
and ↵2 = 0.3 (for non-lexical rules) throughout.
Lexical rule probabilities were initialized using
co-occurrence statistics estimated using an IBM
Model1 word aligner (uniform initialization oth-
erwise). 5 additional senses were added to the in-
ference grammar for the most frequent events.

4.3 Results

The results of both tasks are shown in Table 1.
Scores are averaged over all held out test sets.

Task 1: Semantic Parsing We compare the re-
sults of our base semantic parser model with pre-
viously published semantic parsing results. While
our grammar model simplifies how some of the
knowledge is represented in grammar derivations
(e.g., in comparison to BJJ), the set of output rep-
resentations or interpretations is restricted to the
original Sportscaster formal representations mak-
ing our results fully comparable. As shown, our
base grammar strongly outperforms all previously
published results.
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We also show the performance of our inference
grammars on the semantic parsing task after being
trained with additional inference sentence pairs.
This was done under two conditions: when the in-
ference grammar was trained using fully labeled
inference data and unlabeled/ambiguously labeled
data (more data). While not fully comparable to
previous results, both cases achieve the same re-
sults as the base grammar, indicating that our ad-
ditional training setup does not lead to an improve-
ment on the original task.

Task 2: Inference Task The main result of
our paper is the performance of our inference
grammars on the inference task. For compar-
ison, we developed several baselines, including
a majority baseline (i.e., guess the most fre-
quent inference label from training). We also
use an RTE max-entropy classifier that is trained
on the raw text inference pairs to make pre-
dictions. This classifier uses a standard set of
RTE features (e.g., word overlap, word entity co-
occurrence/mismatch). Both of these approaches
are strongly outperformed by our main inference
grammar (or IG Full).

The Naı̈ve Inference baseline compares the full
Sportscaster representations generated by our se-
mantic parser for each sentence in a pair and as-
signs an Entailment for representations that
match and a Contradiction otherwise (see
discussion in Section 2.1). This baseline compares
the inferential power of the original representa-
tions (without background knowledge and more
precise labels) to the inferential power of the in-
ference grammars. The strong increase in perfor-
mance suggests that important distinctions that are
not captured in the original representations are in-
deed being captured in the inference grammars.

We tested another classification approach using
a Flat Classifier, which is a multi-class SVM clas-
sifier that makes predictions using features from
the input to the inference grammar. Such input in-
cludes both sentences in a pair, their parse trees
and predicted semantic labels, and the alignment
between the sentences. In Figure 6, for exam-
ple, this includes all of the information exclud-
ing the proof tree in y0. This baseline aims to
test the effect of using hierarchical, natural logic
inference rules as opposed to a flat or linear rep-
resentation of the input, and to see whether our
model learns more than the just the presence of
important words that are not modeled in the orig-

1a.
Semsv

play-transitive

playerarg2

purple6c

6c

6 under
pressure

purplec

purple

passr

passc

passp

passes to

playerarg1

purple9c

purple 9

1b.
Semsv

play-transitive

playerarg2

vc

vp

under
pressure

purple6c

purple 6

passr

passc

passp

passes to

playerarg1

purple9c

purple 9

2a.
Semsv

play-transitive

playerarg2

purple2c

purple 2

passr

passc

passp

passes out to

playerarg1

purple9c

purple 9

2b.
Semsv

play-transitive

playerarg2

purple2c

purple 2

passr

passp

passw

to

passphx

⌘w

out

passw

passes

playerarg1

purple9c

purple 9

3.

Semsv

play-transitive

kickr

kick 1c

kick 1p

shoots for the goal

playerarg1

pink7c

pink 7

Semsv

play-transitive

⌘c

⌘p

off

kickr

kickc

kickp

kicks

playerarg1

purple10c

purple 10

Figure 8: Example semantic parse trees (1,2) be-
fore (a) and after (b) training on the extended cor-
pus. Example 3 shows two senses learned for the
kick relation.

inal representations. Features include the particu-
lar words/phrases aligned or inserted/deleted, the
category of these words/phrases in the parse trees,
the rules in both parse trees and between the trees,
the types of predicates/arguments in the predicted
representations and various combinations of these
features. This is also strongly outperformed by our
main model, suggesting that the natural logic sys-
tem is learning more general inference patterns.

Finally, we also experimented with removing
insertions and deletions of modifiers from align-
ment inputs to test the effect of only using lex-
ical knowledge to solve the entailment problems
(Lexical Inference Only). In Figure 6 this involves
removing “at the goal” from the alignment in-
put and relying only on the grammars knowledge
about how steal (or “steals the ball”) relates to
defense (or “good defense by”) to make an en-
tailment decision. This only slightly reduced the
accuracy, which suggests that the real strength of
the grammar lies in its lexical knowledge.

Qualitative Analysis Figure 8 shows example
parse derivations before and after being trained us-
ing the inference grammars and additional infer-
ence pairs. In example 1, the parser learns to cor-
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a.

(t, h): (a beautiful pass to,passes to) (gets a free kick,freekick from the) (yet again passes to,kicks to) (purple 10,purple 10 who is out front)

analysis:

vc ./⌘play-tran=vplay-tran

modifier

⌘play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /�

“a beautiful”/�

⌘c ./⌘game-play=⌘game-play

modifier

⌘game-play

freekick/freekick

“free kick” / “freekick from the”

⌘c

⌘c /�

“gets a”/�

vc ./⌘play-tran.=vplay-tran

modifier

⌘play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /�

“yet again”/�

⌘playerarg2 ./wc=wplayerarg2

modifier

wc

�/ vc

�/“who is out front”

⌘playerarg2

purple10/purple10

“purple 10”/“purple 10”

generalization: beautiful(X) v X get(X) ⌘ X yet-again(X) v X X w out front(X)

b.

(t, h): (pink team is offsides,purple 9 passes) (bad pass.., loses the ball to) (free kick for, steals the ball from) (purple 6 kicks to,purple 6 kicks)

analysis:

|teamarg1

substitute

pink team/purple9

“pink team’/“purple 9”

vplay-tran

substitute

bad pass/turnover

“bad pass .. picked off by”/“loses the ball to”

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

vplay-tran.

substitute

pass/kick

“kicks to”/“kicks’

relation: pink team | purple9 bad passv turnover free kick| steal passv kick

Figure 9: Example construction-based (a) and lexical-based (b) inferences (both defined in Section 2.2)
taken from parts of proof trees learned during our experiments. While inferences are computed between
semantic concept symbols (e.g., purple4,pass,vc), the generalizations in a. show how such struc-
tures can be used to generate lexicalized inference rules.

sense/context error:
1a. t : Pink 9 shoots

h : Pink 9 shoots for the goal
z0 : Entail (predicted: Uncertain)

semantic parse error:
1b. t : Purple 8 steals the ball back

h : Purple 8 steals the ball from pink 6
z0 : Uncertain (predicted: Contr.)

alignment/modifier error:
1c. t : A goal for the purple team.

h : And the purple team scored another goal
z0 : Uncertain (predicted: Entail)

2. Predicted
Entail Contradict Uncertain

G
ol

d Entail 141 24 11
Contradict 11 139 17
Uncertain 38 22 58

Figure 10: Example inference pairs where our sys-
tem fails (1a-c). A confusion matrix is shown in 2.

rectly treat the modifier “under pressure” as a sep-
arate constituent. The particular analysis also cap-
tures the correct semantics by treating this phrase
as forward-entailing, which allows us to predict
how the entailment changes if we insert or delete
this constituent. Similarly, the parser learns a more
fine-grained analysis for the phrase “passes out to”
by treating “out” as a type of modifier that does not
affect entailment. Example 3 shows how the im-
proved model learns to distinguish two senses of
the kick relation.

On the inference task, one advantage of the nat-
ural logic approach is that it is easy to see how
our models make entailment decisions by look-
ing directly at the resulting proof trees. Figure 9
shows the types of knowledge learned by our sys-
tem and used in proofs. Figure 9a shows example
construction-based inferences, or modifier con-
structions. For example, the first example treats
the word “beautiful” in “a beautiful pass” as a
type of modifier that changes the entailment or im-
plication when it is inserted (forward-entails) or
deleted (reverse-entails). In set-theoretic terms,
this rule says that the set of “beautiful passes” is
a subset of the set of all “passes”. The model
also learns the semantics of longer phrases, includ-
ing how certain types of relative clauses (last ex-
ample) affect entailment. Figure 9b show types
of lexical-based inferences, or relations between
specific symbols. For example, the model learns
that the pink team is disjoint from a particular
player from the purple team, purple9, and that
a bad pass implies a turnover event.

Figure 10 shows three common cases where our
system fails. The first error (1a) involves a sense
error, where the system treats “shoots” as having
a distinct sense from “shoots for the goal”. This
can be explained by observing that “shoots” is
used ambiguously throughout the corpus to refer
to both shooting for the goal and ordinary kick-
ing. The second example (1b) shows how errors in
the semantic parser (which is used to generate an
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alignment) propagate up the processing pipeline.
In this case, the semantic parser erroneously pre-
dicted that “pink 6” is the first argument of the
steal relation (a common type of word-order er-
ror), and subsequently aligned “Purple 8” to “pink
6”. Similarly, the semantic parse tree for the hy-
pothesis in the last (1c) failed to predict “another”
as a modifier, which would generate an alignment
with the empty string �.

To better understand the results, a confusion
matrix for our inference grammars on the cross-
validation experiments is shown in Figure 10.2.
It reveals that our system is worst at predict-
ing Uncertain inferences. An informal sur-
vey of a portion of the data suggests that this is
largely due to the alignment/modifier errors dis-
cussed above. This is also reflected in the results
that use only lexical inference rules to make pre-
dictions, which had a minimal effect on the infer-
ence performance.

5 Discussion and Conclusion

We have focused on learning representations for
semantic parsing that capture the inferential prop-
erties of language. Since the goal of semantic
parsing is to generate useful meaning represen-
tations, the representations being learned should
facilitate entailment and inference. Since entail-
ment is also closely tied to how we evaluate and
make decisions about representations, we believe
that learning methods for semantic parsing should
also be able to use such judgements as supervision
to influence and guide the learning. We proposed
a general framework based on these ideas, which
uses textual inference judgements between pairs
of sentences and symbolic reasoning as a tool to
learn more precise representations. While our ap-
proach uses natural logic (MacCartney and Man-
ning, 2009) as the underlying reasoning engine,
other reasoning frameworks with comparable fea-
tures could be used.

Technically, our natural logic inference system
is encoded as a PCFG, in which the background
rules of the logic are expressed as probabilistic
rewrite rules. Learning in this framework reduces
to a probabilistic grammatical inference task, in
this case using entailment judgements as the pri-
mary supervision. These entailments give indi-
rect clues about a domain’s denotational seman-
tics, and can be used to reason about and find gaps
in the target meaning representations. While our

approach focuses on natural language, it closely
relates to work on learning from entailment in the
probabilistic logic literature (De Raedt and Kerst-
ing, 2004).

Our setup closely follows other work on sit-
uated semantic interpretation (as advocated by
Mooney (2008)) and other approaches to semantic
parsing that use low-level feedback to learn rep-
resentations. In real situated learning tasks, how-
ever, learners will often find themselves in a situ-
ation where they observe two linguistic utterances
describing the same situation. Our training setup
tries to imitate these types of cases, where being
able to reason and learn about entailment directly
is essential.

Since capturing inference is our main goal, we
also propose using textual entailment as an evalu-
ation metric for semantic parsing. As reflected in
the results, our inference task (i.e., Task 2) is con-
siderably harder than the original semantic pars-
ing evaluation (i.e., Task 1). This is not surpris-
ing, given that entailment recognition is in general
known to involve considerable amounts of lexical
and world knowledge (LoBue and Yates, 2011).
Since the difference in performance on the orig-
inal task is minimal between our base grammars
and the inference grammars, one might conclude
that the original evaluation does not tell us very
much about the quality of the semantic grammar
being learned in the same way as our new infer-
ence evaluation. We hope that our work pushes
others in the direction of using entailment not only
as a tool for learning, but for evaluating and com-
paring the quality of semantic parsers.

While our current model only handles simple
types of inferences relating to inclusion/exclusion,
we believe that our overall approach can be used to
tackle more complex entailment phenomena. Fu-
ture work will focus on extending our method to
new datasets and inference phenomena.
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