
Parsing Algebraic Word Problems into Equations

Rik Koncel-Kedziorski, Hannaneh Hajishirzi,
Ashish Sabharwal†, Oren Etzioni†, and Siena Dumas Ang

University of Washington, †Allen Institute for AI
{kedzior,hannaneh,sienaang}@uw.edu, {ashishs,orene}@allenai.org

Abstract

This paper formalizes the problem of solv-
ing multi-sentence algebraic word problems as
that of generating and scoring equation trees.
We use integer linear programming to gener-
ate equation trees and score their likelihood by
learning local and global discriminative mod-
els. These models are trained on a small set
of word problems and their answers, without
any manual annotation, in order to choose the
equation that best matches the problem text.
We refer to the overall system as ALGES.

We compare ALGES with previous work and
show that it covers the full gamut of arithmetic
operations whereas Hosseini et al. (2014) only
handle addition and subtraction. In addition,
ALGES overcomes the brittleness of the Kush-
man et al. (2014) approach on single-equation
problems, yielding a 15% to 50% reduction in
error.

1 Introduction

Grade-school algebra word problems are brief nar-
ratives (see Figure 1). A typical problem first de-
scribes a partial world state consisting of characters,
entities, and quantities. Next it updates the condition
of an entity or explicates the relationship between
entities. Finally, it poses a question about a quantity
in the narrative.

An ordinary child has to learn the required alge-
bra, but will easily grasp the narrative utilizing ex-
tensive world knowledge, large vocabulary, word-
sense disambiguation, coreference resolution, mas-
tery of syntax, and the ability to combine individual

Oceanside Bike Rental Shop
charges 17 dollars plus
7 dollars an hour for renting a
bike. Tom paid 80 dollars to
rent a bike. How many hours
did he pay to have the bike
checked out?

=

+$

17$ ∗$

7$ xh

80$

solution : 9 17 + (7 ∗ x) = 80

Figure 1: Example problem and solution

sentences into a coherent mental model. In contrast,
the challenge for an NLP system is to “make sense”
of the narrative, which may refer to arbitrary activ-
ities like renting bikes, collecting coins, or eating
cookies.

Previous work coped with the open-domain as-
pect of algebraic word problems by relying on deter-
ministic state transitions based on verb categoriza-
tion (Hosseini et al., 2014) or by learning templates
that cover equations of particular forms (Kushman et
al., 2014). We have discovered, however, that both
approaches are brittle, particularly as training data
is scarce in this domain, and the space of equations
grows exponentially with the number of quantities
mentioned in the math problem.

We introduce ALGES,1 which maps an unseen
multi-sentence algebraic word problem into a set of
possible equation trees. Figure 1 shows an equation
tree alongside the word problem it represents.

ALGES generates the space of trees via Integer
Linear Programming (ILP), which allows it to con-

1The code and data is publicly available at https://
gitlab.cs.washington.edu/ALGES/TACL2015 .

585

Transactions of the Association for Computational Linguistics, vol. 3, pp. 585–597, 2015. Action Editor: Regina Barzilay.
Submission batch: 7/2015; Revision batch: 10/2015; Published 12/2015.

c©2015 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://gitlab.cs.washington.edu/ALGES/TACL2015
https://gitlab.cs.washington.edu/ALGES/TACL2015

strain the space of trees to represent type-consistent
algebraic equations satisfying as many desirable
properties as possible. ALGES learns to map spans
of text to arithmetic operators, to combine them
given the global context of the problem, and to
choose the “best” tree corresponding to the problem.
The training set for ALGES consists of unannotated
algebraic word problems and their solution. Solv-
ing the equation represented by such a tree is trivial.
ALGES is described in detail in Section 4.

ALGES is able to solve word problems with
single-variable equations like the ones in Figure 1.
In contrast to Hosseini et al. (2014), ALGES covers
+,−, ∗, and /. The work of Kushman et al. (2014)
has broader scope but we show that it relies heav-
ily on overlap between training and test data. When
that overlap is reduced, ALGES is 15% to 50% more
accurate than this system.

Our contributions are as follows: (1) We formal-
ize the problem of solving multi-sentence algebraic
word problems as that of generating and ranking
equation trees; (2) We show how to score the like-
lihood of equation trees by learning discriminative
models trained from a small number of word prob-
lems and their solutions – without any manual an-
notation; and (3) We demonstrate empirically that
ALGES has broader scope than the system of Hos-
seini et al. (2014), and overcomes the brittleness of
the method of Kushman et al. (2014).

2 Previous Work

Our work is related to situated semantic interpre-
tation, which aims to map natural language sen-
tences to formal meaning representations (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005; Ge
and Mooney, 2006; Kwiatkowski et al., 2010).
More closely related is work on language ground-
ing, whose goal is the interpretation of a sentence
in the context of a world representation (Branavan
et al., 2009; Liang et al., 2009; Chen et al., 2010;
Bordes et al., 2010; Feng and Lapata, 2010; Ha-
jishirzi et al., 2011; Matuszek et al., 2012; Hajishirzi
et al., 2012; Artzi and Zettlemoyer, 2013; Koncel-
Kedziorski et al., 2014; Yatskar et al., 2014; Seo
et al., 2014; Hixon et al., 2015). However, while
most previous work considered individual sentences
in isolation, solving word problems often requires

reasoning across the multi-sentence discourse of
the problem text. Recent efforts in the math do-
main have studied number word problems (Shi et
al., 2015), logic puzzle problems (Mitra and Baral,
2015), arithmetic word problems (Hosseini et al.,
2014; Roy and Roth, 2015), algebra word prob-
lems (Kushman et al., 2014; Zhou et al., 2015), and
geometry word problems (Seo et al., 2015). We
discuss in more detail below two pioneering works
closely related to our own.

Hosseini et al. (2014) solve elementary addition
and subtraction problems by learning verb cate-
gories. They ground the problem text to a seman-
tics of entities and containers, and decide if quanti-
ties are increasing or decreasing in a container based
upon the learned verb categories. While relying only
on verb categories works well for + and −, model-
ing ∗ or / requires going beyond verbs. For instance,
“Tina has 2 cats. John has 3 more cats than Tina.
How many cats do they have together?” and “Tina
has 2 cats. John has 3 times as many cats as Tina.
How many cats do they have together?” have identi-
cal verbs, but the indicated operation (+ and * resp.)
is different. ALGES makes use of a richer seman-
tic representation which facilitates deeper learning
and a wider scope of application, solving problems
involving the +,−, /, and ∗ operators (see Table 6).

Kushman et al. (2014) introduce a general method
for solving algebra problems. This work can align a
word problem to a system of equations with one or
two unknowns. They learn a mapping from word
problems to equation templates using global and lo-
cal features from the problem text. However, the
large space of equation templates makes it challeng-
ing for this model to learn to find the best equation
directly, as a sufficiently similar template may not
have been observed during training. Instead, our
method maps word problems to equation trees, tak-
ing advantage of a richer representation of quanti-
fied nouns and their properties, as well as the recur-
sive nature of equation trees. These allow ALGES

to use a bottom-up approach to learn the correspon-
dence between spans of texts and arithmetic oper-
ators (corresponding to intermediate nodes in the
tree). ALGES then scores equations using global
structure of the problem to produce the final result.

Our work is also related to research in using
ILP to enforce global constraints in NLP appli-

586

cations (Roth and Yih, 2004). Most previous
work (Srikumar and Roth, 2011; Goldwasser and
Roth, 2011; Berant et al., 2014; Liu et al., 2015) uti-
lizes ILP as an inference procedure to find the best
global prediction over initially trained local classi-
fiers. Similarly, we use ILP to enforce global and
domain specific constraints. We, however, use ILP
to form candidate equations which are then used to
generate training data for our classifiers. Our work
is also related to parser re-ranking (Collins, 2005;
Ge and Mooney, 2005), where a re-ranker model at-
tempts to improve the output of an existing proba-
bilistic parser. Similarly, the global equation model
designed in ALGES attempts to re-rank equations
based on global problem structure.

3 Setup and Problem Definition

Given numeric quantities V and an unknown x
whose value is the answer we seek, an equation
over V and x is any valid mathematical expression
formed by combining elements of V ∪{x} using bi-
nary operators from O = {+,−, ∗, /,=} such that
x appears exactly once. When each element of V
appears at most once in the equation, it may natu-
rally be represented as an equation tree where each
operator is a node with edges to its two operands.2

T denotes the set of all equation trees over V and x.

Problem Formulation. We address the problem
of solving grade-school algebra word problems that
map to single equations. Solving such a word prob-
lem w amounts to selecting an equation tree t repre-
senting the mathematical computation implicit in w.
Figure 1 shows an example of w with quantities un-
derlined, and the corresponding tree t. Formally, we
use a joint probability distribution p(t, w) that de-
fines how “well” an equation tree t ∈ T captures the
mathematical computation expressed in w. Given
a word problem w as input, our goal is to compute
t̃ = argmaxt∈T p(t|w).

An exhaustive enumeration over T quickly be-
comes impractical as problem complexity increases
and n = |V ∪ {x}| grows. Specifically, |T | >
h(n) = n! (n−1)! (n−1) 2n−4, h(4) = 432, h(6) >
1.7M,h(8) > 22B, etc. This vast search space
makes it challenging for a discriminative model to

2Problems involving simultaneous equations require com-
bining multiple equation trees, one per equation.

375− (7* x) = 4
375= (7* x)+ 4
375= (x*7)+ 4

	
 3.	
 Train	
 local	
 model	
 (sec(on	
 7.1)	

On	
 Monday,	
 375	
 students	
 went	
 on	
 a	
 trip	
 to	
 the	
 zoo.	
 All	
 7	
 buses	
 were	
 filled	

and	
 4	
 students	
 had	
 to	
 travel	
 in	
 cars.	
 	
 How	
 many	
 students	
 were	
 in	
 each	
 bus	
 ?	

Qnt: 375

Ent: Student

Qnt: 7

Ent: Bus

Qnt: 4

Ent: Student

Qnt: x

Ent: Student

Ctr: Bus

1.	
 Ground	
 text	
 w	
 into	
 base	
 Qsets	
 (sec(on	
 5)	

:	
 subset	
 of	
 T(w)	
 yielding	
 correct	
 solu(on	

375s	
 *s	

-s	
 4s	

7b	
 xs	

=	

375s	

=	

+s	

*s	
 4s	

7b	
 xs	

375s	
 +s	

-s	
 4s	

=	

7b	
 xs	

(7b, xs)
(375s,combine(7b, xs))
(7b, xs)
(combine(7b, xs), 4s)

2.	
 Use	
 ILP	
 to	
 generate	
 M	
 equa(on	
 trees	
 T(w)	
 (Sec(on	
 6)	

	
 	
 	
 4.	
 Train	
 global	
 model	
 (sec(on	
 7.2)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :	
 problem-­‐tree	
 pairs	

375+ (7* x) = 4
375= (7 / x)+ 4
375− (x + 7) = 4

Trlocal Trglobal

Tl (w)

:	
 operator	
 nodes	
 in	
 Tl (w)

T (w) \ Tl (w)

Training	
 example	
 Label	

*
−

*
+

Posi>ve	
 examples	

(from	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	

Nega>ve	
 examples	

(from	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 Tl (w) T (w) \ Tl (w)

Figure 2: An overview of the process of learning for a
word problem and its Qsets.

learn to find t̃ directly, as a sufficiently similar tree
may not have been observed during training. In-
stead, our method first generates syntactically valid
equation trees, and then uses a bottom-up approach
to score equations with a local model trained to map
spans of text to math operators, and a global model
trained for coherence of the entire equation w.r.t.
global problem text structure.

4 Overview of the Approach

Figure 2 gives an overview of our method, also
detailed in Figure 3. In order to build equation
trees, we use a compact representation for each node
called a Quantified Set or Qset to model natural lan-
guage text quantities and their properties (e.g., ‘375
students’ in ‘7 buses’). Qsets are used for tracking
and combining quantities when learning the corre-
spondence between equation trees and text.

Definition 1. Given a math word problem w, let S
be the set of all possible spans of text in w, φ denote
the empty span, and Sφ = S ∪ {φ}. A Qset for w is
either a base Qset or a compound Qset. A base Qset
is a tuple (ent, qnt, adj, loc, vrb, syn, ctr) with:
• ent ∈ S: entity or quantity noun (e.g., ‘student’);
• qnt ∈ R ∪ {x}: number or quantity (e.g., 4 or x);

587

Learning (word problems W , corresponding solutions L):
1. For every problem-solution pair (wi, `i) with wi ∈W, `i ∈ L

(a) S ← Base Qsets obtained by Grounding text wi and Reordering the resulting Qsets (Section 5)
(b) Ti ← Top M type-consistent equation tree candidates generated by ILP(wi) (Section 6)
(c) T`i ← Subset of Ti that yields the correct numerical solution `i
(d) Add to Tr local features 〈s1, s2〉 with label op for each operator op combining Qsets s1, s2 in trees in T`i
(e) Add to Trglobal features 〈w, t〉 labeled positive for each t ∈ T`i and labeled negative for each t ∈ T \ T`i

2. Llocal ← Train a local Qset relationship model on Tr local (Section 7.1)
3. Gglobal ← Train a global equation model on Trglobal (Section 7.2)
4. Output local and global models (Llocal,Gglobal)

Inference (word problem w, local set relation model Llocal , global equation model Gglobal):
1. S ← Base Qsets obtained by Grounding text wi and Reordering the resulting Qsets (Section 5)
2. T ← Top M type-consistent equation tree candidates generated by ILP(w) (Section 6)
3. t∗ ← argmaxti∈T

(∏
tj∈t Llocal(tj |w)

)
× Gglobal(t|w), scoring each tree ti ∈ T based on Equation 1

4. `← Numeric solution to w obtained by solving equation tree t∗ for the unknown
5. Output (t∗, `)

Figure 3: Overview of our method for solving algebraic word problems.

• adj ⊆ Sφ: adjectives for ent in w;
• loc ∈ Sφ: location of ent (e.g., ‘in the drawer’);
• vrb ∈ Sφ: governing verb for ent (e.g., ‘fill’);
• syn: syntactic and positional information for ent

(e.g., ‘buses’ is in subject position) ;
• ctr ⊆ Sφ: containers of ent (e.g., ‘Bus’ is a con-

tainer for the ‘students’ Qset).
Properties being φ indicates these optional proper-
ties are unspecified. A compound Qset is formed by
combining two Qsets with a non-equality binary op-
erator as discussed in section 5.

Qsets can be further combined with the equality
operator to yield a semantically augmented equation
tree.3 The example in Figure 2 has four base Qsets
extracted from problem text. Each possible equation
tree corresponds to a different recursive combination
of these four Qsets.

Given w, ALGES first extracts a list of n base
Qsets S = {s1, . . . , sn} (Section 5). It then uses
an ILP-based optimization method to combine ex-
tracted Qsets into a list of type-consistent candidate
equation trees (Section 6). Finally, ALGES uses dis-
criminative models to score each candidate equation,
using both local and global features (Section 7).

Specifically, the recursive nature of our represen-
tation allows us to decompose the likelihood func-
tion p(t, w) into local scoring functions for each in-

3Inspired by Semantically Augmented Parse Trees (Ge and
Mooney, 2005) adapted to equational logic.

ternal node of t followed by scoring the root node:

p(t|w) ∝


∏

tj∈t
Llocal (tj |w)


× Gglobal (t|w) (1)

where the local functionLlocal(tj |w) scores the like-
lihood of the subtree tj , modeling pairwise Qset re-
lationships, while the global function Gglobal(t|w)
scores the likelihood of the root of t, modeling the
equation in its entirety.

Learning. ALGES learns in a weakly supervised
fashion, using word problems wi and only their cor-
rect answer `i (not the corresponding equation tree)
as training data {(wi, `i)}i∈{1,...,N}. We ground
each wi into ordered Qsets and generate a list of
type-consistent candidate training equations T`i that
yield the correct answer `i.

We build a local discriminative model Llocal to
score the likelihood that a math operator op ∈ O
can correctly combine two Qsets s1 and s2 based on
their semantics and intertextual relationships. For
example, in Figure 2 this model learns that ∗ has a
high likelihood score for ‘7 buses’ and ‘x students’.
The training data consists of feature vectors 〈s1, s2〉
labeled with op, derived from the equation trees that
yield the correct solution.

We also build a global discriminative model that
scores equation trees based on the global problem
structure: Gglobal = ψᵀfglobal (w, t) where fglobal

588

represents global features of w and t, and φ are pa-
rameters to be learned. The training data consists of
feature vectors 〈w, t〉 for equation trees that yield the
correct solution as positive examples, and the rest as
negatives (Figure 2). The details of learning and in-
ference steps are described in Section 7.

5 Grounding and Combining Qsets

We discuss how word problem text is grounded into
an ordered list of Qsets. A Qset is a compact rep-
resentation of the properties of a quantity as de-
scribed in a single sentence. The use of Qsets facil-
itates the building of semantically augmented equa-
tion trees. Additionally, by tracking certain proper-
ties of text quantities, ALGES can resolve pronomi-
nal references or elided nouns to properties of previ-
ous Qsets. It can also combine information about
quantities referenced in different sentences into a
single semantic structure for further use.
Grounding. ALGES translates the text of the prob-
lem w into interrelated base Qsets {s1, . . . , sn},
each associated with a quantity in the problem text
w. The properties of each Qset (Definition 1) are ex-
tracted from the dependency parse relations present
in the sentence where the quantity is referred to ac-
cording to the rules described in Table 1.

Additionally, ALGES assigns a single target Qset
sx corresponding to the question sentence. The
properties of the target Qset are also extracted ac-
cording to the rules of the Table 1. In particular, the
qnt property is set to unknown, the ent is set to the
noun appearing after the words what, many or much
in the target sentence, and the other properties are
extracted as listed in Table 1.

Reordering. In order to reduce the space of possible
equation trees, ALGES reorders Qsets {s1, . . . , sn}
according to semantic and textual information and
enforces a constraint that Qsets can only combine
with adjacent Qsets in the equation tree. In Fig-
ure 2, the target Qset corresponding to the unknown
(x ‘students’) is moved from its textual location at
the end of the problem and placed adjacent to the
Qset with entity ‘buses’. This move is triggered by
the relationship between the target entity ‘student’
and its container ‘bus’ that is quantified by each in
the last sentence. In addition to the container match
rule, we employ three other rules to move the target

For each quantity mentioned in the text, properties
(qnt, ent, ctr, adj, vrb, loc) of the corresponding Qset
are extracted as follows:
1. qnt (quantity) is a numerical value or determiner

found in the problem text, or a variable.
2. ent (entity) is a noun related to the qnt in the depen-

dency parse tree. If qnt is a numerical value, ent is
the noun related by the num, number, or prep of rela-
tions. If qnt is a determiner, ent is the noun related
via the det relation. When such a noun does not exist
due to parse failure or pragmatic recoverability, ent
is the noun that is closest to qnt in the same sentence
or the ent associated with the most recent Qset.

3. ctr (container) is the subject of the verb govern-
ing ent, except in two cases: when this subject is
a pronominal reference, the ctr is set to the ctr of
the closest previous Qset; if ent is related to another
Qset whose qnt is one of each, every, a, an, per, or
one, ctr is set to the ent of that Qset.

4. adj (adjectives) is a list of adjectives related to ent
by the amod relation.

5. vrb (verb) is a governing verb, either related to ent
by nsubj or dobj

6. loc (location) is a noun related to ent by prep on,
prep in, or prep at relations.

Table 1: The process of forming a single Qset.

Qset as described in Table 2.4

Combining. Two Qsets and an arithmetic operator
can be combined via the combine function to form
a third Qset, alternately referred to as a compound.
Because of this, we can represent intermediate nodes
in the equation tree as Qsets themselves. The recur-
sive combination of Qsets allows us to effectively
decompose equation trees into a collection of local
operations over identical abstractions. This enables
learning features of Qsets and text that indicate par-
ticular operations from both leaf and intermediate
nodes. The mechanics of c ← combine(a, b, op)
are detailed below.

For op = +, the properties of either Qset a or
b suffice to define c. ALGES always forms c using
the properties of b in these situations. For op = −,
the properties of the left operand a define the resul-
tant set, as evidenced by the subtraction operations
present in the first problem in Table 9. To determine

4These reordering rules are intentionally minimal, but do
provide some gain over both preserving the text ordering of
quantities or setting ordering as a soft constraint. See Table 7.

589

1. Move Qset si to immediately after Qset sj if the con-
tainer of si is the entity of sj and is quantified by
each.

2. Move target Qset to the front of the list if the ques-
tion statement includes keywords start or begin.

3. Move target Qset to the end of the list if the question
statement includes keywords left, remain, and finish.

4. Move target Qset to the textual location of an inter-
mediate reference with the same ent if its num prop-
erty is the determiner some.

Table 2: Rules for reordering Qsets.

the stickers in Luke’s possession, we need to track
stickers related to the left Qset with the verb ‘got’.

For op = ∗, the Qset relationship is captured
by the container and entity properties: the one
whose properties preserve after multiplication has
the other’s entity as its container. In Figure 2, the
‘bus’ Qset is the container of ‘students’. When these
are combined with the ∗ operator, the result is of en-
tity type ‘student’. For op = /, we use the prop-
erties of the left operand to encourage a distinction
between division and multiplication.

6 Generating Equation Trees with ILP

We use an ILP optimization model to generate equa-
tion trees involving n base Qsets. These equation
trees are used for both learning and inference steps.
ALGES generates an ordered list of M of the most
desirable candidate equations for a given word prob-
lem w using an ILP, which models global consider-
ations such as type consistency and appropriate low
expression complexity. To facilitate generation of
equation trees, we represent them in parenthesis-free
postfix or reverse Polish notation, where a binary op-
erator immediately follows the two operands it op-
erates on (e.g., abc+∗x=).

Given a word problem w with n base Qsets
(cf. Table 3 for notation), we build an optimization
model ILP(w) over the space of postfix equations
E = e1e2 . . . eL of length L involving k numeric
constants, k′ = n − k unknowns, r possible binary
operators, and q “types” of Qsets, where type cor-
responds to the entity property of Qsets and deter-
mines which binary relationships are permitted be-
tween two given Qsets. For single variable equations
over binary operators O, k′ = 1, r = |O| = 5, and
L = 2n − 1. For brevity, define m = n + r and let

[j] denote {1, . . . , j}. Expression E can be evalu-
ated by considering e1, e2, . . . , eL in order, pushing
non-operator symbols on to a stack σ, and, for op-
erator symbols, popping the top two elements of σ,
applying the operator to them, and pushing the result
back on to σ. The stack depth of the ei is the stack
size after ei has been processed this way.

INPUT

w input math word problem
n number of base Qsets
k number of numeric constants
k′ number of unknowns (1 for single-var. eqns.)
r number of binary operators (r = |O| = 5)
m number of possible symbols (n+ r)

typej type of j-th base Qset
M desired number of candidate equation trees
L desired length of postfix equations (2n− 1)

OUTPUT

E postfix equation to be generated
ei i-th element of E; i ∈ [L]

VARIABLES for i ∈ [L]
xi main ILP variable for i-th symbol of E
ci indicator variable: ei is a numeric constant
ui indicator variable: ei is an unknown
oi indicator variable: ei is an operator
di postfix stack depth of ei; di ∈ [L]
ti type of ei (corresponds to Qset entity); ti ∈ [q]

Table 3: ILP notation for candidate equations model

Variables. Integer variables x1, x2, . . . , xL encode
which symbol each ei refers to. Their domain,
[m], represents the k numeric constants in the same
order as their respective Qsets, followed by the
k′ unknowns, and finally operators in the order
+,−, ∗, /,=. Binary variables ci, ui, and oi indicate
whether ei is a numeric constant, unknown, or oper-
ator, resp. Variables di with domain [L] equal the
postfix stack depth of ei. Finally, variables ti with
domain [q] indicate the type of ei. For j ∈ [n] , i.e.,
for the k constants and k′ unknowns, typej ∈ [q]
denotes the respective Qset entity. Uncertainty in
object types may be incorporated easily by treating
typej as a (potentially weighted) subset of [q].

Constraints and Objective Function. Constraints
in ILP(w) include syntactic validity, type consis-
tency, and domain specific simplicity considera-
tions. We describe them briefly here, leaving details
to the Appendix. The objective function minimizes
the sum of the weights of violated soft constraints.

590

Below, (H) denotes hard constraints, (W) weighted
soft constraints, and (P) post-processing steps.

Definitional Constraints (H): Constraints over in-
dicator variables ci, ui, and oi ensure they repre-
sent their intended meaning, including the invariant
ci + ui + oi = 1. For stack depth variables, we add
d1 = 1 and di = di−1 − 2oi + 1 for i > 1.

Syntactic Validity (H): Validity of the postfix ex-
pression is enforced easily through constraints o1 =
0 and dL = 1. In addition, we add xL = m and
xi < m for i < L to ensure equality occurs exactly
once and as the top-level operator.

Operand Access (H): The second operand of an
operator symbol ei is always ei−1. Its first operand,
however, is defined instead by the stack-based eval-
uation process. ILP(w) encodes it using an alterna-
tive characterization: the first operand of ei is ej iff
j ≤ i−2 and j is the largest index such that di = dj .

Type Consistency (W): Suppose T1 and T2 are the
types of the two operands of an operator o, whose
type is To. Addition and subtraction preserve the
type of their operands, i.e., if o is + or −, then To =
T1 = T2. Multiplication inherits the type of one
of its operands, and division inherits the type of its
first operand. In both cases, the two operands must
be of different types. Formally, if o is ∗, then To ∈
{T1, T2} and T1 6= T2; if o is /, then To = T1 6= T2.

Domain Considerations (H,W): We add a few do-
main specific constraints based on patterns observed
in a small subset of the questions. These include an
upper bound on the stack depth, which helps avoid
overly complex expressions unsuitable for grade-
school algebra, and reducing redundancy by, e.g.,
disallowing the numeric constant 0 to be an operand
of + or − or the second operand of /.

Symmetry Breaking (H,W): If a commutative op-
erator is preceded by two numeric constants (e.g.,
ab+), we require the constants to respect their Qset
ordering. Every other pair of constants that disre-
spects its Qset ordering incurs a small penalty.

Negative and Fractional Answers (P): Rather than
imposing non-negativity as a complex constraint in
ILP(w), we filter out candidate expressions yielding
a negative answer as a post-processing step. Sim-
ilarly, when all numeric constants are integers, we
filter out expressions yielding a fractional answer,
again based on typical questions in our datasets.

7 Learning

Our goal is to learn a scoring function that identifies
the best equation tree t∗ corresponding to an unseen
word problem w. Since our dataset consists only
of problem-solution pairs {(wi, `i)}i=1,...,N , train-
ing our scoring models requires producing equa-
tion trees matching `i. For every training in-
stance (wi, `i), we use ILP(wi) to generateM type-
consistent equation tree candidates Ti. To train our
local model (section 7.1), we filter out trees from
Ti that do not evaluate to `i, extract all (s1, s2, op)
triples from the remaining trees, and use feature vec-
tors capturing (s1, s2) and labeled with op as train-
ing data (see Figure 2). For the global model, we use
for training data a subset of Ti with an equal number
of correct and incorrect equation trees (section 7.2).
Once trained, we use Equation 1 to combine these
models to compute a score for each candidate equa-
tion tree generated for an unseen word problem at
inference time (see Figure 3).

7.1 Local Qset Relationship Model

We train a local model of a probability distribu-
tion over the math operators that may be used to
combine a pair of Qsets. The idea is to learn the
correspondence between spans of texts and math op-
erators by examining such texts and the Qsets of the
involved operands. Given Qsets s1 and s2, the lo-
cal scoring function scores the probability of each
op ∈ {+,−, ∗, /}, i.e., Llocal = θᵀflocal(s1, s2)
where flocal is a feature vector for s1 and s2. Note
that either Qset may be a compound (the result of a
combine procedure). The goal is to learn parameters
θ by maximizing the likelihood of the operators be-
tween every two Qsets that we observe in the train-
ing data. We model this as a multi-class SVM with
an RBF kernel.

Features. Given the richness of the textual possi-
bilities for indicating a math operation, the features
are designed over semantic and intertextual relation-
ships between Qsets, as well as domain-specific lex-
ical features. The feature vector includes three main
feature categories (Table 4).

First, single set features include syntactic and po-
sitional features of individual Qsets. For example,
they include indicator features for whether elements
of a short lexicon of math-specific terms such as

591

1. Single Qset Features (repeated for B)
• what argument of its governing verb is A?
• is A a subset of another set?
• is A a compound?
• math keywords found in context of A
• verb Lin distance from known verb categories (B only)

2. Relational features between Qsets A and B
• entity match
• adjective overlap
• location match
• distance in text
• Lin similarity between verbs governing A and B
• is one a subtype of the other?
• does one contain the other?

3. Target Quantity features
• A/B is target Qset
• A/B entity matches target entity
• math keywords in target context

4. Root node features
• # of ILP constraints violated by equation
• Scores of left and right subtrees of root

Figure 4: Features used for local and global models, for
left Qset A and right Qset B

‘add’ and ‘times’ appear in the vicinity of the set
reference in the text. Also, following Hosseini et
al. (2014), we include a vector that captures the dis-
tance between the verbs associated with each Qset
and a small collection of verbs found to be useful
in categorizing arithmetic operations in that work,
based upon their Lin Similarity (Lin, 1998).

Second, relationships between Qsets are de-
scribed w.r.t. various Qset properties described in
section 4. These include binary features like whether
one Qset’s container property matches the other
Qset’s entity (a strong indicator of multiplication), or
the distance between the verbs associated with each
set based upon their Lin Similarity.

Third, target quantity features check the matching
between the target Qset and the current Qset as well
as math keywords in the target sentence.

7.2 Global Equation Model

We also train a global model that scores equation
trees based on the global structure of the tree and
the problem text. The global model scores the com-
patibility of the tree with the soft constraints intro-
duced in Section 6 as well as its correspondence with
the problem text. We use a discriminative model:
Gglobal = ψᵀfglobal(w, t) where fglobal are the fea-

tures capturing trees and their correspondences with
the problem text. We train a global classifier to relate
these features through parameters ψ.

Features fglobal are explained in Table 4. They
include the number of violated soft constraints in the
ILP, the probabilities of the left and right subtrees of
the root as provided by the local model, and global
lexical features. Additionally, the three local feature
sets are applied to the left and right Qsets.

7.3 Inference

For an unseen problem w, we first extract base Qsets
from w. The goal is to find the most likely equation
tree with minimum violation of hard and soft con-
straints. Using ILP(w) over these Qsets, we gener-
ate M candidate equation trees ordered by the sum
of the weights of the constraints they violate. We
compute the likelihood score given by Eqn. (1) for
each candidate equation tree t, use this as an esti-
mate of the likelihood p(t|w), and return the can-
didate tree t∗ with the highest score. In Eqn. (1),
the score of t is the product of the likelihood scores
given by the local classifier for each operand in t and
the Qsets over which it operates, multiplied by the
likelihood score given by the global classifier for the
correctness of t. If the resulting equation provides
the correct answer for w, we consider inference suc-
cessful.

8 Experiments

This section reports on three experiments: a com-
parison of ALGES with Kushman et al. (2014)’s
template-based method, a comparison of ALGES

with Hosseini et al. (2014)’s verb-categorization
methods, and ablation studies. The experiments are
complicated by the fact that ALGES is limited to sin-
gle equations, and the verb categorization method
can only handle single-equations without multipli-
cation or division. Our main experimental result
is to show an improvement over the template-based
method on single-equation algebra word problems.
We further show that the template-based method de-
pends on lexical and template overlap between its
training and test sets. When these overlaps are re-
duced, the method’s accuracy drops sharply. In con-
trast, ALGES is quite robust to changes in lexical and
template overlap (see Tables 4 and 5).

592

Experimental Setup. We use the Stanford De-
pendency Parser in CoreNLP 3.4 (De Marneffe et
al., 2006) to obtain syntactic information used for
grounding and feature computation. For the ILP
model, we use CPLEX 12.6.1 (IBM ILOG, 2014)
to generate the top M = 100 equation trees with
a maximum stack depth of 10, aborting exploration
upon hitting 10K feasible solutions or 30 seconds.5

We use Python’s SymPy package for solving equa-
tions for the unknown. For the local and global mod-
els, we use the LIBSVM package to train SVM clas-
sifiers (Chang and Lin, 2011) with RBF kernels that
return likelihood estimates as the score.
Dataset. This work deals with grade-school alge-
bra word problems that map to single equations with
varying length. Every equation may involve multi-
ple math operations including multiplication, divi-
sion, subtraction, and addition over non-negative ra-
tional numbers and one variable. The data is gath-
ered from http://math-aids.com, http:
//k5learning.com, and http://ixl.com
websites and a subset of the data from Kushman et
al. (2014) that maps word problems to single equa-
tions. We refer to this dataset as SINGLEEQ (see
Table 9 for example problems). The SINGLEEQ

dataset consists of 508 problems, 1,117 sentences,
and 15,292 words.
Baselines. We compare our method with the
template-based method (Kushman et al., 2014) and
the verb-categorization method (Hosseini et al.,
2014). For the template-based method, we use
the fully supervised setting, providing equations for
each training example.

8.1 Comparison with Template-based Method

We first compare ALGES with the template-based
method over SINGLEEQ. We evaluate both systems
on the number of correct answers provided and re-
port the average of a 5-fold cross validation. ALGES

achieves 72% accuracy whereas the template-based
method achieves 67% accuracy, a 15% relative re-
duction in errors (first columns in Tables 4 and 5).
This result is statistically significant with a p-value
of 0.018 under a paired t-test.

5These hyper-parameters were chosen based on experimen-
tation with a small subset of the questions. A more systematic
choice may improve overall performance.

Template Overlap 10.4 7.7 6.3 2.1
ALGES 0.72 0.66 0.66 0.63
Template-based 0.67 0.60 0.46 0.26

Error reduction 15% 15% 33% 50%

Table 4: Decreasing template overlap: Accuracy of
ALGES versus the template-based method on single-
equation algebra word problems. The first column corre-
sponds to the SINGLEEQ dataset, and the other columns
are for subsets with decreasing template overlap.

Lexical Overlap 4.3 3.3 2.6 2.5
ALGES 0.72 0.66 0.66 0.63
Template-based 0.67 0.60 0.46 0.26

Error reduction 15% 15% 33% 50%

Table 5: Decreasing lexical overlap: Accuracy of ALGES
versus the template-based method on single-equation al-
gebra word problems. The first column corresponds to
the SINGLEEQ dataset, and the other columns are for sub-
sets with decreasing lexical overlap.

Lexical Overlap. By further analyzing SINGLEEQ,
we noted that there is substantial overlap between
the content words (common noun, adjective, adverb,
and verb lemmas) in different problems. For ex-
ample, many problems ask for the total number of
seashells collected by two people on a beach, with
only the names of the people and the number of
seashells that each found changed. To analyze the
effect of this repetition on the learning methods eval-
uated, we define a lexical overlap parameter as the
total number of content words in a dataset divided
by the number of unique content words. The two
“seashell problems” have a high lexical overlap.

Template Overlap. We also noted that many prob-
lems in SINGLEEQ can be solved using the same
template, or equation tree structure above the leaf
nodes. For example, a problem which corresponds
to the equation (9 ∗ 3) + 7 and a different problem
that maps to (4 ∗ 5) + 2 share the same template.
We introduce a template overlap parameter defined
as the average number of problems with the same
template in a dataset.

Results. In our data, template overlap and lexi-
cal overlap co-vary. To demonstrate the brittleness
of the template-based method simply, we picked
three subsets of SINGLEEQ where both parame-

593

http://math-aids.com
http://k5learning.com
http://k5learning.com
http://ixl.com

ters were substantially lower than in SINGLEEQ and
recorded the relative performance of the template-
based method and of ALGES in Tables 4 and 5. The
data used in both tables is the same, but the ta-
bles are separated for readability. The first column
reports results for the SINGLEEQ dataset, and the
other columns report results for the subsets with de-
creasing template and lexical overlaps. The subsets
consist of 254, 127, and 63 questions respectively.
We see that as the lexical overlap drops from 4.3 to
2.5 and as the template overlap drops from 10.4 to
2.1, the relative advantage of ALGES over the tem-
plate methods goes up from 15% to 50%.

While the template-based method is able to solve
a wider range of problems than ALGES, its accu-
racy falls off significantly when faced with fewer re-
peated templates or less spurious lexical overlap be-
tween problems (from 0.67 to 0.26). The accuracy
of ALGES also declines from 0.72 to 0.63 across
the table, which needs to be investigated further. In
future work, we also need to investigate additional
settings for the two parameters and to attempt to
“break” their co-variance. Nevertheless, we have
uncovered an important brittleness in the template-
based method and have shown that ALGES is sub-
stantially more robust.

8.2 Comparison with Verb-Categorization

The verb-categorization method learns to solve ad-
dition and subtraction problems, while ALGES is ca-
pable of solving multiplication and division prob-
lems as well. We compare against their method
over our dataset as well as the dataset provided by
that work, here referred to as ADDSUB. ADDSUB

consists of addition and subtraction word problems
with the possibility of irrelevant distractor quanti-
ties in the problem text. The verb categorization
method uses rules for handling irrelevant informa-
tion. An example rule is to remove a Qset whose ad-
jective is not consistent with the adjective of the tar-
get Qset. We augment ALGES with rules introduced
in this method for handling irrelevant information in
ADDSUB.

Results, reported in Table 6, show comparable
accuracy between both methods on Hosseini et al.
(2014) data. Our method shows a significant im-
provement versus theirs on the SINGLEEQ dataset
due to the presence of multiplication and division

operators, as 40% of the problems in our dataset in-
clude these operators.

Method ADDSUB SINGLEEQ

ALGES 0.77 0.72
Verb-categorization 0.78 0.48

Error reduction - 53%

Table 6: Accuracy of ALGES compared to verb catego-
rization method.

8.3 Ablation Study

In order to determine the effect of various compo-
nents of our system on its overall performance, we
perform the following ablations:

No Local Model: Here, we test our method absent
the local information (Section 7.1). That is, we gen-
erate equations using all ILP constraints, and score
trees solely on information provided by the global
model: p(t|w) ∝ Gglobal(w, t).

No Global Model: Here, we test our method with-
out the global information (Section 7.2). That is, we
generate equations using only the hard constraints of
ILP and score trees solely on information provided
by the local model: p(t|w) ∝∏ti∈t Llocal(w, ti).

No Qset Reordering: We test our method without
the deterministic Qset reordering rules outlined in
Section 5. Instead, we allow the ILP to choose the
top M equations regardless of order.

Results in Table 7 show that each component of
ALGES contributes to its overall performance on the
SINGLEEQ corpus. We find that both the Global and
Local models contribute significantly to the overall
system, demonstrating the significance of a bottom-
up approach to building equation trees.

Importance of Features. We also evaluate the ac-
curacy of the local Qset relationship model (Sec-
tion 7.1) on the task of predicting the correct op-
erator for a pair of Qsets 〈s1, s2〉 over the SIN-
GLEEQ dataset using a 5-fold cross validation. Ta-
ble 8 shows the value of each feature group used in
the local classifier, and thus the importance of details
of the Qset representation.

594

Method Accuracy
ALGES 0.72

No Local Model 0.50
No Global Model 0.49
No Qset Reordering 0.68

Table 7: Ablation study of each component of ALGES.

Method Accuracy
Local classifier: Full Feature set 0.84

No Single Set Features 0.81
No Set Relation Features 0.75
No Target Features 0.79

Table 8: Accuracy of local classifier in predicting the cor-
rect operator between two Qsets and ablating feature sets.

8.4 Qualitative Examples and Error Analysis.
Table 9 shows some examples of problems solved by
our method. We analyzed 72 errors made by ALGES

on the SINGLEEQ dataset. Table 10 summarizes five
major categories of errors.

Problems and equations
Luke had 20 stickers. He bought 12 stickers from a store in
the mall and got 20 stickers for his birthday. Then Luke gave
5 of the stickers to his sister and used 8 to decorate a greeting
card. How many stickers does Luke have left?

((20 + ((12 + 20)− 8))− 5) = x

Maggie bought 4 packs of red bouncy balls, 8 packs of yellow
bouncy balls, and 4 packs of green bouncy balls. There were
10 bouncy balls in each package. How many bouncy balls did
Maggie buy in all?

x = (((4 + 8) + 4) ∗ 10)
Sam had 79 dollars to spend on 9 books. After buying them
he had 16 dollars. How much did each book cost?

79 = ((9 ∗ x) + 16)

Fred loves trading cards. He bought 2 packs of football cards
for $2.73 each, a pack of Pokemon cards for $4.01, and a deck
of baseball cards for $8.95. How much did Fred spend on
cards? ((2 ∗ 2.73) + (4.01 + 8.95)) = x

Table 9: Examples of problems solved by ALGES to-
gether with the returned equation.

Parsing errors cause a wrong grounding into the
designed representation. For example, the parser
treats ‘vanilla’ as a noun modified by the number
‘19’, leading our system to treat ‘vanilla’ as the en-
tity of a Qset rather than ‘cupcake’. Despite the
improvements that come from ALGES, a portion of
errors are attributed to grounding and ordering is-
sues. For instance, the system fails to correctly dis-

Error type Example
Parsing
Issues
(12%)

Randy needs 53 cupcakes for a birthday party.
He already has 7 chocolate cupcakes and
19 vanilla cupcakes. How many more cup-
cakes should Randy buy?

Grounding
& Ordering
(19%)

There are 24 bicycles and 14 tricycles in the
storage at Danny’s apartment building. Each
bicycle has 2 wheels and each tricycle has
3 wheels. How many wheels are there in all?

Semantic
Limitation
(19%)

The sum of three consecutive even numbers is
162. What is the smallest of these numbers?

Lack of
Knowledge
(32%)

A restaurant sold 63 hamburgers last week.
How many hamburgers on average were sold
each day?

Inferring
quantities
(18%)

Sara, Keith, Benny, and Alyssa each have 96
baseball cards. How many dozen baseball
cards do they have in all?

Table 10: Examples of different error categories and rel-
ative frequencies. Sources of errors are underlined.

tinguish between the sets of wheels, and so does not
get the movement-triggering container relationships
right. Semantic limitations are another source of er-
rors. For example, ALGES does not model the se-
mantics of ‘three consecutive numbers’. The fourth
category refers to errors caused due to lack of world
knowledge (e.g., ‘week’ corresponds to ‘7 days’).
Finally, ALGES is not able to infer quantities when
they are not explicitly mentioned in the text. For ex-
ample, the number of people should be inferred by
counting the proper names in the problem.

9 Conclusion

In this work we have outlined a method for solv-
ing grade school algebra word problems. We have
empirically demonstrated the value of our approach
versus state-of-the-art word problem solving tech-
niques. Our method grounds quantity references,
utilizes type-consistency constraints to prune the
search space, learns which algebraic operators are
indicated by text, and ranks equations according to a
global objective function. ALGES is a hybrid of pre-
vious template-based and verb categorization state-
based methods for solving such problems. By learn-
ing correspondences between text and mathematical
operators, we extend the method of state updates
based on verb categories. By learning to re-rank
equation trees using a global likelihood model, we
extend the method of mapping word problems to

595

equation templates.
Different components of ALGES can be adapted

to other domains of language grounding that re-
quire cross-sentence reasoning. Future work in-
volves extending ALGES to solve higher grade math
word problems including simultaneous equations.
This can be accomplished by extending the vari-
able grounding step to allow multiple variables,
and training the global equation model to recog-
nize which quantities belong to which equation. The
code and data for ALGES are publicly available.

Acknowledgments: This research was supported
by the Allen Institute for AI (66-9175), Allen
Distinguished Investigator Award, and NSF (IIS-
1352249). We thank Regina Barzilay, Luke Zettle-
moyer, Aria Haghighi, Mark Hopkins, Ali Farhadi,
and the anonymous reviewers for their helpful com-
ments.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping in-
structions to actions. TACL, 1(1):49–62.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading comprehen-
sion. In EMNLP.

Antoine Bordes, Nicolas Usunier, and Jason Weston.
2010. Label ranking under ambiguous supervision for
learning semantic correspondences. In ICML, pages
103–110.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,
and Regina Barzilay. 2009. Reinforcement learning
for mapping instructions to actions. In ACL/AFNLP,
pages 82–90.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27.

David L. Chen, Joohyun Kim, and Raymond J. Mooney.
2010. Training a multilingual sportscaster: Using per-
ceptual context to learn language. JAIR, 37:397–435.

Michael Collins. 2005. Discriminative reranking for
natural language parsing. Computational Linguistics,
31(1):25–70.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D. Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Yansong Feng and Mirella Lapata. 2010. How many
words is a picture worth? automatic caption generation
for news images. In ACL, pages 1239–1249.

Ruifang Ge and Raymond J. Mooney. 2005. A statisti-
cal semantic parser that integrates syntax and seman-
tics. In Conference on Computational Natural Lan-
guage Learning, pages 9–16.

Ruifang Ge and Raymond J. Mooney. 2006. Discrimina-
tive reranking for semantic parsing. In ACL.

D. Goldwasser and D. Roth. 2011. Learning from natural
instructions. In IJCAI.

Hannaneh Hajishirzi, Julia Hockenmaier, Erik T.
Mueller, and Eyal Amir. 2011. Reasoning about
robocup soccer narratives. In UAI, pages 291–300.

Hannaneh Hajishirzi, Mohammad Rastegari, Ali Farhadi,
and Jessica K. Hodgins. 2012. Semantic understand-
ing of professional soccer commentaries. In UAI.

Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. 2015.
Learning knowledge graphs for question answering
through conversational dialog. In NAACL.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization. In
EMNLP, pages 523–533.

IBM ILOG. 2014. IBM ILOG CPLEX Optimization
Studio 12.6.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali
Farhadi. 2014. Multi-resolution language grounding
with weak supervision. In EMNLP.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In ACL, pages 271–281.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,
and Mark Steedman. 2010. Inducing probabilistic ccg
grammars from logical form with higher-order unifica-
tion. In EMNLP, pages 1223–1233.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less supervi-
sion. In ACL/AFNLP, pages 91–99.

Dekang Lin. 1998. An information-theoretic definition
of similarity. In ICML, volume 98, pages 296–304.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh,
and Noah A. Smith. 2015. Toward abstractive sum-
marization using semantic representations. In NAACL.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and
Dieter Fox. 2012. Learning to parse natural lan-
guage commands to a robot control system. In Proc. of
the 13th International Symposium on Experimental
Robotics (ISER), June.

Arindam Mitra and Chitta Baral. 2015. Learning to au-
tomatically solve logic grid puzzles. In EMNLP.

596

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Hwee Tou Ng and Ellen Riloff, ed-
itors, CoNLL, pages 1–8. Association for Computa-
tional Linguistics.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In EMNLP.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in ge-
ometry questions. In AAAI.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Et-
zioni, and Clint Malcolm. 2015. Solving geometry
problems: Combining text and diagram interpretation.
In EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving num-
ber word problems by semantic parsing and reasoning.
In EMNLP.

Vivek Srikumar and Dan Roth. 2011. A joint model
for extended semantic role labeling. In EMNLP, Edin-
burgh, Scotland.

Mark Yatskar, Lucy Vanderwende, and Luke Zettle-
moyer. 2014. See no evil, say no evil: Description
generation from densely labeled images. Lexical and
Computational Semantics (* SEM 2014), page 110.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic pro-
gramming. In AAAI, pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
UAI, pages 658–666.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quadratic
programming. In EMNLP.

Appendix: ILP Model Details

Figure 5 summarizes various constraints of our ILP
model for generating candidate equations. op1 idx

i is
an auxilary variable whose value, when xi is an op-
erator, is the index in the postfix expression of the
first operand of xi. If op1 idx

i = j, auxiliary vari-
ables op1 xi , op1

t
i, op1

o
i , and op1 ui mirror xj , tj , oj ,

and uj , respectively. se denotes the corresponding
constant or operator symbol e (e.g., ‘+’, ‘=’, ‘0’,
etc.) in the postfix expression being constructed. H
and W, as before, represent hard and weighted soft
constraints.

Definitional Constraints (H) :

ci = I(xi ≤ k), i ∈ [L]

oi = I(xi > n), i ∈ [L]

ci + ui + oi = 1, i ∈ [L]

d1 = 1; di = di−1 − 2oi + 1, 2 ≤ i ≤ L

op1 idx
i = max

j≤i−2
{j | dj = di}, 3 ≤ i ≤ L

I(op1 idx
i = j)⇒ I(op1x

i = xj), I(op1 t
i = tj),

I(op1 o
i = oj), I(op1u

i = uj), i, j ∈ [L]

I(xi = j)⇒ I(ti = typej), i ∈ [L], j ∈ [q]

o1 = 0; dL = 1, Postfix validity (H)

xL = m; xi < m, 1 ≤ i < L,Equation tree structure (H)

I(xi = xj) ≤ oi, 1 ≤ i < j < L, Single use of constants (H)

ci ⇒ I(xi < xj), 1 ≤ i < j < L, Perserve text ordering (W)
∑

i∈L
ui = 1, Single unknown (H)

Type consistency (W) :

I(xi ∈ {s+, s−})⇒ I(ti = ti−1 = op1 t
i), i ∈ [L]

I(xi = s∗)⇒ I(ti ∈ {ti−1, op1
t
i}), i ∈ [L]

I(xi = s/)⇒ I(ti = op1 t
i), i ∈ [L]

I(xi ∈ {s∗, s/})⇒ I(ti−1 6= op1t i), i ∈ [L]

Non-redundancy (H), Symmetry breaking (H) :

I(xi ∈ {s+, s−})⇒ I(xi−1 6= s0, op1
x
i 6= s0), i ∈ [L]

I(xi = s/ ⇒ I(xi−1 6∈ {s0, s1}), i ∈ [L]

I(xi ∈ {s+, s−}, ci−1 = ci−2 = 1)⇒
I(xi−2 < xi−1), 3 ≤ i ≤ L

Simplicity (H), Equality/Unknown first or last (W) :

di ≤ maxStackDepth, i ∈ [L]

op1 o
L + oL−1,≤ 1

uL−1 + I(u1 = 1, ∀i ∈ {2, . . . , L− 1} : di ≥ 2) ≥ 1

Equality next to unknown (W) :

I(xi = s=) ≤ ui−1 + op1u
i , 3 ≤ i ≤ L

Figure 5: ILP model for generating candidate equations

597

598

