Domain Adaptation for Syntactic and Semantic Dependency Parsing Using
Deep Belief Networks

Haitong Yang, Tao Zhuang and Chengqing Zong
National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
{htyang, tao.zhuang, cgzong}@nlpr.ia.ac.cn

Abstract

In current systems for syntactic and seman-
tic dependency parsing, people usually de-
fine a very high-dimensional feature space to
achieve good performance. But these systems
often suffer severe performance drops on out-
of-domain test data due to the diversity of fea-
tures of different domains. This paper fo-
cuses on how to relieve this domain adapta-
tion problem with the help of unlabeled tar-
get domain data. We propose a deep learning
method to adapt both syntactic and semantic
parsers. With additional unlabeled target do-
main data, our method can learn a latent fea-
ture representation (LFR) that is beneficial to
both domains. Experiments on English data
in the CoNLL 2009 shared task show that
our method largely reduced the performance
drop on out-of-domain test data. Moreover,
we get a Macro F1 score that is 2.32 points
higher than the best system in the CoNLL
2009 shared task in out-of-domain tests.

1 Introduction

Both syntactic and semantic dependency parsing are
the standard tasks in the NLP community. The state-
of-the-art model performs well if the test data comes
from the domain of the training data. But if the
test data comes from a different domain, the perfor-
mance drops severely. The results of the shared tasks
of CoNLL 2008 and 2009 (Surdeanu et al., 2008;
Haji¢ et al., 2009) also substantiates the argument.
To relieve the domain adaptation, in this paper, we
propose a deep learning method for both syntactic
and semantic parsers. We focus on the situation that,

271

besides source domain training data and target do-
main test data, we also have some unlabeled target
domain data.

Many syntactic and semantic parsers are devel-
oped using a supervised learning paradigm, where
each data sample is represented as a vector of fea-
tures, usually a high-dimensional feature. The per-
formance degradation on target domain test data is
mainly caused by the diversity of features of differ-
ent domains, i.e., many features in target domain test
data are never seen in source domain training data.

Previous work have shown that using word clus-
ters to replace the sparse lexicalized features (Koo
et al., 2008; Turian et al., 2010), helps relieve the
performance degradation on the target domain. But
for syntactic and semantic parsing, people also use a
lot of syntactic features, i.e., features extracted from
syntactic trees. For example, the relation path be-
tween a predicate and an argument is a syntactic fea-
ture used in semantic dependency parsing (Johans-
son and Nugues, 2008). Figure 1 shows an exam-
ple of this relation path feature. Obviously, syntac-
tic features like this are also very sparse and usu-
ally specific to each domain. The method of clus-
tering fails in generalizing these kinds of features.
Our method, however, is very different from clus-
tering specific features and substituting these fea-
tures using their clusters. Instead, we attack the do-
main adaption problem by learning a latent feature
representation (LFR) for different domains, which
is similar to Titov (2011). Formally, we propose a
Deep Belief Network (DBN) model to represent a
data sample using a vector of latent features. This
latent feature vector is inferred by our DBN model

Transactions of the Association for Computational Linguistics, vol. 3, pp. 271-282, 2015. Action Editor: Hal Daumé III.
Submission batch: 3/2015; Published 5/2015.
(©2015 Association for Computational Linguistics. Distributed under a CC-BY-NC-SA 4.0 license.

ROOT P

She wants to pay you a visit

Figure 1: A path feature example. The red edges are the
path between She and visit and thus the relation path fea-
ture between them is SBITOPRD/IM|OBIJ|

based on the data sample’s original feature vector.
Our DBN model is trained unsupervisedly on orig-
inal feature vectors of data in both domains: train-
ing data from the source domain, and unlabeled data
from the target domain. So our DBN model can pro-
duce a common feature representation for data from
both domains. A common feature representation can
make two domains more similar and thus is very
helpful for domain adaptation (Blitzer, 2006). Dis-
criminative models using our latent features adapt
better to the target domain than models using origi-
nal features.

Discriminative models in syntactic and semantic
parsers usually use millions of features. Applying a
typical DBN to learn a sensible LFR on that many
original features is computationally too expensive
and impractical (Raina et al., 2009). Therefore, we
constrain the DBN by splitting the original features
into groups. In this way, we largely reduce the com-
putational cost and make LFR learning practical. We
carried out experiments on the English data of the
CoNLL 2009 shared task. We use a basic pipelined
system and compare the effectiveness of the two fea-
ture representations: original feature representation
and our LFR. Using the original features, the per-
formance drop on out-of-domain test data is 10.58
points in Macro F1 score. In contrast, using the
LFR, the performance drop is only 4.97 points. And
we have achieved a Macro F1 score of 80.83% on
the out-of-domain test data. As far as we know, this
is the best result on this data set to date.

2 Related Work

Dependency parsing and semantic role labeling are
two standard tasks in the NLP community. There

272

have been many works on the two tasks (McDon-
ald et al., 2005; Gildea and Jurafsky, 2002; Yang
and Zong, 2014; Zhuang and Zong, 2010a; Zhuang
and Zong, 2010b, etc). Among them, researches
on domain adaptation for dependency parsing and
SRL are directly related to our work. Dredze et al.,
(2007) show that domain adaptation is hard for de-
pendency parsing based on results in the CoNLL
2007 shared task (Nivre et al., 2007). Chen et al.,
(2008) adapted a syntactic dependency parser by
learning reliable information on shorter dependen-
cies in unlabeled target domain data. But they do
not consider the task of semantic dependency pars-
ing. Huang et al., (2010) used an HMM-based la-
tent variable language model to adapt a SRL system.
Their method is tailored for a chunking-based SRL
system and can hardly be applied to our dependency
based task. Weston et al., (2008) used deep neural
networks to improve an SRL system. But their tests
are on in-domain data.

On methodology, the work in Glorot et al., (2011)
and Titov (2011) is closely related to ours. They
also focus on learning LFRs for domain adaptation.
However, their work deals with domain adaptation
for sentiment classification, which uses much fewer
features and training samples. So they do not need
to worry about computational cost as much as we
do. Titov (2011) used a graphical model that has
only one layer of hidden variables. On contrast,
we need to use a model with two layers of hidden
variables and split the first hidden layer to reduce
computational cost. The model of Titov (2011) also
embodies a specific classifier. But our model is in-
dependent of the classifier to be used. Glorot et
al., (2011) used a model called Stacked Denoising
Auto-Encoders, which also contains multiple hidden
layers. However, they do not exploit the hierarchi-
cal structure of their model to reduce computational
cost. By splitting, our model contains much less pa-
rameters than theirs. In fact, the models in Glorot et
al., (2011) and Titov (2011) cannot be applied to our
task simply because of the high computational cost.

3 Our DBN Model for LFR

In discriminative models, each data sample is rep-
resented as a vector of features. Our DBN model
maps this original feature vector to a vector of latent

features. And we use this latent feature vector to rep-
resent the sample, i.e., we replace the whole original
feature vector by the latent feature vector. In this
section, we introduce how our DBN model repre-
sent a data sample as a vector of latent features. Be-
fore introducing our DBN model, we first review a
simpler model called Restricted Boltzman Machines
(RBM) (Hinton et al., 2006). When training a DBN
model, RBM is used as a basic unit in a DBN.

3.1 Restricted Boltzmann Machines

An RBM is an undirected graphical model with a
layer of visible variables v. = (v1,...,,,), and a
layer of hidden variables h = (hy, ..., h,). These
variables are binary. Figure 2 shows a graphical rep-
resentation of an RBM.

Figure 2: Graphical representations of an RBM: (a) rep-
resents an RBM. (b) is a more compact representation

The parameters of an RBM are § = (W, a,b)
where W = (Wjj)mxn is a matrix with W;; be-
ing the weight for the edge between v; and h;, and
a = (a1,....am), b = (b1,...,b,) are bias vectors
for v and h respectively. The probabilistic model of
an RBM is:

1
= —-E 1
p(v, h|0) 700) exp(—E(v, h)) (M
where
E(U, h) = — Z a;v; — Z bjhj — Z Z inijhj
=1 J=1 =1 j=1

2(0) = 3" exp(~E(v, b))
v,h
Because the connections in an RBM are only be-
tween visible and hidden variables, the conditional
distribution over a hidden or a visible variable is
quite simple:

273

p(hy =1v) = o(b; + > viwy;))
=1
p(v; = 1|h) = o(a; + Z hiw;j) (3)

j=1

where o(z) = 1/(1 + exp(—=x)) is the logistic sig-
moid function.

An RBM can be efficiently trained on a sequence
of visible vectors using the Contrastive Divergence
method (Hinton, 2002).

3.2 The Problem of Large Scale

In our syntactic and semantic parsing task, all fea-
tures are binary. So each data sample (an shift ac-
tion in syntactic parsing or an argument candidate in
semantic parsing) is represented as a binary feature
vector. By treating a sample’s feature vector as vis-
ible variable vector in an RBM, and taking hidden
variables as latent features, we could get the LFR
of this sample using the RBM. However, for our
syntactic and semantic parsing tasks, training such
an RBM is computationally impractical due to the
following considerations. Let m,n denote respec-
tively the number of visible and hidden variables in
the RBM. Then there are O(mn) parameters in this
RBM. If we train the RBM on d samples, then the
time complexity for Contrastive Divergence training
is O(mnd). For syntactic or semantic parsing, there
are over 1 million unique binary features, and mil-
lions of training samples. That means both m and d
are in an order of 10%. With m and n of that order,
n should not be chosen too small to get a sensible
LFR (Hinton, 2010). Our experience indicates that
n should be at least in an order of 103. Now we see
why the O(mnd) complexity is formidable for our
task.

3.3 Our DBN Model

A DBN is a probabilistic generative model that is
composed of multiple layers of stochastic, latent
variables (Hinton et al., 2006). The motivation of us-
ing a DBN is two-fold. First, previous research has
shown that a deep network can capture high-level
correlations between visible variables better than an
RBM (Bengio, 2009). Second, as shown in the pre-
ceding subsection, the large scale of our task poses

hl@.l..@ @.I..C) ere
00 @0 - @@

Figure 3: Our DBN model. The blue nodes stand for
the visible variables (v) and the blank node stands for the
hidden variables (h! and h?). The symbols are also used
in the figures of the following subsectins.

a great challenge for learning an LFR. By manipu-
lating the hierarchical structure of a DBN, we can
significantly reduce the number of parameters in the
DBN model. This largely reduces the computational
cost for training the DBN. Without this technique, it
is impractical to learn a DBN model with that many
parameters on large training sets.

As shown in Fig.3, our DBN model contains 2
layers of hidden variables: h', h?, and a visible vec-
tor v. The visible vector corresponds to a sample’s
original feature vector. The second-layer hidden
variable vector h? are used as the LFR of this sam-
ple.

Suppose there are m, ny, ny variables in v, h', h?
respectively. To reduce the number of parameters
in the DBN, we split its first layer (h' — v) into
k groups, as we will explain in the following sub-
section. We confine the connections in this layer
to variables within the same group. So there are
only mn; /k parameters in the first layer. Without
splitting, the number of parameters would be mn;.
Therefore, learning that many parameters requires
too much computation. By splitting, we reduce the
number of parameters by a factor of k. If we choose
k big enough, learning is feasible.

The second layer (h? — h') is fully connected, so
that the variables in the second layer can capture the
relations between variables in different groups in the
first layer. There are nine parameters in the sec-
ond layers. Because n1 and ny are relatively small,
learning the parameters in the second layer is also
feasible.

In summary, by splitting the first layer into
groups, we have largely reduced the number of pa-

274

rameters in our DBN model. This makes learning
our DBN model practical for our task. In our task,
visible variables corresponds to original binary fea-
tures and the second layer hidden variables are used
as the LFR of these original features. One deficiency
of splitting is that the relationships between original
features in different groups can not be captured by
hidden variables in the first layer. However, this de-
ficiency is compensated by using the second layer
to capture relationships between all variables in the
first layer. In this way, the second layer still cap-
tures the relationships between all original features
indirectly.

3.3.1 Splitting Features into Groups

When we split the first layer into k groups, ev-
ery group, except the last one, contains |m/k| vis-
ible variables and |n1/k]| hidden variables. The
last group contains the remaining visible and hidden
variables. But how to split the visible variables, i.e.,
the original features, into these groups? Of course
there are many ways to split the original features.
But it is difficult to find a good principle to split. So
we tried two splitting strategies in this paper. The
first strategy is very simple. We arrange all features
as the order they appeared in the training data . Sup-
pose each group contains r original features. We just
put the first r unique features of training data into the
first group, the following r unique features into the
second group, and so on.

The second strategy is more sophisticated. All
features can be divided into three categories: the
common features, the source-specific features and
the target-specific features. Its main idea is to make
each group contain the three categories of features
evenly, which we think makes the distribution of fea-
tures close to the ‘true’ distribution over domains.
Let Fs; and F; denote the sets of features that ap-
peared on source and target domain data respec-
tively. We collect Fs; and F} from our training data.
The features in Fs and F; are are ordered the same
as the order they appeared in training data. And let
Fy = Fs N Fy (the common features), Fs\t =
F\Fy (the source-specific features), Fy\, = Fy\Fy
(the target-specific features). So, to evenly dis-
tribute features in Fsny, Flo\; and Fi 4 to each group,
each group should consist of | Fyr|/k, |Fi\¢|/k and
|F\s|/k features from Fsqny, Fy\, and Fy , respec-

tively. Therefore, we put the first |Fs~|/k features
from Flry, the first |Fy\,|/k features from Fj, and
the first |F}\|/k features from Fj 4 into the first
group. Similarly, we put the second |Fyn;|/k fea-
tures from Fyy, the second |Fy\,|/k features from
F,\; and the second | F}\ ;| /k features from F}, , into
the second group. The intuition of this strategy is to
let features in Fy; act as pivot features that link fea-
tures in Fy\; and F}, 4 in each group. In this way, the
first hidden layer might capture better relationships
between features from source and target domains.

3.3.2 LFR of a Sample

Given a sample represented as a vector of origi-
nal features, our DBN model will represent it as a
vector of latent features. The sample’s original fea-
ture vector corresponds to the visible vector v in our
DBN model in Figure 3. Our DBN model uses the
second-layer hidden variable vector h? to represent
this sample. Therefore, we must infer the value of
hidden variables in the second-layer given the vis-
ible vector. This inference can be done using the
methods in Hinton et al., (2006). Given the visible
vector, the values of the hidden variables in every
layer can be efficiently inferred in a single, bottom-
up pass.

3.4 Training Our DBN Model

Inference in a DBN is simple and fast. Nonetheless,
training a DBN is more complicated. A DBN can be
trained in two stages: greedy layer-wise pretraining
and fine tuning (Hinton et al., 2006).

3.4.1 Greedy Layer-wise Pretraining

In this stage, the DBN is treated as a stack of
RBMs as shown in Figure 4.

The second layer is treated as a single RBM. The
first layer is treated as k parallel RBMs with each
group being one RBM. These £ RBMs are paral-
lel because their visible variable vectors constitute
a partition of the original feature vector. In this
stage, we train these constituent RBMs in a bottom-
up layer-wise manner.

To learn parameters in the first layer, we only need
to learn the parameters of each RBM in the first
layer. With the original feature vector v given, these
k RBMs can be trained using the Contrastive Diver-
gence method (Hinton, 2002). After the first layer is

275

RBM

h2

OO0 OO ~ OO0
O-0) (O-0) - (O~0

Figure 4: Stack of RBMs in pretraining.

trained, we will fix the parameters in the first layer
and start to train the second layer.

For the RBM of the second layer, its visible vari-
ables are the hidden variables in the first layer. Given
an original feature vector v, we first infer the acti-
vation probabilities for the hidden variables in the
first layer using equation (2). And we use these ac-
tivation probabilities as values for visible variables
in the second layer RBM. Then we train the second
layer RBM using contrastive divergence algorithm.
Note that the activation probabilities are not binary
values. But this is only a trick for training because
using probabilities generally produces better models
(Hinton et al., 2006). This trick does not change our
assumption that each variable is binary.

3.4.2 Fine Tuning

The greedy layer-wise pretraining initializes the
parameters of our DBN to sensible values. But these
values are not optimal and the parameters need to
be fine tuned. For fine tuning, we unroll the DBN to
form an autoencoder as in Hinton and Salakhutdinov
(2006), which is shown in Figure 5.

In this autoencoder, the stochastic activities of bi-
nary hidden variables are replaced by its activation
probabilities. So the autoencoder is in essence a
feed-forward neural network. We tune the param-
eters of our DBN model on this autoencoder using
backpropagation algorithm.

4 Domain Adaptation with Our DBN
Model

In this section, we introduce how to use our DBN
model to adapt a basic syntactic and semantic de-

Figure 5: Unrolling the DBN.

pendency parsing system to target domain.

4.1 The Basic Pipelined System

We build a typical pipelined system, which first an-
alyze syntactic dependencies, and then analyze se-
mantic dependencies. This basic system only serves
as a platform for experimenting with different fea-
ture representations. So we just briefly introduce our
basic system in this subsection.

4.1.1 Syntactic Dependency Parsing

For syntactic dependency parsing, we use a de-
terministic shift-reduce method as in Nivre et al.,
(2006). It has four basic actions: left-arc, right-arc,
shift, and reduce. A classifier is used to determine
an action at each step. To decide the label for each
dependency link, we extend the left/right-arc actions
to their corresponding multi-label actions, leading to
31 left-arc and 66 right-arc actions. Altogether a 99-
class problem is yielded for parsing action classifi-
cation. We add arcs to the dependency graph in an
arc eager manner as in Hall et al., (2007). We also
projectivize the non-projective sequences in training
data using the transformation from Nivre and Nils-
son (2005). A maximum entropy classifier is used
to make decisions at each step. The features utilized
are the same as those in Zhao et al., (2008).

4.1.2 Semantic Dependency Parsing

Our semantic dependency parser is similar to the
one in Che et al., (2009). We first train a predicate
sense classifier on training data, using the same fea-
tures as in Che et al., (2009). Again, a maximum en-

276

tropy classifier is employed. Given a predicate, we
need to decide its semantic dependency relation with
each word in the sentence. To reduce the number
of argument candidates, we adopt the pruning strat-
egy in Zhao et al., (2009), which is adapted from the
strategy in Xue and Palmer (2004). In the seman-
tic role classification stage, we use a maximum en-
tropy classifier to predict the probabilities of a can-
didate to be each semantic role. We train two differ-
ent classifiers for verb and noun predicates using the
same features as in Che et al., (2009). We use a sim-
ple method for post processing. If there are dupli-
cate arguments for ARGO~ARGS, we preserve the
one with the highest classification probability and
remove its duplicates.

4.2 Adapting the Basic System to Target
Domain

In our basic pipeline system, both the syntactic and
semantic dependency parsers are built using dis-
criminative models. We train a syntactic parsing
model and a semantic parsing model using the orig-
inal feature representation. We will refer to this syn-
tactic parsing model as OriSynModel, and the se-
mantic parsing model as OriSemModel. However,
these two models do not adapt well to the target do-
main. So we use the LFR of our DBN model to train
new syntactic and semantic parsing models. We will
refer to the new syntactic parsing model as LatSyn-
Model, and the new semantic parsing model as Lat-
SemModel. Details of using our DBN model are as
follows.

4.2.1 Adapting the Syntactic Parser

The input data for training our DBN model are
the original feature vectors on training and unla-
beled data. Therefore, to train our DBN model, we
first need to extract the original features for syntactic
parsing on these data. Features on training data can
be directly extracted using golden-standard annota-
tions. On unlabeled data, however, some features
cannot be directly extracted. This is because our
syntactic parser uses history-based features which
depend on previous actions taken when parsing a
sentence. Therefore, features on unlabeled data can
only be extracted after the data are parsed. To solve
this problem, we first parse the unlabeled data using
the already trained OriSynModel. In this way, we

can obtain the features on the unlabeled data. Be-
cause of the poor performance of the OriSynModel
on the target domain, the extracted features on un-
labeled data contains some noise. However, exper-
iments show that our DBN model can still learn a
good LFR despite the noise in the extracted features.
Using the LFR, we can train the syntactic parsing
model LatSynModel. Then by applying the LFR on
test and unlabeled data, we can parse the data using
LatSynModel. Experiments in later sections show
that the LatSynModel adapts much better to the tar-
get domain than the OriSynModel.

4.2.2 Adapting the Semantic Parser

The situation here is similar to the adaptation of
the syntactic parser. Features on training data can
be directly extracted. To extract features on unla-
beled data, we need to have syntactic dependency
trees on this data. So we use our LatSynModel to
parse the unlabeled data first. And we automatically
identify predicates on unlabeled data using a clas-
sifier as in Che et al., (2008). Then we extract the
original features for semantic parsing on unlabeled
data. By feeding original features extracted on these
data to our DBN model, we learn the LFR for se-
mantic dependency parsing. Using the LFR, we can
train the semantic parsing model LatSemModel.

S Experiments

5.1 Experiment Setup

5.1.1 Experiment Data

We use the English data in the CoNLL 2009
shared task for experiments. The training data
and in-domain test data are from the WSJ corpus,
whereas the out-of-domain test data is from the
Brown corpus. We also use unlabeled data consist-
ing of the following sections of the Brown corpus:
K, L, M, N, P. The test data are excerpts from fic-
tions. The unlabeled data are also excerpts from fic-
tions or stories, which are similar to the test data.
Although the unlabeled data is actually annotated in
Release 3 of the Penn Treebank, we do not use any
information contained in the annotation, only using
the raw texts. The training, test and unlabeled data
contains 39279, 425, and 16407 sentences respec-
tively.

277

5.1.2 Settings of Our DBN Model

For the syntactic parsing task, there are 748,598
original features in total. We use 7,486 hidden vari-
ables in the first layer and 3,743 hidden variables
in the second layer. For semantic parsing, there are
1,074,786 original features. We use 10,748 hidden
variables in the first layer and 5,374 hidden variables
in the second layer.

In our DBN models, we need to determine the
number of groups k. Because larger £ means less
computational cost, k£ should not be set too small.
We empirically set k£ as follows: according to our
experience, each group should contain about 5000
original features. We have about 10° original fea-
tures in our tasks. So we estimate k ~ 105/5000 =
200. And we set k to be 200 in the DBN models for
both syntactic and semantic parsing. As for split-
ting strategy, we use the more sophisticated one in
subsection 3.3.1 because it should generate better re-
sults than the simple one.

5.1.3 Details of DBN Training

In greedy pretraining of the DBN, the contrastive
divergence algorithm is configured as follows: the
training data is divided to mini-batches, each con-
taining 100 samples. The weights are updated with
a learning rate of 0.3, momentum of 0.9, weight de-
cay of 0.0001. Each layer is trained for 30 passes
(epochs) over the entire training data.

In fine-tuning, the backpropagation algorithm is
configured as follows: The training data is divided
to mini-batches, each containing 50 samples. The
weights are updated with a learning rate of 0.1, mo-
mentum of 0.9, weight decay of 0.0001. The fine-
tuning is repeated for 50 epochs over the entire train-
ing data.

We use the fast computing technique in Raina et
al., (2009) to learn the LFRs. Moreover, in greedy
pretraining, we train RBMs in the first layer in par-
allel.

5.2 Results and Discussion

We use the official evaluation measures of the
CoNLL 2009 shared task, which consist of three dif-
ferent scores: (i) syntactic dependencies are scored
using the labeled attachment score, (ii) semantic de-
pendencies are evaluated using a labeled F1 score,
and (iii) the overall task is scored with a macro av-

Test data | System | LAS | Sem F1 | Macro F1 Str | k | Time(th) | LAS | Sem F1 | Macro F1
WSJ Ori 87.63 | 84.82 86.24 100 392 85.95 | 82.42 84.19
Lat 87.30 | 84.25 85.80 ol 200 261 85.76 | 82.14 83.95
Brown Ori 79.72 | T71.57 75.67 300 218 85.48 | 81.68 83.58
Lat 82.84 | 78.75 80.83 400 196 84.80 | 80.24 82.52
100 392 86.22 | 83.03 84.63
Table 1: The results of our basic and adapted systems 200 261 86.10 | 82.89 84.50
52 300 218 85.72 | 82.24 83.98
erage of the two previous scores. The three scores 400 196 84.96 | 81.13 83.05

above are represented by LAS, Sem F1, and Macro
F1 respectively in this paper.

5.2.1 Comparison with Un-adapted System

Our basic system uses the OriSynModel for syn-
tactic parsing, and the OriSemModel for semantic
parsing. Our adapted system uses the LatSynModel
for syntactic parsing, and the LatSemModel for se-
mantic parsing. The results of these two systems are
shown in Table 1, in which our basic and adapted
systems are denoted as Ori and Lat respectively.

From the results in Table 1, we can see that Lat
performs slightly worse than Ori on in-domain WSJ
test data. But on the out-of-domain Brown test data,
Lat performs much better than Ori, with 5 points im-
provement in Macro F1 score. This shows the effec-
tiveness of our method for domain adaptation tasks.

5.2.2 Different Splitting Configurations

As described in subsection 5.1.2, we have em-
pirically set the number of groups k& to be 200 and
chosen the more sophisticated splitting strategy. In
this subsection, we experiment with different split-
ting configurations to see their effects.

Under each splitting configuration, we learn the
LFRs using our the DBN models. Using the LFRs,
we test the our adapted systems on both in-domain
and out-of-domain data. Therefore we get many test
results, each corresponding to a splitting configura-
tion. The in-domain and out-of-domain test results
are reported in Table 2 and Table 3 respectively. In
these two tables, ‘s1’ and ‘s2’ represents the sim-
ple and the more sophisticated splitting strategies
in subsection 3.3.1 respectively. ‘k’ represents the
number of groups in our DBN models. For both
syntactic and semantic parsing, we use the same k
in their DBN models. The ‘Time’ column reports
the training time of our DBN models for both syn-
tactic and semantic parsing. The unit of the “Time’

278

Table 2: Results of different splitting configurations on
in-domain WSJ development data

Str | k | Time(h) | LAS | Sem F1 | Macro F1
100 392 82.81 | 78.77 80.82

o 200 261 82.73 | 78.49 80.63
300 218 82.44 | 77.90 80.37
400 196 81.83 | 76.72 79.31
100 392 82.95 | 79.03 81.03

o 200 261 82.84 | 78.75 80.83
300 218 82.63 | 78.34 80.50
400 196 81.97 | 76.98 79.51

Table 3: Results of different splitting configurations on
out-of-domain Brown test data

column is the hour. Please note that we only need
to train our DBN models once. And we report the
training time in Table 2. For easy viewing, we re-
peat those training times in Table 3. But this does
not mean we need to train new DBN models for out-
of-domain test.

From Tables 2 and 3 we get the following obser-
vations:

First, although the more sophisticated splitting
strategy ‘s2’ generate slightly better result than the
simple strategy ‘sl’, the difference is not signifi-
cant. This means that the hierarchical structure of
our DBN model can robustly capture the relation-
ships between features. Even with the simple split-
ting strategy ‘s1’, we still get quite good results.

Second, the ‘Time’ column in Table 2 shows that
different splitting strategies with the same k value
has the same training time. This is reasonable be-
cause training time only depends on the number of
parameters in our DBN model. And different split-
ting strategies do not affect the number of parame-
ters in our DBN model.

Third, the number of groups k affects both the
training time and the final results. When k increases,
the training time reduces but the results degrade. As
k gets larger, the time reduction gets less obvious,
but the degradation of results gets more obvious.
When k& = 100, 200, 300, there is not much differ-
ence between the results. This shows that the results
of our DBN model is not sensitive to the values of
k within a range of 100 around our initial estima-
tion 200. But when k is further away from our es-
timation, e.g. k = 400, the results get significantly
worse.

Please note that the results in Tables 2 and 3 are
not used to tune the parameter k or to choose a split-
ting strategy in our DBN model. As mentioned in
subsection 5.1.2, we have chosen k = 200 and the
more sophisticated splitting strategy beforehand. In
this paper, we always use the results with £ = 200
and the ‘s2’ strategy as our main results, even though
the results with £ = 100 are better.

5.3 The Size of Unlabeled Target Domain Data

An interesting question for our method is how much
unlabeled target domain data should be used. To em-
pirically answer this question, we learn several LFRs
by gradually adding more unlabeled data to train our
DBN model. We compared the performance of these
LFRs as shown in Figure 6.

88

86 o

84
82
80

78

76 —e—Target Domain Test
—e—Source Domain Test
74
0 3000 6000 9000 12000 15000 18000

Figure 6: Macro F1 scores on test data with respect to the
size of unlabeled target domain data used in DBN train-
ing. The horizontal axis is the number of sentences in
unlabeled target domain data and the coordinate axis is
the Macro F1 Score.

From Figure 6, we can see that by adding more
unlabeled target domain data, our system adapts bet-
ter to the target domain with only small degradation

279

of result on source domain. However, with more un-
labeled data used, the improvement on target domain
result gradually gets smaller.

5.4 Comparison with other methods

In this subsection, we compare our method with sev-
eral systems. These are described below.

Daume07. Daumé III (2007) proposed a simple
and effective adaptation method by augmenting fea-
ture vector. Its main idea is to augment the feature
vector. They took each feature in the original prob-
lem and made three versions of it: a general version,
a source-specific version and a target-specific ver-
sion. Thus, the augmented source data contains only
general and source-specific versions; the augmented
target data contains general and target-specific ver-
sions. In the baseline system, we adopt the same
technique for dependency and semantic parsing.

Chen. The participation system of Zhao et al.,
(2009), reached the best result in the out-of-domain
test of the CoNLL 2009 shared task.

In Daumé III and and Marcu (2006), they pre-
sented and discussed several ‘obvious’ ways to at-
tack the domain adaptation problem without devel-
oping new algorithms. Following their idea, we con-
struct similar systems.

OnlySrc. The system is trained on only the data
of the source domain (News).

OnlyTgt. The system is trained on only the data
of the target domain (Fiction).

All. The system is trained on all data of the source
domain and the target domain.

It is worth noting that training the systems of
Daume(07, OnlyTgt and All need the labeled data
of the target domain. We utilize OnlySrec to parse
the unlabeled data of the target domain to generate
the labeled data.

ALI comparison results are shown in Table 4, in
which the ‘Diff” column is the difference of scores
on in-domain and out-of-domain test data.

First, we compare OnlySrc, OnlyTgt and All. We
can see that OnlyTgt performs very poor both in the
source domain and in the target domain. It is not
hard to understand that OnlyTgt performs poor in
the source domain because of the adaptation prob-
lem. OnlyTgt also performs poor in the target do-
main. We think the main reason is that OnlyTgt is
trained on the auto parsed data in which there are

Score System | WSJ | Brown | Diff
OnlySrc | 87.63 | 79.72 | 791

OnlyTgt | 73.25 | 78.30 | 5.05

LAS All 87.41 | 80.54 | 6.87
Daume(07 | 87.47 | 80.46 | 7.01

Chen 89.19 | 8238 | 6.81

Ours 87.30 | 82.84 | 4.46
OnlySrc | 84.82 | 71.57 | 13.25

OnlyTgt | 73.74 | 70.34 | 3.40
Sem Fl All 84.68 | 72.75 | 11.93
Daume07 | 84.52 | 72.90 | 11.62
Chen 86.15 | 74.58 | 11.57

Ours 84.25 | 78.75 | 5.50
OnlySrc | 86.24 | 75.67 | 10.57

OnlyTgt | 73.50 | 74.32 | 0.82

Macro Fl All 86.04 | 76.65 | 9.40
Daume(07 | 86.00 | 76.68 | 9.32

Chen 87.69 | 78.51 | 9.18

Ours 85.80 | 80.83 | 4.97

Table 4: Comparison with other methods.

many parsing errors. But we note that All performs
better than both OnlySrc and OnlyTgt on the target
domain test, although its training data contains some
auto parsed data. Therefore, the data of the target
domain, labeled or unlabeled, are potential in alle-
viating the adaptation problem of different domains.
But A/l just puts the auto parsed data of the target
domain into the training set. Thus, its improvement
on the test data of the target domain is limited. In
fact, how to use the data of the target domain, espe-
cially the unlabeled data, in the adaptation problem
is still an open and hot topic in NLP and machine
learning.

Second, we compare Daume0O7, All and our
method. In Daume07, they reported improvement
on the target domain test. But one point to note
is that the target domain data used in their experi-
ments is labeled while in our case there is only un-
labeled data. We can see Daume07 have compara-
ble performance with All in which there is not any
adaptation strategy besides adding more data of the
target domain. We think the main reason is that
there are many parsing errors in the data of the tar-
get domain. But our method performs much better
than Daume07 and All even though some faulty data

280

are also utilized in our system. This suggests that
our method successfully learns new robust represen-
tations for different domains, even when there are
some noisy data.

Third, we compare Chen with our method. Chen
reached the best result in the out-of-domain test of
the CoNLL 2009 shared task. The results in Table 4
show that Chen’s system performs better than ours
on in-domain test data, especially on LAS score.
Chen’s system uses a sophisticated graph-based syn-
tactic dependency parser. Graph-based parsers use
substantially more features, e.g. more than 1.3 X
107 features are used in McDonald et al., (2005).
Learning an LFR for that many features would take
months of time using our DBN model. So at present
we only use a transition-based parser. The better per-
formance of Chen’s system mainly comes from their
sophisticated syntactic parsing method.

To reduce the sparsity of features, Chen’s sys-
tem uses word cluster features as in Koo et al.,
(2008). On out-of-domain tests, however, our sys-
tem still performs much better than Chen’s, espe-
cially on semantic parsing. To our knowledge, on
out-of-domain tests on this data set, our system has
obtained the best performance to date. More im-
portantly, the performance difference between indo-
main and out-of-domain tests is much smaller in our
system. This shows that our system adapts much
better to the target domain.

6 Conclusions

In this paper, we propose a DBN model to learn
LFRs for syntactic and semantic parsers. These
LFRs are common representations of original fea-
tures in both source and target domains. Syntactic
and semantic parsers using the LFRs adapt to tar-
get domain much better than the same parsers us-
ing original feature representation. Our model pro-
vides a unified method that adapts both syntactic and
semantic dependency parsers to a new domain. In
the future, we hope to further scale up our method
to adapt parsing models using substantially more
features, such as graph-based syntactic dependency
parsing models. We will also search for better split-
ting strategies for our DBN model. Finally, although
our experiments are conducted on syntactic and se-
mantic parsing, it is expected that the proposed ap-

proach can be applied to the domain adaptation of
other tasks with little adaptation efforts.

Acknowledgements

The research work has been partially funded by the
Natural Science Foundation of China under Grant
No0.61333018 and supported by the West Light
Foundation of Chinese Academy of Sciences under
Grant No.LHXZ201301. We thank the three anony-
mous reviewers and the Action Editor for their help-
ful comments and suggestions.

References

Yoshua Bengio. 2009. Learning Deep Architectures for
Al In Foundations and Trends in Machine Learning,
2(1):1-127.

John Blitzer, Ryan McDonald and Fernando Pereira.
2006. Domain Adaptation with sturctural correspon-
dance learning. In Proceedings of ACL-2006.

Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang Li,
Bing Qin, Ting Liu and Sheng Li. 2008. A Cascaded
Syntactic and Semantic Dependency Parsing System.
In Proceedings of CoNLL-2008 shared task.

Wanxiang Che, Zhenghua Li, Yonggiang Li, Yuhang
Guo, Bing Qin and Ting Liu. 2009. Multilingual
Dependency-based Syntactic and Semantic Parsing.
In Proceedings of CoNLL-2009 shared task.

Wenliang Chen, YouzhengWu and Hitoshi Isahara. 2008.
Learning reliable information for dependency parsing
adaptation. In Proceedings of COLING-2008.

Hal Daumé III. 2007. Frustratingly Easy Domain Adap-
tation. In Proceedings of ACL-2007.

Hal Daumé III and Daniel Marcu. 2006. Domain Adap-
tation for Statistical Classifer. In Journal of Artificial
Intelligence Research, 26(2006), 101-126.

Mark Dredze, John Blitzer, Partha P. Talukdar, Kuzman
Ganchev, Joao Graca and Fernando Pereira. 2007.
Frustratingly Hard Domain Adaptation for Depen-
dency Parsing. In Proceedings of EMNLP-CoNLL-
2007.

Xavier Glorot, Antoine Bordes and Yoshua Bengio.
2011. Domain Adaptation for Large-Scale Sentiment
Classification: A Deep Learning Approach. In Pro-
ceedings of International Conference on Machine
Learning (ICML) 2011.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling for semantic roles. In Computational Linguis-
tics, 28(3): 245-288.

I. Goodfellow, Q. Le, A. Saxe and A. Ng. 2009. Mea-
suring invariances in deep networks. In Proceedings

281

of Advances in Neural Information Processing Sys-
tems(NIPS)2011.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Padé, Jan §tépének, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue and Yi Zhang. 2009. The CoNLL-2009
Shared Task: Syntactic and Semantic Dependencies in
Multiple Languages. In Proceedings of CoNLL-2009.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M.
Nilsson, and M. Saers. 2007. Single Malt or Blended?
A Study in Multilingual Parser Optimization. In Pro-
ceedings of EMNLP-CoNLL-2007.

Geoffrey Hinton. 2010. A Practical Guide to Train-
ing Restricted Boltzmann Machines. In Technical re-
port 2010-003, Machine Learning Group, University
of Toronto.

Geoffrey Hinton. 2002. Training products of experts by
minimizing constrastive divergence. In Neural Com-
putation, 14(8): 1711-1800.

Geoffrey Hinton, Simon Osindero and Yee-Whye Teh.
2006. A fast learning algorithm for deep belief nets.
In Neural Computation, 18(7): 1527-1554.

Geoffrey Hinton and R. Salakhutdinov. 2006. Reducing
the dimensionality of data with neural networks. In
Science, 313(5786), 504-507.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based semantic role labeling of Prop-
Bank. In Proceedings of EMNLP-2008.

Terry Koo, Xavier Carreras and Michael Collins. 2008.
Simple Semi-supervised Dependency Parsing. In Pro-
ceedings of ACL-HLT-2008.

Lluis Marquez, Xavier Carreras, Kenneth C.Litkowski
and Suzanne Stevenson. 2008. Semantic Role Label-
ing: An Introduction to the Special Issue. In Compu-
tational Linguistics, 34(2):145-159.

Ryan McDonald, Fernando Pereira, Jan Haj"c, and Kiril
Ribarov. 2005. Non-projective dependency parsing
using spanning tree algortihms. In Proceedings of
NAACL-HLT-2005.

J. Nivre, J. Hall, S. Kiibler, R. Mcdonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing. In Proceedings
of CoNLL-2007.

J. Nivre, J. Hall, J. Nilsson, G. Eryigit and S. Marinov.
2006. Labeled Pseudo-Projective Dependency Parsing
with Support Vector Machines. In Proceedings of
CoNLL-2006.

J. Nivre, and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proceedings of ACL-2005.

Rajat Raina, Anand Madhavan, and Andrew Y. Ng.
2009. Large-scale Deep Unsupervised Learning us-
ing Graphics Processors. In Proceedings of the 26th

Annual International Conference on Machine Learn-
ing(ICML), pages 152-164.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluis Marquez and Joakim Nivre. 2008. The CoNLL-
2008 Shared Task on Joint Parsing of Syntactic and
Semantic Dependencies. In Proceedings of CoNLL-
2008.

Ivan Titov. 2011. Domain Adaptation by Constraining
Inter-Domain Variability of Latent Feature Represen-
tation. In Proceedings of ACL-2011.

Joseph Turian, Lev Ratinov and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of ACL-
2010.

J. Weston, F. Rattle, and R. Collobert. 2008. Deep Learn-
ing via Semi-Supervised Embedding. In Proceed-
ings of International Conference on Machine Learn-
ing(ICML).

Nianwen Xue and Martha Palmer. 2004. Calibrating fea-
tures for semantic role labeling. In Proceedings of
EMNLP-2004.

Haitong Yang and Chengqing Zong. 2014. Multi-
Predicate Semantic Role Labeling. In Proceedings of
EMNLP-2014.

Hai Zhao, Wenliang Chen, Chunyu Kit, Guodong Zhou.
2009. Multilingual Dependency Learning: Exploiting
Rich Features for Tagging Syntactic and Semantic De-
pendencies. In Proceedings of CoNLL-2009 shared
task.

Hai Zhao and Chunyu Kit. 2008. Parsing Syntactic and
Semantic Dependencies with Two Single-Stage Max-
imum Entropy Models. In Proceedings of CoNLL-
2008.

Tao Zhuang and Chengqing Zong. 2010a. A Minimum
Error Weighting Combination Strategy for Chinese Se-
mantic Role Labeling. In Proceedings of COLING
2010.

Tao Zhuang and Chengqing Zong. 2010b. Joint Inference
for Bilingual Semantic Role Labeling. In Proceedings
of EMNLP 2010.

282

