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Abstract

Answer sentence ranking and answer extrac-
tion are two key challenges in question answer-
ing that have traditionally been treated in iso-
lation, i.e., as independent tasks. In this arti-
cle, we (1) explain how both tasks are related
at their core by a common quantity, and (2)
propose a simple and intuitive joint probabilis-
tic model that addresses both via joint com-
putation but task-specific application of that
quantity. In our experiments with two TREC
datasets, our joint model substantially outper-
forms state-of-the-art systems in both tasks.

1 Introduction

One of the original goals of Al was to build machines
that can naturally interact with humans. Over time,
the challenges became apparent and language pro-
cessing emerged as one of AI’s most puzzling areas.
Nevertheless, major breakthroughs have still been
made in several important tasks; with IBM’s Wat-
son (Ferrucci et al., 2010) significantly outperform-
ing human champions in the quiz contest Jeopardy!,
question answering (QA) is definitely one such task.

QA comes in various forms, each supporting spe-
cific kinds of user requirements. Consider a scenario
where a system is given a question and a set of sen-
tences each of which may or may not contain an
answer to that question. The goal of answer extrac-
tion is to extract a precise answer in the form of a
short span of text in one or more of those sentences.
In this form, QA meets users’ immediate information
needs. Answer sentence ranking, on the other hand,
is the task of assigning a rank to each sentence so that
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the ones that are more likely to contain an answer are
ranked higher. In this form, QA is similar to informa-
tion retrieval and presents greater opportunities for
further exploration and learning. In this article, we
propose a novel approach to jointly solving these two
well-studied yet open QA problems.

Most answer sentence ranking algorithms operate
under the assumption that the degree of syntactic
and/or semantic similarity between questions and an-
swer sentences is a sufficiently strong predictor of
answer sentence relevance (Wang et al., 2007; Yih
et al., 2013; Yu et al., 2014; Severyn and Moschitti,
2015). On the other hand, answer extraction algo-
rithms frequently assess candidate answer phrases
based primarily on their own properties relative to
the question (e.g., whether the question is a who
question and the phrase refers to a person), making
inadequate or no use of sentence-level evidence (Yao
et al., 2013a; Severyn and Moschitti, 2013).

Both these assumptions, however, are simplistic,
and fail to capture the core requirements of the two
tasks. Table 1 shows a question, and three candi-
date answer sentences only one of which (S (1)) ac-
tually answers the question. Ranking models that
rely solely on text similarity are highly likely to in-
correctly assign similar ranks to S() and S®). Such
models would fail to utilize the key piece of evidence
against S(?) that it does not contain any temporal
information, necessary to answer a when question.
Similarly, an extraction model that relies only on the
features of a candidate phrase might extract the tem-
poral expression “the year 1666” in S(®) as an answer
despite a clear lack of sentence-level evidence.

In view of the above, we propose a joint model
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When was the Hale Bopp comet discov-

Q ered?
The comet was first spotted by Hale and

S§(1)  Bopp, both US astronomers, on July 22,
1995.

5 Hale-Bopp, a large comet, was observed
for the first time in China.

5(3) The law of gravity was discovered in the

year 1666 by Sir Isaac Newton.

Table 1: A question and three candidate answer sentences.

for answer sentence ranking and answer extraction
that utilizes both sentence and phrase-level evidence
to solve each task. More concretely, we (1) design
task-specific probabilistic models for ranking and
extraction, exploiting features of candidate answer
sentences and their phrases, respectively, and (2) com-
bine the two models in a simple, intuitive step to build
a joint probabilistic model for both tasks. This two-
step approach facilitates construction of new joint
models from any existing solutions to the two tasks.

On a publicly available TREC dataset (Wang et al.,
2007), our joint model demonstrates an improvement
in ranking by over 10 MAP and MRR scores over
the current state of the art. It also outperforms state-
of-the-art extraction systems on two TREC datasets
(Wang et al., 2007; Yao et al., 2013c).

2 Background

In this section, we provide a formal description of the
two tasks and establish terminology that we follow
in later sections. The Wang et al. (2007) dataset has
been the benchmark for most recent work on the two
tasks as well as our own. Therefore, we situate our
description in the specific context of this dataset. We
also discuss related prior work.

2.1 Answer Sentence Ranking

Given a question () and a set of candidate an-
swer sentences {S(), ..., SV)} the goal in an-
swer sentence ranking is to assign each S an
integer rankg(S¥) so that for any pair (i, ),
rankg(S®W) < rankg(SW) iff S is more likely
to contain an answer to ) than S).! Thus a smaller

'The rank function makes sense only in the context of a set
of sentences; for brevity, we suppress the second parameter in
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numeric value represents a higher rank. For exam-
ple, in Table 1, rankg(S™M) < rankg(S®). Tied
sentences may receive adjacent ranks in any order.

In the Wang et al. (2007) dataset, each candidate
answer sentence S() to a question Q comes with a
human-assigned 0/1 label (1: S () contains an an-
swer to (), 0: it does not). A supervised ranking
model must learn to rank test answer sentences from
such binary annotations in the training data.

Existing models accomplish this by learning to
assign a relevance score to each (Q, S)) pair; these
scores then can be used to rank the sentences. QA
rankers predominantly operate under the hypothesis
that this relevance score is a function of the syntac-
tic and/or semantic similarities between @ and S,
Wang et al. (2007), for example, learn the probability
of generating @ from S() using syntactic transforma-
tions under a quasi-synchronous grammar formalism.
The tree edit models of Heilman and Smith (2010)
and Yao et al. (2013a) compute minimal tree edit se-
quences to align S to @, and use logistic regression
to map features of edit sequences to a relevance score.
Wang and Manning (2010) employ structured predic-
tion to compute probabilities for tree edit sequences.
Yao et al. (2013b) align related phrases in () and
each S using a semi-Markov CRF model and rank
candidates based on their decoding scores. Yih et
al. (2013) use an array of lexical semantic similarity
resources, from which they derive features for a bi-
nary classifier. Convolutional neural network models
proposed by Yu et al. (2014) and Severyn and Mos-
chitti (2015) compute distributional semantic vectors
of Q@ and S™ to assess their semantic similarity.

In a contrasting approach, Severyn and Moschitti
(2013) connect the question focus word in ) with
potential answer phrases in S using a shallow syn-
tactic tree representation. Importantly, unlike most
rankers, their model utilizes key information in in-
dividual S phrases which encodes the degree of
type-compatibility between @ and S(*). But it fails
to robustly align concepts in @ and S due to a
simplistic lemma-match policy.

Our joint model factors in both semantic similar-
ity and question-answer type-compatibility features
for ranking. Moreover, our semantic similarity fea-
tures (described in Section 4) are informed by recent

the full form of the function: rankqg (S, {SM, ..., S,



advances in the area of short text similarity identifi-
cation (Agirre et al., 2014; Agirre et al., 2015).

2.2 Answer Extraction

Given a question () and a set of candidate answer sen-
tences { S, ..., S(M)}, the goal in answer extraction
is to extract from the latter a short chunk C' of text (a
word or a sequence of contiguous words) which is a
precise answer to (. In Table 1, “July 22, 1995” and
“1995” in S() are two such answers.

Each positive (Q,S®) pair in the Wang et al.
(2007) dataset is annotated by Yao et al. (2013a)
with a gold answer chunk Cg(,l) in S, Associated
with each @ is also a regexp pattern P that speci-
fies one or more gold answer chunks for ). Being
a regexp pattern, P can accommodate variants of a
gold answer chunk as well as multiple gold chunks.
For instance, the pattern “1995” for the example in
Table 1 matches both “July 22, 1995 and “1995”.
An extraction algorithm extracts an answer chunk C,
which is matched against P during evaluation.

Extraction of C' is a multistep process. Existing
solutions adopt a generic framework, which we out-
line in Algorithm 1. In each S, candidate answer
chunks C') are first identified and evaluated accord-
ing to some criteria (steps 1-4). The best chunk C’S’)
in SO is then identified (step 5). From these “locally
best” chunks, groups of equivalent chunks are formed
(step 6), where some predefined criteria for chunk
equivalence are used (e.g., non-zero word overlap).
The quality of each group is computed as an aggre-
gate over the qualities of its member chunks (steps
7-8), and finally a representative chunk from the best
group is extracted as C (steps 9-10).

There are, however, details that need to be filled in
within this generic framework, specifically in steps
2,4, 6 and 10 of the algorithm. Solutions differ in
these specifics. Here we discuss two state-of-the-art
systems (Yao et al., 2013a; Severyn and Moschitti,
2013), which are the only systems that have been
evaluated on the Wang et al. (2007) regexp patterns.

Yao et al. (2013a) use a conditional random field
(CRF) to simultaneously identify chunks (step 2) and
compute their ¢ values (step 4). Their chunking fea-
tures include the POS, DEP and NER tags of words.
Additional features are employed for chunk quality
estimation, e.g., the question type and focus, prop-
erties of the edit operation associated with the word
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Algorithm 1: Answer Extraction Framework
Input:

1. @: a question sentence.
2. {SM ..., SM)1: candidate answer sentences.

Output: C': a short and precise answer to Q.

1 forie {1,..,N}do

2 C() « candidate chunks in S*

3 for c € C do

4 L ¢(c) < quality of ¢ as an answer to ()
5 CZEZ) < argmax, .o (¢(c))

6 {GS), ey G(CM)} < groups of chunks in

{Cil), ey CLEN)} s.t. chunks in each Gg) are
semantically equivalent under some criteria
7 for g € {G(Cl), s G(CM)} do
8 | 6lg) & Yoey 0(0)

v G+ arg mane{Gg)MG(CM)}(¢(g))

10 C + a member of G(;)

according to their tree edit model (see Section 2.1),
and so on. Severyn and Moschitti (2013) employ a
two-step process. First, they extract all NP chunks
for step 2, as other types of chunks rarely contain
answers to TREC-style factoid questions. A kernel-
based binary classifier is then trained to compute a
score for each chunk (step 4). Relational links estab-
lished between expected answer types and compati-
ble chunk entity types (e.g., HUM <+ PERSON, DATE
<> DATE/TIME/NUMBER) provide the information
necessary for classification.

For step 6, both systems rely on a simple word
overlap strategy: chunks with common content words
are grouped together. Neither article discusses the
specifics of step 10.

We adhere to this generic framework with our own
models and features; but importantly, through the use
of sentence-level evidence in step 4, our joint model
demonstrates a substantial improvement in accuracy.

2.3 Coupled Ranking and Extraction

Yao et al. (2013c) present a ranker that utilizes token-
level extraction features. The question sentence is
augmented with such features to formulate a search



query, which is fed as input to a search engine for
ranked retrieval from a pool of candidate answer sen-
tences. They experimentally show that downstream
extraction from top retrievals in this list is more ac-
curate than if the query is not expanded with the
extraction features.

We take a different approach where numeric pre-
dictions from separate ranking and extraction mod-
ules are combined to jointly perform both tasks (Sec-
tion 3). Yao et al. build on an existing ranker that
supports query expansion and token-level character-
ization of candidate answer sentences. We assume
no such system features, facilitating coupling of arbi-
trary models including new experimental ones. For
extraction, Yao et al. simply rely on better upstream
ranking, whereas our joint model provides a precise
mathematical formulation of answer chunk quality
as a function of both chunk and sentence relevance
to the question. We observe a large increase in end-
to-end extraction accuracy over the Yao et al. model
in our experiments.

3 Approach

We first train separate probabilistic models for an-
swer sentence ranking and answer extraction, for
each of which we take an approach similar to that
of existing models. Probabilities learned by the two
task-specific models are then combined to construct
our joint model. This section discusses the details of
this two-step process.

3.1 Answer Sentence Ranking

Let the following logistic function represent the prob-
ability that a candidate answer sentence S(*) contains
an answer to a question ():

1

- 1
1+ e*OTTfr(Q:S(Z)) ( )

P(SY1Q) =

where f,.(Q, S(") is a set of features each of which
is a unique measure of semantic similarity between
Q and S, and 6, is the weight vector learned dur-
ing model training. We describe our feature set for
ranking in Section 4.

Given P(S™|Q) values for i € {1,..., N}, rank-
ing is straightforward: rankg(S®W) < rankg(SW)
if P(S®|Q) > P(SY)|Q). Note that a smaller nu-
meric value represents a higher rank.
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3.2 Answer Extraction

We follow the framework in Algorithm 1 for answer
extraction. Below we describe our implementation
of the generic steps:

1. Step 2: We adopt the strategy of (Severyn
and Moschitti, 2013) of extracting only the NP
chunks, for which we use a regexp chunker.

2. Step 4: The quality ¢(c) of a candidate chunk
cin S is given by the following logistic func-
tion:

, 1
- @)y =
¢(C) P(C|Q7S ) 1 +6*93;fe(st(i)7C)

2)

where f.(Q, S @), c) is the feature set for chunk
c relative to @), and 6. is the weight vector
learned during model training. Our feature set
for extraction is described in Section 5.

3. Step 6: Given an existing set of (possibly empty)
chunk groups {G(Cl), oy G(CM)}, anew chunk ¢
is added to group G (é) ,if (1) all content words in
c are in at least one member of Gg), or (2) there
exists a member of G(CZ) all of whose content

words are in c. If no such group is found, a

(M+1)

new group G,

member.

is created with c as its only

4. Step 10: We extract the longest chunk in G((:f )

as the best answer C.

Additionally, we retain only the top ¢ of all the
answer candidates extracted in step 5 to prevent prop-
agation of noisy chunks to later steps. The value of ¢
is set using the Wang et al. (2007) DEV set.

3.3 Joint Ranking and Extraction

The primary goal of the joint model is to facilitate the
application of both chunk-level and sentence-level
features to ranking as well as extraction. To that
end, it first computes the joint probability that (1)
S@ contains an answer to O, and (2) ¢ € C™ is a
correct answer chunk:

P(SD.c|Q) = P(SY|Q) x P(c|Q,SD)  (3)

where the two terms on the right hand side are given
by Equations (1) and (2), respectively. Both ranking



and extraction are then driven by task-appropriate
application of this common quantity.

Given Equation (3), the condition for ranking is
redefined as follows rankg(SW) < rcka(S(j)) i
max,. oo P(S?,c|Q) > max,..cu) P(SY), Q).
This new condition rewards an S(*) that not only is
highly semantically similar to (), but also contains a
chunk ¢ which is a likely answer to Q).

For extraction, the joint probability in Equation
(3) replaces the conditional in Equation (2) for step
4 of Algorithm 1: ¢(c) = P(S®, ¢|Q). Again, this
new definition of ¢(c) rewards a chunk c that is (1)
type-compatible with (), and (2) well-supported by
the content of the containing sentence S(9).

Equation (3) assigns equal weight to the ranking
and the extraction model. To learn these weights from
data, we implement a variation of the joint model that
employs a second-level regressor:

1

(@) —
P(S 5 C’Q) 1+ efeng(Q»g(i),C)

where the feature vector fy consists of the two proba-
bilities in Equations (1) and (2), and 05 is the weight
vector. While P(S®, ¢|Q) is computed using a dif-
ferent formula in this model, the methods for ranking
and extraction based on it remains the same as above.
From here on, we will refer to the models in Sec-
tions 3.1 and 3.2 as our standalone ranking and ex-
traction models, respectively, and the models in this
section as the joint probabilistic model (Equation (3))
and the stacked (regression) model (Equation (4)).

“)

3.4 Learning

The standalone ranking model is trained using the
0/1 labels assigned to (Q, S¥)) pairs in the Wang et
al. (2007) dataset. For standalone extraction, we use
for training the gold chunk annotations Cél) associ-
ated with (Q, S) pairs: a candidate NP chunk in
S is considered a positive example for (Q, S(*)) iff
it contains Cfgl) and S is an actual answer sentence.
For both ranking and extraction, the corresponding
weight vector @ is learned by minimizing the follow-
ing Lo-regularized loss function:

= —Z[ log(P®)

(1 =y log(1 = PD)| + X|6]2
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where 7 is the number of training examples, y(*) is
the gold label for example ¢ and P is the model-
predicted probability of example ¢ being a positive
example (given by Equations (1) and (2)).

Learning of 82 for the stacked model works in a
similar fashion, where level 1 predictions for training
QA pairs (according to Equations (1) and (2)) serve
as feature vectors.

4 Answer Sentence Ranking Features

Instead of reinventing similarity features for our QA
ranker, we derive our feature set from the winning
system (Sultan et al., 2015) at the SemEval 2015
Semantic Textual Similarity (STS) task (Agirre et al.,
2015). STS is an annually held SemEval competition,
where systems output real-valued similarity scores
for input sentence pairs. Hundreds of systems have
been evaluated over the past few years (Agirre et
al., 2012; Agirre et al., 2013; Agirre et al., 2014;
Agirre et al., 2015); our chosen system was shown
to outperform all other systems from all years of
SemEval STS (Sultan et al., 2015).

In order to compute the degree of semantic simi-
larity between a question () and a candidate answer
sentence S (i), we draw features from two sources:
(1) lexical alignment between () and S (), and (2)
vector representations of @ and S, derived from
their word embeddings. While the original STS sys-
tem employs ridge regression, we use these features
within a logistic regression model for QA ranking.

4.1 Alignment Features

We align related words in @ and S() using a mono-
lingual aligner originally proposed by Sultan et
al. (2014). Here we give a brief description of our
implementation, which employs arguably more prin-
cipled methods to solve a set of subproblems. See
the original article for further details.

The aligner computes for each word pair across )
and S a semantic similarity score simyy € [0, 1]
using PPDB—a large database of lexical paraphrases
developed using bilingual pivoting (Ganitkevitch et
al., 2013). Specifically, it allows three different levels
of similarity: 1 if the two words or their lemmas
are identical, a value ppdbSim € (0, 1) if the word
pair is present in PPDB (the XXXL database)?, and 0

2http: //www.cis.upenn.edu/~ccb/ppdb/
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otherwise.

It also computes the degree of similarity simc¢
between the two words’ contexts in their respective
sentences. This similarity is computed as the sum of
word similarities in two different types of contexts:
(1) a dependency neighborhood of size 2 (i.e. parents,
grandparents, children and grandchildren), and (2) a
surface-form neighborhood of size 3 (i.e. 3 words
to the left and 3 words to the right). Stop words are
skipped during neighbor selection. Unlike the Sultan
et al. (2014) aligner, which allows a single neighbor
word to be matched to multiple similar words in the
other sentence, we match neighbors using a max-
weighted bipartite matching algorithm, where word
similarities serve as edge weights.

Every word pair across @ and S receives a final
weight given by w * simy + (1 — w) * simc, where
w € [0, 1]. While Sultan et al. use a greedy best-first
algorithm to align words based on these weights, we
use them as edge weights in a max-weighted bipartite
matching of word pairs (details follow).

We adopt the strategy of the original aligner of
starting with high-precision alignments and increas-
ing the recall in later steps. To this end, we align
in the following order: (1) identical word sequences
with at least one content word, (2) named entities,
(3) content words, and (4) stop words. Following
the original aligner, no additional context matching
is performed in step 1 since a sequence itself pro-
vides contextual evidence for its tokens. For each of
steps 2—4, words/entities of the corresponding type
are aligned using max-weighted bipartite matching
as described above (multiword named entities are
considered single units in step 2); other word types
and already aligned words are discarded. The values
of w and ppdbSim are derived using a grid search
on an alignment dataset (Brockett, 2007).

Given aligned words in the QA pair, our first
feature computes the proportion of aligned content
words in Q and S, combined:

ng(Q) + ng(sY)
ne(Q) + HC(S(i))

where n%(-) and n.(-) represent the number of
aligned content words and the total number of content
words in a sentence, respectively.

S() can be arbitrarily long and still contain an an-
swer to (). In the above similarity measure, longer

sima(Q,5®) =
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answer sentences are penalized due to a larger num-
ber of unaligned words. To counter this phenomenon,
we add a measure of coverage of Q by S to the
original feature set of Sultan et al. (2015):

ne(Q)
ne(Q)

4.2 A Semantic Vector Feature

Neural word embeddings (Mikolov et al., 2013; Ba-
roni et al., 2014; Pennington, 2014) have been highly
successful as distributional word representations in
the recent past. We utilize the 400-dimensional word
embeddings developed by Baroni et al. (2014)° to
construct sentence-level embeddings for () and S @),
which we then compare to compute a similarity score.

To construct the vector representation Vg of a
given sentence .S, we first extract the content word
lemmas C's = {Cél), s C’éM)} in S. The vectors
representing these lemmas are then added to generate
the sentence vector:

M
Vg ::ZE:‘Q¥P
=1

Finally, a similarity measure for Q and S is
derived by taking the cosine similarity between their
vector representations:

cova(Q,S%) =

. ()Y _ ‘22-‘<§u)
(@S = Ve
This simple bag-of-words model was found to aug-
ment the alignment-based feature well in the evalua-
tions reported by Sultan et al. (2015).

sim 4, cov 4 and stmp constitute our final feature

set. As we show in Section 6, this small feature set
outperforms the current state of the art in answer
sentence ranking.

5 Answer Extraction Features

As mentioned in Section 3.2, we consider only NP
chunks as answer candidates for extraction. Our
chunk features can be categorized into two broad
groups, which we describe in this section. For the
following discussion, let (Q, S @) ¢) be our question,
answer sentence, answer chunk triple.

*http://clic.cimec.unitn.it/composes/
semantic-vectors.html
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5.1 Question-Independent Features

These features represent properties of ¢ independent
of the nature of ). For example, our first two features
fire if all content words in ¢ are present in () or align
to words in (). Such chunks rarely contain an answer,
regardless of the type of ).

Yao et al. (2013a) report an observation that an-
swer chunks often appear close to aligned content
words of specific types in S*). To model this phe-
nomenon, we adopt their features specifying the dis-
tance of ¢ from the nearest aligned content word w,
in S and the POS/DEP/NER tags of w,. In addi-
tion, to encode the total amount of local evidence
present for ¢, we employ the proportions of aligned
content words in its dependency (size = 2) and sur-
face (size = 3) contexts in S,

5.2 Features Containing the Question Type

These features are of the form “question-type|z”,
where z can be an elementary (i.e. unit) or composite
feature. The rationale is that certain features are in-
formative primarily in the context of certain question
types (e.g., a likely answer to a when question is a
chunk containing the NER tag DATE).

Headword Features. We extract the headword
of c and use its POS/DEP/NER tags as features (ap-
pended to the question type). A headword in the
subject position of S(*) or with PERSON as its NER
tag, for example, is a likely answer to a who question.

Question Focus. The question focus word repre-
sents the entity about which the question is being
asked. For example, in “What is the largest coun-
try in the world?”, the focus word is “country”. For
question types like what and which, properties of the
question focus largely determine the nature of the an-
swer. In the above example, the focus word indicates
that GPE is a likely NER tag for the answer.

We extract the question focus using a rule-based
system originally designed for a different applica-
tion, under the assumption that a question could span
multiple sentences. The rule-based system is loosely
inspired by the work of Lally et al. (2012), from
which it differs radically because the questions in the
Jeopardy! game are expressed as answers. The focus
extractor first determines the question word or words,
which is then used in conjunction with the parse tree
to decide whether the question word itself or some
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other word in the sentence is the actual focus.

We pair the headword POS/DEP/NER tags with
the focus word and its POS/NER tags, and add
each such pair (appended to the question type)
to our feature set.  There are nine features
here; examples include question-type|question-focus-
word|headword-pos-tag and question-type|question-
focus-ner-tag|headword-ner-tag.

We also employ the true/false labels of the follow-
ing propositions as features (in conjunction with the
question type): (1) the question focus word is in c,
(2) the question focus POS tag is in the POS tags of
¢, and (3) the question focus NER tag is of the form
x or x_DESC, and x is in the NER tags of ¢, for some
x (e.g., GPE).

Chunk Tags. In many cases, it is not the head-
word of ¢ which is the answer; for example, in Q:
“How many states are there in the US?” and c: “50
states”, the headword of c is “states”. To extend
our unit of attention from the headword to the en-
tire chunk, we first construct vocabularies of POS
and NER tags, V,,s and V., from training data.
For each possible tag in V),,5, we then use the pres-
ence/absence of that tag in the POS tag sequence for
c as a feature (in conjunction with the question type).
We repeat the process for V... For the above c, for
instance, an informative feature which is likely to
fire is: “question-type=how-many|the NER tags of ¢
include CARDINAL”.

Partial Alignment. For some question types, part
of a correct answer chunk is often aligned to a ques-
tion word (e.g., Q: “How many players are on the
field during a soccer game?”, c: “22 players”). To in-
form our model of such occurrences, we employ two
features—true/false labels of the following proposi-
tions: (1) c is partially aligned, (2) c is not aligned at
all (each in conjunction with the question type).

6 Experiments

6.1 Data

The Wang et al. (2007) corpus is created from Text
REtrieval Conference (TREC) 8-13 QA data. It con-
sists of a set of factoid questions, and for each ques-
tion, a set of candidate answer sentences. Each an-
swer candidate is automatically drawn from a larger
document based on two selection criteria: (1) a non-
zero content word overlap with the question, or (2)



Dataset # Questions # QA Pairs % Positive
TRAIN-ALL 1,229 53,417 12.0
TRAIN 94 4,718 7.4
DEV 82 1,148 19.3
TEST 100 1,517 18.7

Table 2: Summary of the Wang et al. (2007) corpus.

a match with the gold regexp answer pattern for the
question (training only).

TRAIN pairs are drawn from TREC 8-12; DEV
and TEST pairs are drawn from TREC 13. Details
of the TRAIN/DEV/TEST split are given in Table 2.
TRAIN-ALL is a large set of automatically judged
(thus noisy) QA pairs: a sentence is considered a
positive example if it matches the gold answer pattern
for the corresponding question. TRAIN is a much
smaller subset of TRAIN-ALL, containing pairs that
are manually corrected for errors. Manual judgment
is produced for DEV and TEST pairs, too.

For answer extraction, Yao et al. (2013a) add to
each QA pair the correct answer chunk(s). The
gold TREC patterns are used to first identify rele-
vant chunks in each answer sentence. TRAIN, DEV
and TEST are then manually corrected for errors.

The Wang et al. (2007) dataset also comes with
POS/DEP/NER tags for each sentence. They use
the MXPOST tagger (Ratnaparkhi, 1996) for POS
tagging, the MSTParser (McDonald et al., 2005) to
generate typed dependency trees, and the BBN Iden-
tifinder (Bikel et al., 1999) for NER tagging. Al-
though we have access to a state-of-the-art informa-
tion pipeline that produces better tags, this paper aims
to study the effect of the proposed models and of our
features on system performance, rather than on ad-
ditional variables; therefore, to support comparison
with prior work, we rely on the tags provided with
the dataset for all our experiments.

6.2 Answer Sentence Ranking
We adopt the standard evaluation procedure and met-

rics for QA rankers reported in the literature.

6.2.1 Evaluation Metrics

Our metrics for ranking are Mean Average Pre-
cision (MAP) and Mean Reciprocal Rank (MRR).
Here we define both in terms of simpler metrics.

Precision at K. Given a question () and a set of
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candidate answer sentences {S(), ..., S(N)}, Tet the
output of a ranker be [R(), ..., R™V)], so that each
RO ¢ {SW . SN and the predicted rank of
R is higher than the predicted rank of RU) when-
ever ¢ < j. The ranker’s precision at K for @
(Pk(@Q)) is then defined as the proportion of correct
answer sentences in the set {R(1), ..., R},

Average Precision. Let A be the set of correct
answer sentences for (Q in the above scenario. Then
the average precision (AP) of the ranker for () can
be defined as: AP(Q) = T}ll Y irwea Pi(Q).

Reciprocal Rank. In the above scenario, let j be
the smallest index in {1, ..., N'} such that R¢) € A.
Then the reciprocal rank (RR) of the ranker for () is:
RR(Q) = P,(Q) = 1/j.

MAP. The MAP of a ranker over a set of questions
Q = {QW,...,QM)} is defined as: MAP(Q) =
3 il AP@QW).

MRR. The MRR of a ranker over a set of questions
Q = {QW,...,QM)} is defined as: MRR(Q) =
3 Lt RR(QW).

6.2.2 Setup

For QA ranking, test questions that do not have
both correct and incorrect candidate answer sentences
are irrelevant since any ranking is correct for such
questions. Following all past QA rankers, we there-
fore remove such instances from DEV and TEST. Of
the original 1,517 TEST pairs, 1,442 (> 95%) are
retained after this exclusion.

We use the logistic regression implementation of
Scikit-learn (Pedregosa et al., 2011) and use the
Wang et al. (2007) DEV set to set C, the regulariza-
tion strength parameter. The standard trec_eval
script is used to generate all results.

6.2.3 Results

Table 3 shows performances of our ranking models
and recent baseline systems on TEST. Our QA simi-
larity features (i.e. the standalone ranker) outperform
all baselines with both TRAIN and TRAIN-ALL, al-
though the additional noisy examples in the latter are
not found to improve results.

More importantly, we get improvements of sub-
stantially larger magnitudes using our joint models—
more than 10 MAP and MRR points over the state-
of-the-art system of Severyn and Moschitti (2015)
with TRAIN-ALL for the joint probabilistic model.



Model MAP% MRR% Model P% R% 1%
TRAIN TRAIN
Shnarch (2013) 68.60 7540 Yao et al. (2013a) 55.2 539 545
Yih et al. (2013) 70.92  77.00 Severyn & Moschitti (2013) 66.2 66.2 66.2
Yu et al. (2014) 70.58  78.00 Our Standalone Model 62.9 629 629
Severyn & Moschitti (2015) 73.29  79.62 Our Joint Probabilistic Model 69.7 69.7 69.7
Our Standalone Model 76.05  83.99 Our Stacked Model 62.9 629 629
Our Joint Probabilistic Model 81.59  89.09 TRAIN-ALL
Our Stacked Model 80.77  86.85 Yao et al. (2013a) 63.6 629 63.3
TRAIN-ALL Severyn & Moschitti (2013) 70.8 70.8 70.8
Yu et al. (2014) 71.13  78.46 Our Standalone Model 70.8 70.8 70.8
Severyn & Moschitti (2015) 74.59  80.78 Our Joint Probabilistic Model 76.4 76.4 76.4
Our Standalone Model 75.68  83.09 Our Stacked Model 73.0 73.0 73.0
Our Joint Probabilistic Model 84.95  91.95
Our Stacked Model 8256  90.69 Table 4: Answer extraction results on the Wang et al.

Table 3: Answer sentence ranking results.

Unlike the standalone model, the joint models also
benefit from the additional noisy examples in TRAIN-
ALL. These results support the central argument of
this paper that joint modeling is a better approach to
answer sentence ranking.

6.3 Answer Extraction

We follow the procedure reported in prior work (Yao
et al., 2013a; Severyn and Moschitti, 2013) to evalu-
ate the answer chunks extracted by the system.

6.3.1 Evaluation Metrics

Precision. Given a set of questions, the precision
of an answer extraction system is the proportion of
its extracted answers that are correct (i.e. match the
corresponding gold regexp pattern).

Recall. Recall is the proportion of questions for
which the system extracted a correct answer.

F4 Score. The F score is the harmonic mean of
precision and recall. It captures the system’s accuracy
and coverage in a single metric.

6.3.2 Setup

Following prior work, we (1) retain the 89 ques-
tions in the Wang et al. (2007) TEST set that have
at least one correct answer, and (2) train only with
chunks in correct answer sentences to avoid extreme
bias towards false labels (both the standalone extrac-
tion model and stage 2 of the stacked model). As in

121

(2007) test set.

ranking, we use Scikit-learn for logistic regression
and set the regularization parameter C' using DEV.

6.3.3 Results

Table 4 shows performances of our extraction mod-
els on the Wang et al. TEST set. The joint proba-
bilistic model demonstrates top performance for both
TRAIN and TRAIN-ALL. With TRAIN-ALL, it cor-
rectly answers 68 of the 89 test questions (5 more
than the previous best model of Severyn and Mos-
chitti (2013)). The stacked model also performs well
with the larger training set. Again, these results sup-
port the central claim of the paper that answer extrac-
tion can be made better through joint modeling.

Table 5 shows performances of our standalone and
joint probabilistic models (trained on TRAIN-ALL)
on different TEST question types. The joint model
is the better of the two across types, achieving good

Question Type Count ST JP

what 37 514  56.8
when 19 100.0 100.0
where 11 100.0 90.9
who/whom 10 60.0 70.0
why 1 0.0 0.0

how many 9 77.8 100.0
how long 2 50.0 100.0

Table 5: F% of the STandalone and the Joint

Probabilistic extraction model across question types.



Question Candidate Answer Sentence ST JP
H “Six Sigma has galvanized our company with an intensity the likes of which
OW MaNY | 1 have never seen in my 40 years at GE,” said John Welch, chairman of .517 .113
years  was .
Jack Welch General Electric.
a,ch GE: N I"So fervent a proselytizer is Welch that GE has spent three years and more 714 090
wit : than $1 billion to convert all of its divisions to the Six Sigma faith. ' '
What kind of | Newport plans to retrieve the recovery vessel first, then go after Liberty 238 278
ship is the | Bell 7, the only U.S . manned spacecraft lost after a successful mission. '
Liberty Bell | “It will be a big relief”” once the capsule is aboard ship, Curt Newport said
. . .388 .003
77 before setting sail Thursday.

Table 6: Scores computed by the STandalone and the Joint Probabilistic model for candidate chunks (boldfaced) in
four (Wang et al., 2007) test sentences. Joint model scores for non-answer chunks (rows 2 and 4) are much lower.

results on all question types except what.

A particularly challenging subtype of what ques-
tions are what be questions, answers to which often
go beyond NP chunk boundaries. A human-extracted
answer to the question “What is Muslim Brother-
hood’s goal?” in the Wang et al. corpus (2007), for
example, is “advocates turning Egypt into a strict
Muslim state by political means.” What in general is
nevertheless the most difficult question type, since
unlike questions like who or when, answers do not
have strict categories (e.g., a fixed set of NER tags).

6.3.4 Qualitative Analysis

We closely examine QA pairs for which the joint
probabilistic model extracts a correct answer chunk
but the standalone model does not. Table 6 shows two
such questions, with two candidate answer sentences
for each. Candidate answer chunks are boldfaced.

For the first question, only the sentence in row 1
contains an answer. The standalone model assigns a
higher score to the non-answer chunk in row 2, but
the use of sentence-level features enables the joint
model to identify the more relevant chunk in row 1.
Note that the joint model score, being a product of
two probabilities, is always lower than the standalone
model score. However, only the relative score matters
in this case, as the chunk with the highest overall
score is eventually selected for extraction.

For the second question, both models compute a
lower score for the non-answer chunk “Curt Newport”
than the answer chunk “manned spacecraft”. How-
ever, the incorrect chunk appears in several candidate
answer sentences (not shown here), resulting in a
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Model P% R% Fi%

Yao et al. (2013c¢) 354 17.2 23.1
Our Joint Probabilistic Model 83.8 83.8 83.8

Table 7: Performances of two joint extraction models on
the Yao et al. (2013c) test set.

high overall score for the standalone model (Algo-
rithm 1: steps 7 and 8). The joint model assigns a
much lower score to each instance of this chunk due
to weak sentence-level evidence, eventually resulting
in the extraction of the correct chunk.

6.3.5 A Second Extraction Dataset

Yao et al. (2013c¢) report an extraction dataset con-
taining 99 test questions, derived from the MIT109
test collection (Lin and Katz, 2006) of TREC pairs.
Each question in this dataset has 10 candidate an-
swer sentences. We compare the performance of our
joint probabilistic model with that of their extraction
model, which extracts answers from top candidate
sentences identified by their coupled ranker (Sec-
tion 2.3).* Models are trained on their training set of
2,205 questions and 22,043 candidate QA pairs. As
shown in Table 7, our model outperforms the Yao et
al. model by a surprisingly large margin, correctly
answering 83 of the 99 test questions.

Interestingly, our standalone model extracts six
more correct answers in this dataset than the joint

*We compare with only their extraction model, as the larger
ranking dataset is not available anymore. Precision and recall are
reported at http://cs. jhu.edu/~xuchen/packages/
jacana-ir-acl20l3-data-results.tar.bz2.


http://cs.jhu.edu/~xuchen/packages/jacana-ir-acl2013-data-results.tar.bz2
http://cs.jhu.edu/~xuchen/packages/jacana-ir-acl2013-data-results.tar.bz2

Candidate Answer Sentence ST JP
Another perk is getting to work with his son, Barry Van Dyke, who has a regular role as
3 113 : L 1) .861 338
Detective Steve Sloan on “Diagnosis”.
This is only the third time in school history the Raiders have begun a season 6-0 and the
first since 1976, when Steve Sloan, in his second season as coach, led them to an 8-0 start .494 .010
and 10-2 overall record.
He also represented several Alabama coaches, including Ray Perkins, Bill Curry, Steve
. 334 .007
Sloan and Wimp Sanderson.
Bart Starr, Joe Namath, Ken Stabler, Steve Sloan, Scott Hunter and Walter Lewis are but a 334 009

few of the legends on the wall of the Crimson Tide quarterbacks coach.

Table 8: Scores computed by the STandalone and the Joint Probabilistic model for NP chunks (boldfaced) in four
Yao et al. (2013c) test sentences for the question: Who is the detective on ‘Diagnosis Murder’? The standalone model
assigns high probabilities to non-answer chunks in the last three sentences, subsequently corrected by the joint model.

model. A close examination reveals that in all six
cases, this is caused by the presence of correct an-
swer chunks in non-answer sentences. Table 8 shows
an example, where the correct answer chunk “Steve
Sloan” appears in all four candidate sentences, of
which only the first is actually relevant to the ques-
tion. The standalone model assigns high scores to
all four instances and as a result observes a high
overall score for the chunk. The joint model, on the
other hand, recognizes the false positives, and con-
sequently observes a smaller overall score for the
chunk. However, this desired behavior eventually
results in a wrong extraction. These results have key
implications for the evaluation of answer extraction
systems: metrics that assess performance on individ-
ual QA pairs can enable finer-grained evaluation than
what end-to-end extraction metrics offer.

7 Discussion

Our two-step approach to joint modeling, consist-
ing of constructing separate models for ranking and
extraction first and then coupling their predictions,
offers at least two advantages. First, predictions from
any given pair of ranking and extraction systems can
be combined, since such systems must compute a
score for a QA pair or an answer chunk in order
to differentiate among candidates. Coupling of the
ranking and extraction systems of Yao et al. (2013a)
and Severyn and Moschitti (2013), for example, is
straightforward within our framework. Second, this
approach supports the use of task-appropriate training
data for ranking and extraction, which can provide
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key advantage. For example, while answer sentence
ranking systems use both correct and incorrect can-
didate answer sentences for model training, existing
answer extraction systems discard the latter in order
to maintain a (relatively) balanced class distribution
(Yao et al., 2013a; Severyn and Moschitti, 2013).
Through the separation of the ranking and extrac-
tion models during training, our approach naturally
supports such task-specific sampling of training data.
A potentially limiting factor in our extraction
model is the assumption that answers are always
expressed neatly in NP chunks. While models that
make no such assumption exist (e.g., the CRF model
of Yao et al. (2013a)), extraction of long answers
(such as the one discussed in Section 6.3.3) is still
difficult in practice due to their unconstrained nature.

8 Conclusions and Future Work

We present a joint model for the important QA tasks
of answer sentence ranking and answer extraction.
By exploiting the interconnected nature of the two
tasks, our model demonstrates substantial perfor-
mance improvements over previous best systems for
both. Additionally, our ranking model applies recent
advances in the computation of short text similarity
to QA, providing stronger similarity features.

An obvious direction for future work is the inclu-
sion of new features for each task. Answer sentence
ranking, for example, can benefit from phrasal align-
ment and long-distance context representation. An-
swer extraction for what questions can be made better
using a lexical answer type feature, or world knowl-



edge (such as “blue is a color”) derived from semantic
networks like WordNet. Our model also facilitates
straightforward integration of features/predictions
from other existing systems for both tasks, for ex-
ample, the convolutional neural sentence model of
Severyn and Moschitti (2015) for ranking. Finally,
more sophisticated techniques are required for extrac-
tion of the final answer chunk based on individual
chunk scores across QA pairs.
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