
A Graph-based Lattice Dependency Parser
for Joint Morphological Segmentation and Syntactic Analysis

Wolfgang Seeker and Özlem Çetinoğlu
Institut für Maschinelle Sprachverarbeitung

University of Stuttgart
{seeker,ozlem}@ims.uni-stuttgart.de

Abstract

Space-delimited words in Turkish and He-
brew text can be further segmented into mean-
ingful units, but syntactic and semantic con-
text is necessary to predict segmentation.
At the same time, predicting correct syntac-
tic structures relies on correct segmentation.
We present a graph-based lattice dependency
parser that operates on morphological lattices
to represent different segmentations and mor-
phological analyses for a given input sentence.
The lattice parser predicts a dependency tree
over a path in the lattice and thus solves
the joint task of segmentation, morphological
analysis, and syntactic parsing. We conduct
experiments on the Turkish and the Hebrew
treebank and show that the joint model outper-
forms three state-of-the-art pipeline systems
on both data sets. Our work corroborates find-
ings from constituency lattice parsing for He-
brew and presents the first results for full lat-
tice parsing on Turkish.

1 Introduction

Linguistic theory has provided examples from many
different languages in which grammatical informa-
tion is expressed via case marking, morphological
agreement, or clitics. In these languages, configura-
tional information is less important than in English
since the words are overtly marked for their syntac-
tic relations to each other. Such morphologically
rich languages pose many new challenges to today’s
natural language processing technology, which has
often been developed for English.

One of the first challenges is the question on
how to represent morphologically rich languages
and what are the basic units of analysis (Tsarfaty
et al., 2010). The Turkish treebank (Oflazer et al.,
2003), for example, represents words as sequences
of inflectional groups, semantically coherent groups
of morphemes separated by derivational boundaries.
The treebank for Modern Hebrew (Sima’an et al.,
2001) chooses morphemes as the basic unit of rep-
resentation. A space-delimited word in the treebank
can consist of several morphemes that may belong
to independent syntactic contexts.

Both Turkish and Hebrew show high amounts of
ambiguity when it comes to the correct segmentation
of words into inflectional groups and morphemes,
respectively. Within a sentence, however, these am-
biguities can often be resolved by the syntactic and
semantic context in which these words appear.

A standard (dependency) parsing system de-
cides segmentation, morphological analysis (includ-
ing POS), and syntax one after the other in a pipeline
setup. While pipelines are fast and efficient, they
cannot model interaction between these different
levels of analysis, however. It has therefore been
argued that joint modeling of these three tasks is
more suitable to the problem (Tsarfaty, 2006). In
previous research, several transition-based parsers
have been proposed to model POS/morphological
tagging and parsing jointly (Hatori et al., 2011;
Bohnet and Nivre, 2012; Bohnet et al., 2013). Such
parsing systems have been further extended to also
solve the segmentation problem in Chinese (Ha-
tori et al., 2012; Li and Zhou, 2012; Zhang et al.,
2014). Transition-based parsers are attractive since

359

Transactions of the Association for Computational Linguistics, vol. 3, pp. 359–373, 2015. Action Editor: Joakim Nivre.
Submission batch: 4/2015; Published 6/2015.

c©2015 Association for Computational Linguistics. Distributed under a CC-BY-NC-SA 4.0 license.

they do not rely on global optimization and thus
deal well with the increased model complexity that
comes with joint modeling. Nonetheless, graph-
based models have been proposed as well, e.g. by Li
et al. (2011) for joint POS tagging and dependency
parsing. Their parsers model the joint problem di-
rectly at the cost of increased model complexity.

In this paper, we present a graph-based depen-
dency parser for lattice parsing that handles the in-
creased complexity by applying dual decomposi-
tion. The parser operates on morphological lat-
tices and predicts word segmentation, morphologi-
cal analysis, and dependency syntax jointly. It de-
composes the problem into several subproblems and
uses dual decomposition to find a common solution
(Koo et al., 2010; Martins et al., 2010). The sub-
problems are defined such that they can be solved ef-
ficiently and agreement is found in an iterative fash-
ion. Decomposing the problem thus keeps the com-
plexity of the joint parser on a tractable level.

We test the parser on the Turkish and the He-
brew treebank. The segmentation problem in these
languages can be tackled with the same approach
even though their underlying linguistic motivation is
quite different. In our experiments, the lattice de-
pendency parser outperforms three state-of-the-art
pipeline systems. Lattice parsing for Hebrew has
been thoroughly investigated in constituency pars-
ing (Cohen and Smith, 2007; Goldberg and Tsarfaty,
2008; Goldberg and Elhadad, 2013), demonstrating
the viability of joint modeling. To the best of our
knowledge, our work is the first to apply full lattice
parsing to the Turkish treebank.

We introduce the segmentation problem in Turk-
ish and Hebrew in Section 2 and present the lattice
parser in Section 3. Sections 4 and 5 describe the
experiments and their results and we discuss related
work in Section 6. We conclude with Section 7.

2 Word Segmentation in Turkish and
Hebrew

A lot of morphosyntactic information is overtly
marked on words in morphologically rich languages.
It is also common to express syntactic informa-
tion through derivation or composition. As a con-
sequence these words, orthographically written to-
gether, actually have word-internal syntactic struc-

tures. Moreover, word-external relations may de-
pend on the word-internal structures, e.g., a word
could be grammatically related to only parts of an-
other word instead of the whole.

For instance, in the Turkish sentence ekmek aldım,
each word has two analyses. ekmek means ‘bread’
or the nominal ‘planting’ which is derived from the
verb stem ek ‘plant’ with the nominalization suffix
mek. aldım has the meaning ‘I bought’ which de-
composes as al-dı-m ‘buy-Past-1sg’. It also means
‘I was red’, which is derived from the adjective al
‘red’, inflected for past tense, 1st person singular.

Depending on the selected morphological analy-
sis for each word, syntax and semantics of the sen-
tence change. When the first analysis is selected for
both words, the syntactic representation of the sen-
tence is given in Figure 1, which corresponds to the
meaning ‘I bought bread’. When the nominal ‘plant-
ing’ is selected for the first word, it is a grammatical
sentence albeit with an implausable meaning. When
the derivational analysis of the second word is se-
lected, regardless of the morphological analysis of
the first word, the sentence is ungrammatical due to
subject-verb agreement failure. Although all mor-
phological analyses for these two words are correct
in isolation, when they occur in the same syntactic
context only some combinations are grammatical.

ekmek aldım
Noun+Nom Verb+Past+1sg

OBJ

I bought bread.

Figure 1: Dependency representation for ekmek aldım.

This small example demonstrates that the syntac-
tic structure depends on the morphological disam-
biguation of the words. At the same time, it shows
that syntax can help pick the right morphological
analysis.

For a joint system to decide the morphological
and syntactic representation together, all possible
analyses must be available to the system. The pos-
sible morphological analyses of a word can be effi-
ciently represented in a lattice structure. The lattice
representation of the sentence in Figure 1 is given in
Figure 2, with double circles denoting word bound-

360

aries. A sentence lattice is the concatenation of its
word lattices. A morphological analysis of a word is
a full path from the initial state to the final state of
its lattice. Labels on the transitions are the surface
form and underlying morphological representation
of segments.1

1

2

3

4

5

ekmek /Noun+Nom

ek /Verb

mek /Inf+Noun+Nom

aldım/Verb+Past+1sg

al /Adj

dım/Verb+Past+1sg

Figure 2: A morphological lattice for ekmek aldım.

Lattices also capture well the segmentation of
words in Hebrew. Different from Turkish, Hebrew
segments can be syntactic units like determiners,
prepositions, or relativizers attached to stem seg-
ments. In an example given by Goldberg and Tsar-
faty (2008), the word hneim ‘the pleasant/made-
pleasant’ has three analyses corresponding to the lat-
tice in Figure 3.

1

2

3

hneim/VB

h/DT

neim/VB

neim/JJ

Figure 3: The lattice for hneim (Goldberg and Tsarfaty,
2008).

Both the Hebrew and the Turkish treebank anno-
tate dependencies between units smaller than words.
In the Turkish treebank, a space-delimited word is
segmented into one or more segments depending on
its morphological representation. The number of
segments is determined by the number of deriva-
tions. If it was derived n times, it is represented
as n+1 segments. The derivational boundaries are
part of the morphological representation. In the
Turkish dependency parsing literature (Eryiğit et al.,
2008; Çetinoğlu and Kuhn, 2013) these segments

1Surface forms on the transitions are given for convenience.
In the Turkish treebank, only final segments have surface forms
(of full words), the surface forms of non-final segments are rep-
resented as underscores.

are called inflectional groups (IGs). IGs consist of
one or more inflectional morphemes. The head of a
non-final IG is the IG to its right with a dependency
relation DERIV. The head of a final IG could be any
IG of another word.

The Hebrew treebank defines relations between
morphemes (Sima’an et al., 2001). Those mor-
phemes correspond to what is usually considered a
separate syntactic unit in English. In Hebrew script,
word classes like prepositions and conjunctions are
always written together with the following word.
Contrary to Turkish, syntactic heads of both non-
final and final segments can be internal or external
to the same space-delimited word.

For convenience, we will use token to refer to the
smallest unit of processing for the remainder of the
paper. It corresponds to IGs in Turkish and mor-
phemes in Hebrew. A transition in a morphological
lattice therefore represents one token. We will use
word to refer to space-delimited words.2 In stan-
dard parsing, these two terms usually coincide with
a token in a sentence being separated from the sur-
rounding ones by space.

3 Lattice Parsing

One can think of lattice parsing as two tasks that
the parser solves simultaneously: the parser needs
to find a path through the lattice and it needs to find
a parse tree. Importantly, the parser solves this task
under the condition that the parse tree and the path
agree with each other, i.e. the tokens that the parse
tree spans over must form the path through the lat-
tice. Decomposing the problem in this way defines
the three components for the parser.

Let x be an input lattice and T =
{ROOT, t1, t2, . . . , tn} be the set of tokens in
x. In what follows, we assume two different struc-
tures, lattices and dependency trees. Dependency
trees are represented as directed acyclic trees with
a special root node (ROOT), whereas lattices are
directed acyclic graphs with one defined start state
and one defined end state (see Figures 2 and 3). For
dependency trees, we will use the terms node and
arc to refer to the vertices and the edges between
the vertices, respectively. Tokens are represented as

2This is a technical definition of word and has no ambition
to make claims about the linguistic definition of a word.

361

nodes in the dependency tree. For lattices, we use
the terms state and transition to refer to the vertices
and their edges in the lattice. Tokens are represented
as transitions between states in the lattice.

Find The Path. A token bigram in a lattice x is
a pair of two transitions 〈t, t′〉, such that the target
state of t in x coincides with the source state of t′ in
x. A chain of overlapping bigrams that starts from
the initial state and ends in the final state forms a
path through the lattice. We represent the ROOT to-
ken as the first transition, i.e. a single transition that
leaves the initial state of the lattice.

Given a lattice x, we define the index set of to-
ken bigrams in the lattice to be S := { 〈t, t′〉 | t, t′ ∈
T, target(x, t) = source(x, t′) }. For later, we fur-
thermore define S|t := { 〈k, t〉 | 〈k, t〉 ∈ S, k ∈ T }
to be the set of bigrams that have t at the second
position. A consecutive path through the lattice is
defined as an indicator vector p := 〈ps〉s∈S where
ps = 1 means that bigram s is part of the path, oth-
erwise ps = 0. We define P as the set of all well-
formed paths, i.e. all paths that lead from the initial
to the final state.

We use a linear model that factors over bigrams.
Given a scoring function fP that assigns scores to
paths, the path with the highest score can be found
by

p̂ = argmax
p∈P

fP(p)

with fP(p) =
∑

s∈S
ps w · φSEG(s)

where φSEG is the feature extraction function for to-
ken bigrams. The highest-scoring path through the
lattice can be found with the Viterbi algorithm. We
use this bigram model later also as a standalone
disambiguator for morphological lattices to find the
highest-scoring path in a lattice.

Find The Tree. We define the index set of arcs in
a dependency tree as A := { 〈h, d, l〉 |h ∈ T, d ∈
T − {ROOT}, l ∈ L, h 6= d } with L being a set of
dependency relations. A dependency tree is defined
as an indicator vector y := 〈ya〉a∈A where ya = 1
means that arc a is in the parse, otherwise ya = 0.
We define Y to be the set of all well-formed depen-
dency trees.

We follow Koo et al. (2010) and assume an arc-
factored model (McDonald et al., 2005) to find the
highest-scoring parse. Given a scoring function fT

that assigns scores to parses, the problem of finding
the highest scoring parse is defined as

ŷ = argmax
y∈Y

fT(y)

with fT(y) =
∑

a∈A
ya w · φARC(a)

where φARC is the feature extraction function for sin-
gle arcs and w is the weight vector. We use the Chu-
Liu-Edmonds algorithm (CLE) to find the highest-
scoring parse (Chu and Liu, 1965; Edmonds, 1967).
Note that the algorithm includes all tokens of the lat-
tice into the spanning tree, not just some tokens on
some path. Chu-Liu-Edmonds furthermore enforces
the tree properties of the output, i.e. acyclicity and
exactly one head per token.

Agreement Constraints. To make the path and
the parse tree agree with each other, we introduce an
additional dependency relation NOREL into L. We
define a token that is attached to ROOT with rela-
tion NOREL to be not on the path through the lattice.
These arcs are not scored by the statistical model,
they simply serve as a means for CLE to mark to-
kens as not being part of the path by attaching them
to ROOT with this relation. The parser can predict
the NOREL label only on arcs attached to root.

We introduce two agreement constraints to ensure
that (i) all tokens not on the path are marked with
NOREL and must be attached to ROOT and (ii) to-
kens cannot be dependents of tokens marked with
NOREL.

The first constraint is implemented as an XOR (⊕)
factor (Martins et al., 2011b) over token bigrams and
arcs. It states that for a token t, either one of its
bigrams3 or its NOREL-arc must be active. There is
one such constraint for each token in the lattice.

⊕

s∈S|t
ps ⊕ y〈ROOT,t,NOREL〉 for all t ∈ T (1)

The second constraint ensures that a token that is
part of the path will not be attached to a token that

3The lattice ensures that always only one of the bigrams with
the same token in second position can be part of a path.

362

is not. It thus guarantees the coherence of the de-
pendency tree over the path through the lattice. It
is implemented as an implication (=⇒) factor (Mar-
tins et al., 2015). It states that an active NOREL arc
for a token h implies an inactive arc for all arcs hav-
ing h as head. There is one such constraint for each
possible arc in the parse.

y〈ROOT,h,NOREL〉 =⇒ ¬y〈h,d,l〉 (2)

for all 〈h, d, l〉 ∈ A, h 6= ROOT, l 6= NOREL

Deciding on a path through the lattice partitions
the tokens into two groups: the ones on the path
and the ones that are not. By means of the NOREL

label, the CLE is also able to partition the tokens
into two groups: the ROOT-NOREL tokens and the
proper dependency tree tokens. The two agreement
constraints then make sure that the two partionings
agree with each other. The first constraint explicitly
links the two partitionings by requiring each token
to either belong to the path or to the ROOT-NOREL

tokens. The second constraint ensures that the par-
titioning by the CLE is consistent, i.e. tokens at-
tached to ROOT with NOREL cannot mix with the
other tokens in the tree structure. Before the parser
outputs the parse the tokens that do not belong to the
path/tree are discarded.

The objective function of the lattice parser is

argmax
y∈Y,p∈P

fT(y) + fP(p)

subject to the two agreement constraints in Equa-
tions (1) and (2).

We use Alternating Directions Dual Decomposi-
tion or AD3 (Martins et al., 2011a)4 to find the op-
timal solution to this constrained optimization prob-
lem. CLE can be implemented such that its worst
case complexity is O(T 2), while the Viterbi algo-
rithm needed to find the path is of worst case com-
plexity O(QT 2), where Q is the number of states
in the lattice. Instead of combining these two prob-
lems directly, which would multiply their complex-
ity, AD3 combines them additively, such that the
complexity of the parser is O(k(T 2 + QT 2)) with
k being the number of iterations that AD3 is run.

4http://www.ark.cs.cmu.edu/AD3/

Second-order Parsing. To facilitate second-order
features, we use grandparent-sibling head automata
as proposed in Koo et al. (2010), which we extend
to include dependency relations. The head automata
allow the parser to model consecutive sibling and
grandparent relations. The architecture of the parser
does not need to be changed at all to include the
second-order factors. The head automata are simply
another component. They compute solutions over
the same set of arc indicator variables as the CLE
and AD3 thus ensures that the output of the two algo-
rithms agrees on the tree structure (Koo et al., 2010).
The second-order factors dominate the complexity
of the entire parser, since solving the head automata
is of complexity O(T 4L).

Pruning. We use rule-based and heuristics-based
pruning to reduce the search space of the parser.
Arcs between tokens that lie on competing paths
through the lattice are cut away as these tokens can
never be in a syntactic relation. For the Turkish tree-
bank, we introduce an additional rule based on the
annotation scheme of the treebank. In the treebank,
the IGs of a word form a chain with each IG having
their head immediately to the right and only the last
IG choosing the head freely. For the non-final IGs,
we therefore restrict the head choice to all IGs that
can immediately follow it in the lattice.

In order to restrict the number of heads, we train
a simple pairwise classifier that predicts the 10 best
heads for each token. It uses the first-order features
of the parser’s feature model.

Feature Model. The parser extracts features for
bigrams (path), arcs (first-order), consecutive sib-
lings, and grandparent relations (both second order).
It uses standard features like word form, lemma,
POS, morphological features, head direction, and
combinations thereof.

Context features are more difficult in lattice pars-
ing than in standard parsing as the left and right con-
text of a token is not specified before parsing. We
first extracted context features from all tokens that
can follow or precede a token in the lattice. This
led to overfitting effects as the model was learning
specific lattice patterns. We therefore use latent left
and right context and extract features from only one
of the left/right neighbor tokens. The latent context
is the left/right context token with the highest score

363

from the path features (raw bigram scores, they are
not changed by AD3). The parser extracts context
from one token in each direction.

Distance features are also more difficult in lat-
tices since the linear distance between two tokens
depends on the actual path chosen by the parser. We
define distance simply as the length of the shortest
path between two tokens in the lattice, but this dis-
tance may not coincide with the actual path.

Context features and distance features show that
lattice dependency parsing poses interesting new
challenges to feature design. Using latent context
features is one way of handling uncertain context,
compare also the delayed features in Hatori et al.
(2011). A thorough investigation of different op-
tions is needed here.

Learning. We train a discriminative linear model
using passive-aggressive online learning (Crammer
et al., 2003) with cost-augmented inference (Taskar
et al., 2005) and parameter averaging (Freund and
Schapire, 1999). We use Hamming loss over the
arcs of the parse tree excluding NOREL arcs. The
model trains one parameter vector that includes fea-
tures from the tree and from the path.

The maximum number of iterations of AD3 is
set to 1000 during training and testing. The algo-
rithm sometimes outputs fractional solutions. Dur-
ing training, the model is updated with these frac-
tional solutions, weighting the features and the loss
accordingly. During testing, fractional solutions are
projected to an integer solution by first running the
best-path algorithm with the path posteriors output
by AD3 and afterwards running CLE on the selected
path weighted by the arc posteriors (Martins et al.,
2009). In the experiments, fractional solutions occur
in about 9% of the sentences in the Turkish develop-
ment set during testing.

4 Experimental Setup

4.1 The Turkish Data
The training set for Turkish is the 5,635 sentences
of the METU-Sabancı Turkish Treebank (Oflazer et
al., 2003). The 300 sentences of the ITU validation
set (Eryiğit, 2012) are used for testing. As there is
no separate development set, we split the training
set into 10 parts and used 2 of them as development
data. All models run on this development set are

trained on the remaining 8 parts. We also report re-
sults from 10-fold crossvalidation on the full train-
ing set (10cv).

We use the detached version of the Turkish tree-
bank (Eryiğit et al., 2011) where multiword expres-
sions are represented as separate tokens. The train-
ing set of this version contains 49 sentences with
loops. We manually corrected these sentences and
use the corrected version in our experiments.5

The Turkish raw input is first passed through a
morphological analyzer (Oflazer, 1994) in order to
create morphological lattices as input to the parser.
Gold analyses are added to the training lattices if the
morphological analyzer failed to output the correct
analyses.

For the pipeline systems, the input lattices are
disambiguated by running a morphological disam-
biguator. We train our own disambiguator using
the bigram model from the parser and find the best
path through the lattice with the Viterbi algorithm.
The disambiguator uses the same bigram features as
the lattice parser. The morphological disambiguator
is trained on the Turkish treebank as in Çetinoğlu
(2014).

4.2 The Hebrew Data

The data for Hebrew comes from the SPMRL
Shared Task 2014 (Seddah et al., 2014), which is
based on the treebank for Modern Hebrew (Sima’an
et al., 2001). It provides lattices and predisam-
biguated input files. The training and development
lattices contained a number of circular structures due
to self-loops in some states. We automatically re-
moved the transitions causing these cycles.

Input lattices for training were prepared as for
Turkish by adding the gold standard paths if nec-
essary. Compared to the Turkish data, the Hebrew
lattices are so large that training times for the lat-
tice parser became unacceptable. We therefore used
our morphological disambiguator to predict the 10
best paths for each lattice. All transitions in the lat-
tice that were not part of one of these 10 paths were
discarded. Note that the number of actual paths in
these pruned lattices is much higher than 10, since
the paths converge after each word. All experiments

5The corrected version is available on the second author’s
webpage.

364

with the joint model for Hebrew are conducted on
the pruned lattices. As for Turkish we preprocess
the input lattices for all baselines with our own mor-
phological disambiguator.

4.3 Baselines
We compare the lattice parser (JOINT for Turkish,
JOINT10 for Hebrew) to three baselines: MATE,
TURBO, and PIPELINE.

The first two baseline systems are off-the-shelf
dependency parsers that currently represent the
state-of-the-art. Mate parser6 (Bohnet, 2009;
Bohnet, 2010) is a graph-based dependency parser
that uses Carreras’ decoder (Carreras, 2007) and ap-
proximate search (McDonald and Pereira, 2006) to
produce non-projective dependency structures. Tur-
boParser7 (Martins et al., 2013) is a graph-based
parser that uses a dual decomposition approach and
outputs non-projective structures natively. The third
baseline system runs the lattice parser on a pre-
disambiguated lattice, i.e. in a pipeline setup.

All three baselines are pipeline setups and use the
same disambiguator to predict a path through the lat-
tice. The bigram features in the disambiguator are
the same as in the joint model. There is thus no dif-
ference between the lattice parser and the baselines
with respect to the features that are available during
segmentation. As opposed to lattice parsing, base-
line systems are trained on the gold standard seg-
mentation (and thus gold morphological analyses) in
the training data, since automatically predicted paths
would not guarantee to be compatible with the gold
dependency structures.

The purpose of the first two baselines is to com-
pare the joint parser to the current state-of-the-art.
However, the feature sets are different between the
joint parser and the off-the-shelf baselines. A differ-
ence in performance between the joint parser and the
first two baseline systems may thus simply be caused
by a difference in the feature set. The third baseline
eliminates this difference in the feature sets since it
is the actual lattice parser that is run on a disam-
biguated lattice. Because the morphological disam-
biguator for the PIPELINE baseline is using the same
feature set as the lattice parser (the bigram model),

6http://code.google.com/p/mate-tools
7http://www.ark.cs.cmu.edu/TurboParser/,

version 2.0.1

the fact that the joint parser is trained and tested on
full lattices is the only difference between these two
systems. The PIPELINE baseline thus allows us to
test directly the effect of joint decoding compared to
a pipeline setup.

4.4 Evaluation

Standard labeled and unlabeled attachment scores
are not applicable when parsing with uncertain seg-
mentation since the number of tokens in the output
of the parser may not coincide with the number of
tokens in the gold standard. Previous work therefore
suggests alternative methods for evaluation, e.g. by
means of precision, recall, and f-score over tokens,
see e.g. Tsarfaty (2006) or Cohen and Smith (2007).

The uncertainty of segmentation furthermore
makes it very hard to evaluate the other levels of
analysis independently of the segmentation. In or-
der to decide whether the morphological analysis of
a token (or its syntactic attachment) is correct, one
always needs to find out first to which token in the
gold standard it corresponds. By establishing this
correspondence, the segmentation is already being
evaluated. Evaluating syntax isolated from the other
levels of analysis is therefore not possible in general.

Hatori et al. (2012) count a dependency relation
correct only when both the head and the dependent
have the correct morphological analysis (here POS)
and segmentation. Goldberg (2011, page 53) pro-
poses a similar approach, but only requires surface
forms to match between gold standard and predic-
tion. These metrics compute precision and recall
over tokens. Eryiğit et al. (2008) and Eryiğit (2012)
define an accuracy (IGeval) for Turkish parsing by
taking advantage of the annotation scheme in the
Turkish treebank: A non-final IG in the Turkish tree-
bank always has its head immediately to the right, al-
ways with the same label, which makes it possible to
ignore the inner dependency relations, i.e. the seg-
mentation, of a dependent word. The metric there-
fore only needs to check for each word whether the
head of the last IG is attached to the correct IG in
another word. The metric includes a back-off strat-
egy in case the head word’s segmentation is wrong.
A dependency arc is then counted as correct if it at-
taches to an IG in the correct word and the POS tag
of the head IG is the same as in the gold standard.

365

Parsing Evaluation. We follow Hatori et al.
(2012) and use a strict definition of precision and
recall (PREC, REC, F1) over tokens to evaluate the
full task. We first align the tokens of a word in
the parser output with the tokens of the correspond-
ing word in the gold standard using the Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970),
which we modify so it does not allow for mis-
matches. A token in the parser output that is not in
the gold standard is thus paired with a gap and vice
versa. Two tokens must have the same morphologi-
cal analysis in order to match.8

A true positive is defined as a pair of matching to-
kens whose heads are also aligned and match. For
labeled scores, the dependency relations must match
as well. Precision is defined as the number of true
positives over the number of tokens in the predic-
tion, recall is defined as the number of true posi-
tives over the number of tokens in the gold standard.
F-score is the harmonic mean of precision and recall.

This metric is very strict and requires all levels of
analysis to be correct. In order to evaluate the syntax
as independently as possible, we furthermore report
IGeval for Turkish, with and without the aforemen-
tioned backoff strategy (IGeval and IGeval STRICT).
For Hebrew, we report on a version of precision and
recall as defined above that only requires the surface
forms of the tokens to match.9 This metric is almost
the one proposed in Goldberg (2011). All reported
evaluation metrics ignore punctuation.

We do not use TedEval as defined in Tsarfaty
et al. (2012) even though it has been used previ-
ously to evaluate dependency parsing with uncer-
tain segmentation (Seddah et al., 2013; Zhang et
al., 2015). The reason is that it is not an inher-
ently dependency-based framework and the con-
version from constituency structures to dependency
structures interferes with the metric.10 The metric

8The method does not create cross, many-to-one, or one-to-
many alignments, which can be important because in very rare
cases the same token occurs twice in one word.

9The metric would not work for Turkish, as the surface
forms of non-final IGs are all represented as underscores.

10As an experiment, we took a Turkish treebank tree and cre-
ated artificial parses by attaching one token to a different head
each time. All other tokens remained attached to their correct
head, and segmentation is kept gold. This gave us 11 parses
that contained exactly one attachment error and one parse iden-
tical with the gold standard. Running TedEval on each of the

proposed in Goldberg (2011) implements the same
ideas without edit distance and is defined directly
for dependencies.

Segmentation Evaluation. We use the same
token-based precision and recall to measure the
quality of segmentation and morphological analysis
without syntax. For a token to be correct, it has to
have the same morphological analysis as the token
in the gold standard to which it is aligned. We fur-
thermore report word accuracy (ACCw), which is the
percentage of words that received the correct seg-
mentation.

5 Results

Segmentation and Morphology. Table 1 shows
the quality of segmentation and morphological anal-
ysis. The baseline for Turkish is the Turkish
morphological disambiguator by Sak et al. (2008),
trained on the Turkish treebank. For Hebrew, the
baseline is the disambiguated lattices provided by
the SPMRL 2014 Shared Task.11 The bigram model
is our own morphological disambiguator. The joint
model is the full lattice parser, which has access to
syntactic information.

The results show that the bigram model is clearly
outperforming the baselines for both languages. The
feature model of the bigram model was developed
on the Turkish development set, but the model also
works well for Hebrew. Comparing the bigram
model to the joint model shows that overall, the joint
model performs better than the bigram model. How-
ever, the joint model mainly scores in recall rather
than in precision, the bigram model is even ahead of
the joint model in precision for Hebrew. The joint
model outperforms the bigram model and the base-
line also in word accuracy. The results demonstrate
that syntactic information is relevant to resolve am-
biguity in segmentation and morphology for Turkish
and Hebrew.

11 incorrect parses gave us 5 different scores. The differences
are caused by the transformation of dependency trees to con-
stituency trees, because the constituency trees have different
edit distances compared to the gold standard. Consequently, this
means that some attachment errors of the dependency parser are
punished more than others in an unpredictable way.

11A description on how these lattice are produced is given in
Seddah et al. (2013, page 159)

366

Turkish Hebrew

data system PREC REC F1 ACCw PREC REC F1 ACCw

dev BASELINE 89.59 88.14 88.86 87.97 85.99 84.07 85.02 80.30
BIGRAM MODEL 90.69 89.52 90.10 89.45 86.84 86.30 86.57 83.46
JOINT MODEL 90.80 90.22 90.51 89.94 86.68 87.49 87.08 84.67

test BASELINE 89.46 88.51 88.99 87.95 81.79 79.83 80.80 74.85
BIGRAM MODEL 89.96 89.23 89.59 88.71 84.44 83.22 83.83 79.60
JOINT MODEL 90.19 89.74 89.97 89.25 83.88 83.99 83.94 80.28

Table 1: Path selection quality.

LABELED UNLABELED IGeval STRICT IGeval

data system PREC REC F1 PREC REC F1 UASIG LASIG UASIG LASIG

dev MATE 62.54 61.73 62.14 69.44 68.54 68.98 70.60 60.10 74.88 63.46
TURBO 63.54 62.71 63.12 70.68 69.76 70.22 72.22 61.24 76.58 64.73
PIPELINE 63.86 63.03 63.44 70.65 69.73 70.19 72.26 61.82 76.64 65.49
JOINT 64.21 63.79∗ 64.00 70.96 70.50∗ 70.73 72.66∗ 62.40 76.61 65.59

10cv MATE 63.28 62.49 62.88 70.37 69.50 69.94 71.75 61.26 75.84 64.42
TURBO 63.82 63.03 63.42 71.12 70.24 70.68 72.77 61.89 76.93 65.09
PIPELINE 64.97 64.17 64.57 71.71 70.83 71.27 73.66 63.52 77.68 66.82
JOINT 65.27 64.84† 65.06 72.05∗ 71.58† 71.82 73.93 63.85 77.74 66.83

test MATE 64.64 64.12 64.38 70.62 70.04 70.33 71.99 61.84 77.08 65.98
TURBO 65.36 64.83 65.09 71.66 71.08 71.37 73.16 62.76 78.37 67.02
PIPELINE 66.40 65.86 66.13 72.30 71.72 72.01 74.33 64.40 79.61 69.02
JOINT 67.33 66.99∗ 67.16 72.94∗ 72.58∗ 72.76 75.02 65.32 79.45 68.99

Table 2: Parsing results for Turkish. Statistically significant differences between the joint system and the pipeline
system are marked with † (p < 0.01) and ∗ (p < 0.05). Significance testing was performed using the Wilcoxon Signed
Rank Test (not for F1).

Turkish. Table 2 presents the results of the eval-
uation of the three baseline systems and the lattice
parser on the Turkish data. The PIPELINE and the
JOINT system give better results than the other two
baselines across the board. This shows that the fea-
ture set of the lattice parser is better suited to the
Turkish treebank than the feature set of Mate parser
and Turbo parser. It is not a surprising result though,
since the lattice parser was developed for Turkish
whereas the other two parsers were developed for
other treebanks.

The JOINT system outperforms the PIPELINE sys-
tem with respect to the first three metrics. These
metrics evaluate syntax, segmentation, and morpho-
logical analysis jointly. Higher scores here mean
that these aspects in combination have become bet-
ter. The differences between the PIPELINE and the
JOINT model are consistently statistically significant
with respect to recall, but only in some cases with re-

spect to precision. The syntactic information that is
available to the joint model thus seems to improve
recall rather than precision.

The last two columns in Table 2 show an evalu-
ation using IGeval. The IGeval metric is designed
to evaluate the syntactic quality with less attention
to morphological analysis and segmentation. Here,
both PIPELINE and JOINT achieve very similar re-
sults and none of the differences is statistical signif-
icant. These results suggest that a good part of the
improvements in the lattice parser occurs in the mor-
phological analysis/segmentation, whereas the qual-
ity of syntactic annotation basically stays the same
between the pipeline and the joint model.

Hebrew. The experimental results on the Hebrew
data are shown in Table 3. The three baselines per-
form very similarly. All three baseline systems are
run on the output of the same disambiguator, which

367

means that the feature models of the parsers seem to
be equally well suited to the Hebrew treebank. The
feature model of the lattice parser that is used in the
PIPELINE baseline was not adapted to Hebrew in any
way, but was used as it was developed for the Turk-
ish data.

Compared to the three baselines, the joint model
outperforms them for both labeled and unlabeled
scores. As the only difference between PIPELINE

and JOINT is the fact that the latter performs joint
decoding, the results support the findings in con-
stituency parsing by Tsarfaty (2006), Cohen and
Smith (2007), and Goldberg and Tsarfaty (2008),
namely that joint decoding is a better model for He-
brew parsing. Judging from statistical significance,
the JOINT model improves recall rather than preci-
sion, a picture that we found for Turkish as well.

LABELED UNLABELED

data system PREC REC F1 PREC REC F1

dev MATE 65.41 65.00 65.20 70.65 70.21 70.43
TURBO 65.12 64.72 64.92 70.44 70.00 70.22
PIPELINE 65.64 65.23 65.44 70.65 70.21 70.43
JOINT10 66.82 67.44† 67.13 71.47 72.13∗ 71.80

test MATE 63.16 62.25 62.70 67.52 66.55 67.03
TURBO 63.06 62.16 62.61 67.27 66.31 66.79
PIPELINE 63.63 62.72 63.17 67.62 66.65 67.14
JOINT10 63.81 63.89† 63.85 67.79 67.88† 67.84

Table 3: Statistically significant differences between the
joint system and the pipeline system are marked with †
(p < 0.01) and ∗ (p < 0.05). Significance testing was
performed using the Wilcoxon Signed Rank Test (not for
F1).

As described in Section 4.4, we cannot evaluate
the syntax entirely independently on Hebrew, but
we can eliminate the morphological level. Table 4
shows the results of the evaluation when only syn-
tax and surface forms are matched. The overall pic-
ture compared to the evaluation shown in Table 3
does not change, however. Also when disregarding
the quality of morphology, the JOINT model outper-
forms the PIPELINE, notably with respect to recall.

6 Related Work

Graph-based Parsing. Our basic architecture re-
sembles the joint constituency parsing and POS tag-
ging model by Rush et al. (2010), but our model

LABELED UNLABELED

data system PREC REC F1 PREC REC F1

dev MATE 68.05 67.62 67.83 74.70 74.24 74.47
TURBO 67.97 67.54 67.75 74.58 74.12 74.35
PIPELINE 68.56 68.14 68.35 74.84 74.37 74.60
JOINT10 69.23 69.87† 69.55 74.88 75.58† 75.23

test MATE 66.17 65.22 65.69 71.62 70.60 71.11
TURBO 66.14 65.19 65.66 71.38 70.35 70.86
PIPELINE 66.81 65.85 66.33 71.82 70.79 71.30
JOINT10 66.63 66.72† 66.68 71.48 71.57† 71.52

Table 4: Parsing results for Hebrew, evaluated without
morphology. Statistically significant differences between
the joint system and the pipeline system are marked with
†. Significance testing was performed using the Wilcoxon
Signed Rank Test with p < 0.01 (not for F1).

needs additional constraints to enforce agreement
between the two tasks. Martins et al. (2011a) and
Martins et al. (2015) show how such first-order
logic constraints can be represented as subproblems
in dual decomposition. Similar approaches, where
such constraints are used to ensure certain proper-
ties in the output structures, have been used e.g.
in semantic parsing (Das et al., 2012), compressive
summarization (Almeida and Martins, 2013), and
joint quotation attribution and coreference resolu-
tion (Almeida et al., 2014). Parsers that use dual de-
composition are proposed in Koo et al. (2010) and
Martins et al. (2010). From Koo et al. (2010), we
adopted the idea of using the Chu-Liu-Edmonds al-
gorithm to ensure tree properties in the output as
well as second-order parsing with head automata.

Li et al. (2011) extend several higher-order vari-
ants of the Eisner decoder (Eisner, 1997) such that
POS tags are predicted jointly with syntax. The
complexity of their joint models increases by poly-
nomials of the tag set size. Due to the dual decompo-
sition approach, the complexity of our parser stays
equal to the complexity of the most complex sub-
problem, which is the second-order head automata
in our case.

Transition-based Parsing. Joint models in
transition-based parsing usually introduce a variant
of the shift transition that performs the additional
task, e.g. it additionally predicts the POS tag and
possibly morphological features of a token that is
being shifted (Hatori et al., 2011; Bohnet and Nivre,

368

2012; Bohnet et al., 2013). Optimization over the
joint model is achieved by beam search. To also
solve the word segmentation task, several models
for Chinese were proposed that parse on the level
of single characters, forming words from characters
with a special append transition (Hatori et al., 2012;
Li and Zhou, 2012) or predicting word internal
structure along with syntax (Zhang et al., 2014). To
use such a transition-based system for the segmen-
tation task in Turkish or Hebrew, the shift transition
would have to be changed to do the opposite of the
append transition in the Chinese parsers: segment
an incoming token into several ones, for example
based on the output of a morphological analyzer.

Easy-first Parsing. Ma et al. (2012) introduce a
variant of the easy-first parser (Goldberg and El-
hadad, 2010a) that uses an additional operation to
POS tag input tokens. The operations are ordered
such that the parser can only introduce a dependency
arc between two tokens that have received a POS tag
already. Tratz (2013) presents a similar system for
Arabic that defines several more operations to deal
with segmentation ambiguity.

Sampling-based Parsing. Zhang et al. (2015)
present a joint model that relies on sampling and
greedy hill-climbing for decoding, but allows for ar-
bitrarily complex scoring functions thus opening ac-
cess to global and cross-level features. Such fea-
tures could be simulated in our model by adding ad-
ditional factors in the form of soft constraints (con-
straints with output, see Martins et al. (2015)), but
this would introduce a considerable number of addi-
tional factors with a notable impact on performance.

Constituency Parsing. Joint models have also
been investigated in constituency parsing, notably
for Hebrew. Tsarfaty (2006) already discusses full
joint models, but the first full parsers were presented
in Cohen and Smith (2007), Goldberg and Tsar-
faty (2008), and later Goldberg and Elhadad (2013).
Green and Manning (2010) present a similar parser
for Arabic. Among these, some authors emphasize
the importance of including scores from the mor-
phological model into the parsing model, whereas
other models do not use them at all. In our parser,
the model is trained jointly for both tasks without
weighting the two tasks differently.

Parsing Hebrew and Turkish. Joint models for
Hebrew parsing were mostly investigated for con-
stituency parsing (see above). There has been some
work specifically on Hebrew dependency parsing
(Goldberg and Elhadad, 2009; Goldberg and El-
hadad, 2010b; Goldberg, 2011), but not in the con-
text of joint models.

Turkish dependency parsing was pioneered in
Eryiğit and Oflazer (2006) and Eryiğit et al. (2008).
They compare parsing based on inflectional groups
to word-based parsing and conclude that the former
is more suitable for Turkish. Çetinoğlu and Kuhn
(2013) are first to discuss joint models for Turkish
and present experiments for joint POS tagging and
parsing, but use a pipeline to decide on segmenta-
tion and morphological features. To the best of our
knowledge, there currently exists no work on full lat-
tice parsing for Turkish.

7 Conclusion

Morphologically rich languages pose many chal-
lenges to standard dependency parsing systems, one
of them being that the number of tokens in the output
is not always known beforehand. Solving this prob-
lem in a pipeline setup leads to efficient systems but
systematically excludes interaction between the lex-
ical, morphological, and syntactic level of analysis.

In this work, we have presented a graph-based
lattice dependency parser that operates on morpho-
logical lattices and simultaneously predicts a de-
pendency tree and a path through the lattice. We
tested the joint model on the Turkish treebank and
the treebank of Modern Hebrew and demonstrated
that the joint model outperforms three state-of-the-
art pipeline models. We presented the first results
for full lattice parsing on the Turkish treebank. The
results on the Hebrew treebank corroborate findings
in constituency parsing (Cohen and Smith, 2007;
Goldberg and Tsarfaty, 2008).

Acknowledgments

We thank our anonymous reviewers for their help-
ful comments. We also thank Anders Björkelund
for many useful discussions. This work was funded
by the Deutsche Forschungsgemeinschaft (DFG) via
SFB 732, projects D2 and D8.

369

References
Miguel Almeida and Andre Martins. 2013. Fast and

Robust Compressive Summarization with Dual De-
composition and Multi-Task Learning. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 196–206, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Mariana S. C. Almeida, Miguel B. Almeida, and André
F. T. Martins. 2014. A Joint Model for Quotation At-
tribution and Coreference Resolution. In Proceedings
of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, pages 39–
48, Gothenburg, Sweden, April. Association for Com-
putational Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A Transition-
Based System for Joint Part-of-Speech Tagging and
Labeled Non-Projective Dependency Parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1455–
1465, Jeju, South Korea. Association for Computa-
tional Linguistics.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richrd
Farkas, Filip Ginter, and Jan Haji. 2013. Joint Mor-
phological and Syntactic Analysis for Richly Inflected
Languages. Transactions of the Association for Com-
putational Linguistics, 1:415–428.

Bernd Bohnet. 2009. Efficient Parsing of Syntactic
and Semantic Dependency Structures. In Proceedings
of the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 67–72, Boulder, Colorado, June. Association for
Computational Linguistics.

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational
Linguistics, pages 89–97, Beijing, China. International
Committee on Computational Linguistics.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 957–961, Prague, Czech Republic, June.
Association for Computational Linguistics.

Özlem Çetinoğlu and Jonas Kuhn. 2013. Towards
Joint Morphological Analysis and Dependency Pars-
ing of Turkish. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics
(DepLing 2013), pages 23–32, Prague, Czech Repub-
lic, August. Charles University in Prague, Matfyz-
press, Prague, Czech Republic.

Özlem Çetinoğlu. 2014. Turkish Treebank as a Gold
Standard for Morphological Disambiguation and Its

Influence on Parsing. In Nicoletta Calzolari (Confer-
ence Chair), Khalid Choukri, Thierry Declerck, Hrafn
Loftsson, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland, may. European Language Re-
sources Association (ELRA).

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
Shortest Arborescence of a Directed Graph. Scientia
Sinica, 14(10):1396–1400.

Shay B. Cohen and Noah A. Smith. 2007. Joint morpho-
logical and syntactic disambiguation. In Proceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 208–217, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Koby Crammer, Ofer Dekel, Shai Shalev-Shwartz, and
Yoram Singer. 2003. Online passive-aggressive algo-
rithms. In Proceedings of the 16th Annual Conference
on Neural Information Processing Systems, volume 7,
pages 1217–1224, Cambridge, Massachusetts, USA.
MIT Press.

Dipanjan Das, André F. T. Martins, and Noah A. Smith.
2012. An Exact Dual Decomposition Algorithm for
Shallow Semantic Parsing with Constraints. In *SEM
2012: The First Joint Conference on Lexical and Com-
putational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation (SemEval 2012), pages 209–217,
Montréal, Canada, 7-8 June. Association for Compu-
tational Linguistics.

Jack Edmonds. 1967. Optimum Branchings. Jour-
nal of Research of the National Bureau of Standards,
71B(4):233–240.

Jason Eisner. 1997. Bilexical Grammars and a Cubic-
Time Probabilistic Parser. In Proceedings of the
5th International Workshop on Parsing Technologies
(IWPT), pages 54–65, MIT, Cambridge, MA, sep.

Gülşen Eryiğit and Kemal Oflazer. 2006. Statistical de-
pendency parsing of Turkish. In Proceedings of the
11th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 89–96,
Trento, Italy. Association for Computational Linguis-
tics.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency Parsing of Turkish. Computational Lin-
guistics, 34(3):357–389.

Gülşen Eryiğit, Tugay Ilbay, and Ozan Arkan Can.
2011. Multiword Expressions in Statistical Depen-
dency Parsing. In Proc. of the SPMRL Workshop of
IWPT, pages 45–55, Dublin, Ireland.

370

Gülşen Eryiğit. 2012. The Impact of Automatic Morpho-
logical Analysis & Disambiguation on Dependency
Parsing of Turkish. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 1960–1965, Istanbul,
Turkey, May. European Language Resources Associa-
tion (ELRA). ACL Anthology Identifier: L12-1056.

Yoav Freund and Robert E. Schapire. 1999. Large mar-
gin classification using the perceptron algorithm. Ma-
chine Learning, 37(3):277–296.

Yoav Goldberg and Michael Elhadad. 2009. Hebrew
Dependency Parsing: Initial Results. In Proceedings
of the 11th International Conference on Parsing Tech-
nologies (IWPT’09), pages 129–133, Paris, France,
October. Association for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010a. An Ef-
ficient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750, Los Angeles, California, June.
Association for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010b. Easy-First
Dependency Parsing of Modern Hebrew. In Proceed-
ings of the NAACL HLT 2010 First Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages,
pages 103–107, Los Angeles, CA, USA, June. Associ-
ation for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2013. Word seg-
mentation, unknown-word resolution, and morpholog-
ical agreement in a hebrew parsing system. Computa-
tional Linguistics, 39(1):121–160.

Yoav Goldberg and Reut Tsarfaty. 2008. A single gener-
ative model for joint morphological segmentation and
syntactic parsing. In Proceedings of the 46th Annual
Meeting of the Association for Computational Linguis-
tics, pages 371–379, Columbus, Ohio. Association for
Computational Linguistics.

Yoav Goldberg. 2011. Automatic Syntactic Processing of
Modern Hebrew. Ph.D. thesis, Ben Gurion University,
Beer Sheva, Israel.

Spence Green and Christopher D. Manning. 2010. Bet-
ter Arabic Parsing: Baselines, Evaluations, and Anal-
ysis. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 394–402, Beijing, China, August. Coling 2010
Organizing Committee.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental Joint POS Tag-
ging and Dependency Parsing in Chinese. In Proceed-
ings of 5th International Joint Conference on Natu-

ral Language Processing, pages 1216–1224, Chiang
Mai, Thailand, November. Asian Federation of Natu-
ral Language Processing.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental Joint Approach to
Word Segmentation, POS Tagging, and Dependency
Parsing in Chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1045–
1053, Jeju Island, Korea, July. Association for Com-
putational Linguistics.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual Decomposi-
tion for Parsing with Non-Projective Head Automata.
In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1288–1298, Cambridge, MA, October. Association for
Computational Linguistics.

Zhongguo Li and Guodong Zhou. 2012. Unified Depen-
dency Parsing of Chinese Morphological and Syntactic
Structures. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, pages 1445–1454, Jeju Island, Korea, July. Asso-
ciation for Computational Linguistics.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wen-
liang Chen, and Haizhou Li. 2011. Joint Models
for Chinese POS Tagging and Dependency Parsing.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1180–1191, Edinburgh, Scotland, UK, July. Associa-
tion for Computational Linguistics.

Ji Ma, Tong Xiao, Jingbo Zhu, and Feiliang Ren. 2012.
Easy-First Chinese POS Tagging and Dependency
Parsing. In Proceedings of COLING 2012, pages
1731–1746, Mumbai, India, December. The COLING
2012 Organizing Committee.

Andre Martins, Noah Smith, and Eric Xing. 2009. Con-
cise Integer Linear Programming Formulations for De-
pendency Parsing. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 342–350, Sun-
tec, Singapore, August. Association for Computational
Linguistics.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo Parsers: Depen-
dency Parsing by Approximate Variational Inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA, October. Association for Compu-
tational Linguistics.

Andre Martins, Mario Figueiredo, Pedro Aguiar, Noah
Smith, and Eric Xing. 2011a. An Augmented La-

371

grangian Approach to Constrained MAP Inference. In
Lise Getoor and Tobias Scheffer, editors, Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 169–176, New
York, NY, USA, June. ACM.

Andre Martins, Noah Smith, Mario Figueiredo, and Pe-
dro Aguiar. 2011b. Dual Decomposition with Many
Overlapping Components. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 238–249, Edinburgh, Scot-
land, UK., July. Association for Computational Lin-
guistics.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the Turbo: Fast Third-Order Non-
Projective Turbo Parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 617–622,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q.
Aguiar, Noah A. Smith, and Eric P. Xing. 2015. AD3:
Alternating Directions Dual Decomposition for MAP
Inference in Graphical Models. Journal of Machine
Learning Research, 16:495–545.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 81–88, Trento, Italy. Asso-
ciation for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-Projective Dependency Parsing
using Spanning Tree Algorithms. In Proceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 523–530, Vancouver, British Columbia,
Canada, October. Association for Computational Lin-
guistics.

Saul B. Needleman and Christian D. Wunsch. 1970. A
general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür,
and Gökhan Tür. 2003. Building a Turkish Tree-
bank. In Anne Abeille, editor, Building and Exploiting
Syntactically-annotated Corpora. Kluwer Academic
Publishers, Dordrecht.

Kemal Oflazer. 1994. Two-level Description of Turk-
ish Morphology. Literary and Linguistic Computing,
9(2):137–148.

Alexander M. Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On Dual Decomposition
and Linear Programming Relaxations for Natural Lan-
guage Processing. In Proceedings of the 2010 Confer-

ence on Empirical Methods in Natural Language Pro-
cessing, pages 1–11, Cambridge, MA, October. Asso-
ciation for Computational Linguistics.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish Language Resources: Morphological Parser,
Morphological Disambiguator and Web Corpus. In
Proc. of GoTAL 2008, pages 417–427.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-
dito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clergerie.
2013. Overview of the SPMRL 2013 Shared Task: A
Cross-Framework Evaluation of Parsing Morphologi-
cally Rich Languages. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-
Rich Languages, pages 146–182, Seattle, Washington,
USA, October. Association for Computational Lin-
guistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 Shared Task on Parsing
Morphologically-rich Languages. In Proceedings of
the First Joint Workshop on Statistical Parsing of Mor-
phologically Rich Languages and Syntactic Analysis
of Non-Canonical Languages, pages 103–109, Dublin,
Ireland, August. Dublin City University.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a tree-bank of modern
Hebrew text. Traitement Automatique des Langues,
42(2):247–380.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning Structured Predic-
tion Models: A Large Margin Approach. In Proceed-
ings of the 22th Annual International Conference on
Machine Learning, pages 896–903, Bonn, Germany.
ACM.

Stephen Tratz. 2013. A Cross-Task Flexible Transi-
tion Model for Arabic Tokenization, Affix Detection,
Affix Labeling, POS Tagging, and Dependency Pars-
ing. In Proceedings of the Fourth Workshop on Sta-
tistical Parsing of Morphologically-Rich Languages,
pages 34–45, Seattle, Washington, USA, October. As-
sociation for Computational Linguistics.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical Parsing of Morphologically Rich Languages
(SPMRL) What, How and Whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages 1–

372

12, Los Angeles, CA, USA, June. Association for
Computational Linguistics.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012. Joint Evaluation of Morphological Segmen-
tation and Syntactic Parsing. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
6–10, Jeju Island, Korea, July. Association for Com-
putational Linguistics.

Reut Tsarfaty. 2006. Integrated Morphological and Syn-
tactic Disambiguation for Modern Hebrew. In Pro-
ceedings of the COLING/ACL 2006 Student Research
Workshop, pages 49–54, Sydney, Australia, July. As-
sociation for Computational Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-Level Chinese Dependency
Parsing. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1326–1336, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Kareem
Darwish. 2015. Randomized Greedy Inference for
Joint Segmentation, POS Tagging and Dependency
Parsing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 42–52, Denver, Colorado, May–June.
Association for Computational Linguistics.

373

374

