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Abstract

Recent trends suggest that neural-
network-inspired word embedding models
outperform traditional count-based distri-
butional models on word similarity and
analogy detection tasks. We reveal that
much of the performance gains of word
embeddings are due to certain system
design choices and hyperparameter op-
timizations, rather than the embedding
algorithms themselves. Furthermore,
we show that these modifications can be
transferred to traditional distributional
models, yielding similar gains. In contrast
to prior reports, we observe mostly local
or insignificant performance differences
between the methods, with no global
advantage to any single approach over the
others.

1 Introduction

Understanding the meaning of a word is at the
heart of natural language processing (NLP). While
a deep, human-like, understanding remains elu-
sive, many methods have been successful in recov-
ering certain aspects of similarity between words.

Recently, neural-network based approaches
in which words are “embedded” into a low-
dimensional space were proposed by various au-
thors (Bengio et al., 2003; Collobert and Weston,
2008). These models represent each word as a d-
dimensional vector of real numbers, and vectors
that are close to each other are shown to be se-
mantically related. In particular, a sequence of pa-
pers by Mikolov et al. (2013a; 2013b) culminated
in the skip-gram with negative-sampling training
method (SGNS): an efficient embedding algorithm
that provides state-of-the-art results on various lin-
guistic tasks. It was popularized via word2vec,
a program for creating word embeddings.

A recent study by Baroni et al. (2014) con-
ducts a set of systematic experiments compar-
ing word2vec embeddings to the more tradi-
tional distributional methods, such as pointwise
mutual information (PMI) matrices (see Turney
and Pantel (2010) and Baroni and Lenci (2010)
for comprehensive surveys). These results suggest
that the new embedding methods consistently out-
perform the traditional methods by a non-trivial
margin on many similarity-oriented tasks. How-
ever, state-of-the-art embedding methods are all
based on the same bag-of-contexts representation
of words. Furthermore, analysis by Levy and
Goldberg (2014c) shows that word2vec’s SGNS
is implicitly factorizing a word-context PMI ma-
trix. That is, the mathematical objective and the
sources of information available to SGNS are in
fact very similar to those employed by the more
traditional methods.

What, then, is the source of superiority (or per-
ceived superiority) of these recent embeddings?

While the focus of the presentation in the word-
embedding literature is on the mathematical model
and the objective being optimized, other factors af-
fect the results as well. In particular, embedding
algorithms suggest some natural hyperparameters
that can be tuned; many of which were already
tuned to some extent by the algorithms’ design-
ers. Some hyperparameters, such as the number
of negative samples to use, are clearly marked as
tunable. Other modifications, such as smoothing
the negative-sampling distribution, are reported in
passing and considered thereafter as part of the al-
gorithm. Others still, such as dynamically-sized
context windows, are not even mentioned in some
of the papers, but are part of the canonical imple-
mentation. All of these modifications and system
design choices, which we collectively denote as
hyperparameters, are part of the final algorithm,
and, as we show, have a substantial impact on per-
formance.
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In this work, we make these hyperparameters
explicit, and show how they can be adapted and
transferred into the traditional count-based ap-
proach. To asses how each hyperparameter con-
tributes to the algorithms’ performance, we con-
duct a comprehensive set of experiments and com-
pare four different representation methods, while
controlling for the various hyperparameters.

Once adapted across methods, hyperparameter
tuning significantly improves performance in ev-
ery task. In many cases, changing the setting of a
single hyperparameter yields a greater increase in
performance than switching to a better algorithm
or training on a larger corpus.

In particular, word2vec’s smoothing of the
negative sampling distribution can be adapted
to PPMI-based methods by introducing a novel,
smoothed variant of the PMI association measure
(see Section 3.2). Using this variant increases per-
formance by over 3 points per task, on average.
We suspect that this smoothing partially addresses
the “Achilles’ heel” of PMI: its bias towards co-
occurrences of rare words.

We also show that when all methods are allowed
to tune a similar set of hyperparameters, their per-
formance is largely comparable. In fact, there is no
consistent advantage to one algorithmic approach
over another, a result that contradicts the claim that
embeddings are superior to count-based methods.

2 Background

We consider four word representation methods:
the explicit PPMI matrix, SVD factorization of
said matrix, SGNS, and GloVe. For historical
reasons, we refer to PPMI and SVD as “count-
based” representations, as opposed to SGNS and
GloVe, which are often referred to as “neural”
or “prediction-based” embeddings. All of these
methods (as well as all other “skip-gram”-based
embedding methods) are essentially bag-of-words
models, in which the representation of each word
reflects a weighted bag of context-words that co-
occur with it. Such bag-of-word embedding mod-
els were previously shown to perform as well as
or better than more complex embedding methods
on similarity and analogy tasks (Mikolov et al.,
2013a; Pennington et al., 2014).

Notation We assume a collection of words w ∈
VW and their contexts c ∈ VC , where VW and VC
are the word and context vocabularies, and denote
the collection of observed word-context pairs as

D. We use #(w, c) to denote the number of times
the pair (w, c) appears in D. Similarly, #(w) =∑

c′∈VC #(w, c′) and #(c) =
∑

w′∈VW #(w′, c)
are the number of times w and c occurred in D,
respectively. In some algorithms, words and con-
texts are embedded in a space of d dimensions.
In these cases, each word w ∈ VW is associated
with a vector ~w ∈ Rd and similarly each con-
text c ∈ VC is represented as a vector ~c ∈ Rd.
We sometimes refer to the vectors ~w as rows in a
|VW |×d matrix W , and to the vectors ~c as rows
in a |VC |×d matrix C. When referring to embed-
dings produced by a specific method x, we may
useW x and Cx (e.g. WSGNS or CSV D). All vec-
tors are normalized to unit length before they are
used for similarity calculation, making cosine sim-
ilarity and dot-product equivalent (see Section 3.3
for further discussion).

Contexts D is commonly obtained by taking a
corpus w1, w2, . . . , wn and defining the contexts
of word wi as the words surrounding it in an L-
sized window wi−L, . . . , wi−1, wi+1, . . . , wi+L.
While other definitions of contexts have been stud-
ied (Padó and Lapata, 2007; Baroni and Lenci,
2010; Levy and Goldberg, 2014a) this work fo-
cuses on fixed-window bag-of-words contexts.

2.1 Explicit Representations (PPMI Matrix)

The traditional way to represent words in the
distributional approach is to construct a high-
dimensional sparse matrix M , where each row
represents a word w in the vocabulary VW and
each column a potential context c ∈ VC . The value
of each matrix cell Mij represents the association
between the wordwi and the context cj . A popular
measure of this association is pointwise mutual in-
formation (PMI) (Church and Hanks, 1990). PMI
is defined as the log ratio between w and c’s joint
probability and the product of their marginal prob-
abilities, which can be estimated by:

PMI(w, c) = log P̂ (w,c)

P̂ (w)P̂ (c)
= log #(w,c)·|D|

#(w)·#(c)

The rows of MPMI contain many entries of word-
context pairs (w, c) that were never observed in
the corpus, for which PMI(w, c) = log 0 = −∞.
A common approach is thus to replace the MPMI

matrix with MPMI
0 , in which PMI(w, c) = 0 in

cases where #(w, c) = 0. A more consistent ap-
proach is to use positive PMI (PPMI), in which all
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negative values are replaced by 0:

PPMI(w, c) = max (PMI (w, c) , 0)

Bullinaria and Levy (2007) showed that MPPMI

outperforms MPMI
0 on semantic similarity tasks.

A well-known shortcoming of PMI, which per-
sists in PPMI, is its bias towards infrequent events
(Turney and Pantel, 2010). A rare context c
that co-occurred with a target word w even once,
will often yield relatively high PMI score because
P̂ (c), which is in PMI’s denominator, is very
small. This creates a situation in which the top
“distributional features” (contexts) of w are often
extremely rare words, which do not necessarily
appear in the respective representations of words
that are semantically similar to w. Nevertheless,
the PPMI measure is widely regarded as state-of-
the-art for these kinds of distributional-similarity
models.

2.2 Singular Value Decomposition (SVD)

While sparse vector representations work well,
there are also advantages to working with dense
low-dimensional vectors, such as improved com-
putational efficiency and, arguably, better gener-
alization. Such vectors can be obtained by per-
forming dimensionality reduction over the sparse
high-dimensional matrix.

A common method of doing so is truncated Sin-
gular Value Decomposition (SVD), which finds
the optimal rank d factorization with respect to L2

loss (Eckart and Young, 1936). It was popular-
ized in NLP via Latent Semantic Analysis (LSA)
(Deerwester et al., 1990).

SVD factorizes M into the product of three ma-
trices U · Σ · V >, where U and V are orthonor-
mal and Σ is a diagonal matrix of eigenvalues in
decreasing order. By keeping only the top d ele-
ments of Σ, we obtain Md = Ud · Σd · V >d . The
dot-products between the rows ofW = Ud ·Σd are
equal to the dot-products between rows of Md.

In the setting of word-context matrices, the
dense, d-dimensional rows ofW can substitute the
very high-dimensional rows of M . Indeed, a com-
mon approach in NLP literature is factorizing the
PPMI matrix MPPMI with SVD, and then taking
the rows of:

W SVD = Ud · Σd CSVD = Vd (1)

as word and context representations, respectively.

2.3 Skip-Grams with Negative Sampling
(SGNS)

We present a brief sketch of SGNS – the skip-gram
embedding model introduced in (Mikolov et al.,
2013a) trained using the negative-sampling proce-
dure presented in (Mikolov et al., 2013b). A de-
tailed derivation of SGNS is available in (Gold-
berg and Levy, 2014).

SGNS seeks to represent each word w ∈ VW
and each context c ∈ VC as d-dimensional vec-
tors ~w and ~c, such that words that are “similar”
to each other will have similar vector representa-
tions. It does so by trying to maximize a function
of the product ~w · ~c for (w, c) pairs that occur in
D, and minimize it for negative examples: (w, cN )
pairs that do not necessarily occur in D. The neg-
ative examples are created by stochastically cor-
rupting observed (w, c) pairs from D – hence the
name “negative sampling”. For each observation
of (w, c), SGNS draws k contexts from the em-
pirical unigram distribution PD(c) = #(c)

|D| . In
word2vec’s implementation of SGNS, this dis-
tribution is smoothed, a design choice that boosts
its performance. We explore this hyperparameter
and others in Section 3.

SGNS as Implicit Matrix Factorization Levy
and Golberg (2014c) show that SGNS’s corpus-
level objective achieves its optimal value when:

~w · ~c = PMI(w, c)− log k

Hence, SGNS is implicitly factorizing a word-
context matrix whose cell’s values are PMI,
shifted by a global constant (log k):

W · C> = MPMI − log k

SGNS performs a different kind of factorization
from traditional SVD (see 2.2). In particular, the
factorization’s loss function is not based on L2,
and is much less sensitive to extreme and infi-
nite values due to a sigmoid function surrounding
~w · ~c. Furthermore, the loss is weighted, caus-
ing rare (w, c) pairs to affect the objective much
less than frequent ones. Thus, while many cells in
MPMI equal log 0 = −∞, the cost incurred for re-
constructing these cells as a small negative value,
such as −5 instead of as −∞, is negligible.1

1The logistic (sigmoidal) objective also curbs very high
positive values of PMI. We suspect that this property, along
with the weighted factorization property, addresses the afore-
mentioned shortcoming of PMI, i.e. its overweighting of in-
frequent events.
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An additional difference from SVD, which will
be explored further in Section 3.3, is that SVD
factorizes M into three matrices, two of them or-
thonormal and one diagonal, while SGNS factor-
izes M into two unconstrained matrices.

2.4 Global Vectors (GloVe)
GloVe (Pennington et al., 2014) seeks to represent
each word w ∈ VW and each context c ∈ VC as
d-dimensional vectors ~w and ~c such that:

~w · ~c+ bw + bc = log (#(w, c)) ∀(w, c) ∈ D
Here, bw and bc (scalars) are word/context-specific
biases, and are also parameters to be learned in
addition to ~w and ~c.

GloVe’s objective is explicitly defined as a fac-
torization of the log-count matrix, shifted by the
entire vocabularies’ bias terms:

M log(#(w,c)) ≈W · C> + ~bw + ~bc

Where ~bw is a |VW | dimensional row vector and ~bc

is a |VC | dimensional column vector.
If we were to fix bw = log #(w) and bc =

log #(c), this would be almost2 equivalent to fac-
torizing the PMI matrix shifted by log(|D|). How-
ever, GloVe learns these parameters, giving an ex-
tra degree of freedom over SVD and SGNS. The
model is fit to minimize a weighted least square
loss, giving more weight to frequent (w, c) pairs.3

Finally, an important novelty introduced in
(Pennington et al., 2014) is that, assuming VC =
VW , one could take the representation of a word
w to be ~w + ~cw where ~cw is the row correspond-
ing to w in C>. This may improve results con-
siderably in some circumstances, as we discuss in
Sections 3.3 and 6.2.

3 Transferable Hyperparameters

This section presents various hyperparameters im-
plemented in word2vec and GloVe, and shows
how to adapt and apply them to count-based
methods. We divide these into: pre-processing
hyperparameters, which affect the algorithms’
input data; association metric hyperparameters,
which define how word-context interactions are
calculated; and post-processing hyperparameters,
which modify the resulting word vectors.

2GloVe’s objective ignores (w, c) pairs that do not co-
occur in the training corpus, treating them as missing values.
SGNS, on the other hand, does take such pairs into account
through the negative sampling procedure.

3The weighting formula is another hyper-parameter that
could be tuned, but we keep to the default weighting scheme.

3.1 Pre-processing Hyperparameters
All the matrix-based algorithms rely on a col-
lection D of word-context pairs (w, c) as inputs.
word2vec introduces three novel variations on
the way D is collected, which can be easily ap-
plied to other methods beyond SGNS.

Dynamic Context Window (dyn) The tradi-
tional approaches usually use a constant-sized un-
weighted context window. For instance, if the win-
dow size is 5, then a word five tokens apart from
the target is treated the same as an adjacent word.
Following the intuition that contexts closer to the
target are more important, context words can be
weighted according to their distance from the fo-
cus word. Both GloVe and word2vec employ
such a weighting scheme, and while less com-
mon, this approach was also explored in tradi-
tional count-based methods, e.g. (Sahlgren, 2006).

GloVe’s implementation weights contexts using
the harmonic function, e.g. a context word three
tokens away will be counted as 1

3 of an occurrence.
On the other hand, word2vec’s implementation
is equivalent to weighing by the distance from the
focus word divided by the window size. For ex-
ample, a size-5 window will weigh its contexts by
5
5 ,

4
5 ,

3
5 ,

2
5 ,

1
5 .

The reason we call this modification dynamic
context windows is because word2vec imple-
ments its weighting scheme by uniformly sam-
pling the actual window size between 1 and L, for
each token (Mikolov et al., 2013a). The sampling
method is faster than the direct method in terms of
training time, since there are fewer SGD updates
in SGNS and fewer non-zero matrix cells in the
other methods. For our systematic experiments,
we used the word2vec-style sampled version for
all methods, including GloVe.

Subsampling (sub) Subsampling is a method
of diluting very frequent words, akin to removing
stop-words. The subsampling method presented in
(Mikolov et al., 2013a) randomly removes words
that are more frequent than some threshold twith a
probability of p, where f marks the word’s corpus
frequency:

p = 1−
√
t

f
(2)

Following the recommendation in (Mikolov et al.,
2013a), we use t = 10−5 in our experiments.4

4word2vec’s code implements a slightly different for-
mula: p = f−t

f
−

√
t
f

. We followed the formula presented
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Another implementation detail of subsampling
in word2vec is that the removal of tokens is
done before the corpus is processed into word-
context pairs. This practically enlarges the con-
text window’s size for many tokens, because they
can now reach words that were not in their origi-
nal L-sized windows. We call this kind of subsam-
pling “dirty”, as opposed to “clean” subsampling,
which removes subsampled words without affect-
ing the context window’s size. We found their im-
pact on performance comparable, and report re-
sults of only the “dirty” variant.

Deleting Rare Words (del) While it is com-
mon to ignore words that are rare in the training
corpus, word2vec removes these tokens from
the corpus before creating context windows. As
with subsampling, this variation narrows the dis-
tance between tokens, inserting new word-context
pairs that did not exist in the original corpus with
the same window size. Though this variation may
also have an effect on performance, preliminary
experiments showed that it was small, and we
therefore do not investigate its effect in this paper.

3.2 Association Metric Hyperparameters
The PMI (or PPMI) between a word and its con-
text is well known to be an effective association
measure in the word similarity literature. Levy and
Golberg (2014c) show that SGNS is implicitly fac-
torizing a word-context matrix whose cell’s val-
ues are shifted PMI. Following their analysis, we
present two variations of the PMI (and implicitly
PPMI) association metric, which we adopt from
SGNS. These enhancements of PMI are not di-
rectly applicable to GloVe, which, by definition,
uses a different association measure.

Shifted PMI (neg) SGNS has a natural hyper-
parameter k (the number of negative samples),
which affects the value that SGNS is trying to op-
timize for each (w, c): PMI(w, c) − log k. The
shift caused by k > 1 can be applied to distri-
butional methods through shifted PPMI (Levy and
Goldberg, 2014c):

SPPMI(w, c) = max (PMI (w, c)− log k, 0)

It is important to understand that in SGNS, k has
two distinct functions. First, it is used to better
estimate the distribution of negative examples; a
higher k means more data and better estimation.

in the original paper (equation 2).

Second, it acts as a prior on the probability of ob-
serving a positive example (an actual occurrence
of (w, c) in the corpus) versus a negative example;
a higher k means that negative examples are more
probable. Shifted PPMI captures only the second
aspect of k (a prior). We experiment with three
values of k: 1, 5, 15.

Context Distribution Smoothing (cds) In
word2vec, negative examples (contexts) are
sampled according to a smoothed unigram dis-
tribution. In order to smooth the original con-
texts’ distribution, all context counts are raised to
the power of α (Mikolov et al. (2013b) found
α = 0.75 to work well). This smoothing varia-
tion has an analog when calculating PMI directly:

PMIα (w, c) = log
P̂ (w, c)

P̂ (w)P̂α(c)
(3)

P̂α(c) =
# (c)α∑
c # (c)α

Like other smoothing techniques (Pantel and Lin,
2002; Turney and Littman, 2003), context distri-
bution smoothing alleviates PMI’s bias towards
rare words. It does so by enlarging the probability
of sampling a rare context (since P̂α(c) > P̂ (c)
when c is infrequent), which in turn reduces the
PMI of (w, c) for any w co-occurring with the rare
context c. In Section 6.2 we demonstrate that this
novel variant of PMI is very effective, and consis-
tently improves performance across tasks, meth-
ods, and configurations. We experiment with two
values of α: 1 (unsmoothed) and 0.75 (smoothed).

3.3 Post-processing Hyperparameters

We present three hyperparameters that modify the
algorithms’ output: the word vectors.

Adding Context Vectors (w+c) Pennington et
al. (2014) propose using the context vectors in ad-
dition to the word vectors as GloVe’s output. For
example, the word “cat” can be represented as:

~vcat = ~wcat + ~ccat

where ~w and ~c are the word and context embed-
dings, respectively.

This vector combination was originally moti-
vated as an ensemble method. Here, we provide
a different interpretation of its effect on the co-
sine similarity function. Specifically, we show
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that adding context vectors effectively adds first-
order similarity terms to the second-order similar-
ity function.

Consider the cosine similarity of two words:

cos(x, y) =
~vx · ~vy√

~vx · ~vx
√
~vy · ~vy

=

(~wx + ~cx) · (~wy + ~cy)√
(~wx + ~cx) · (~wx + ~cx)

√
(~wy + ~cy) · (~wy + ~cy)

=
~wx · ~wy + ~cx · ~cy + ~wx · ~cy + ~cx · ~wy√
~w2
x + 2~wx · ~cx + ~c2x

√
~w2
y + 2~wy · ~cy + ~c2y

=
~wx · ~wy + ~cx · ~cy + ~wx · ~cy + ~cx · ~wy

2
√
~wx · ~cx + 1

√
~wy · ~cy + 1

(4)

(The last step follows because, as noted in Sec-
tion 2, the word and context vectors are normal-
ized after training.)

The resulting expression combines similarity
terms which can be divided into two groups:
second-order similarity (wx ·wy, cx · cy) and first-
order similarity (w∗ · c∗). The second-order terms
measure the extent to which the two words are re-
placeable based on their tendencies to appear in
similar contexts, and are the manifestation of Har-
ris’s (1954) distributional hypothesis. The first-
order terms measure the tendency of one word to
appear in the context of the other.

In SVD and SGNS, the first-order similarity
terms between w and c converge to PMI(w, c),
while in GloVe it converges into their log-count
(with some bias terms).

The similarity calculated in equation 4 is thus a
symmetric combination of the first-order and sec-
ond order similarities of x and y, normalized by a
function of their reflective first-order similarities:

sim(x, y) =
sim2(x, y) + sim1(x, y)√

sim1(x, x) + 1
√
sim1(y, y) + 1

This similarity measure states that words are
similar if they tend to appear in similar contexts,
or if they tend to appear in the contexts of each
other (and preferably both).

The additive w+c representation can be triv-
ially applied to other methods that produce distinct
word and context vectors (e.g. SVD and SGNS).
On the other hand, explicit methods such as PPMI
are sparse by definition, and nullify the vast ma-
jority of first-order similarities. We therefore do
not apply w+c to PPMI in this study.

Eigenvalue Weighting (eig) As mentioned in
Section 2.2, the word and context vectors derived
using SVD are typically represented by (equa-
tion 1):

W SVD = Ud · Σd CSVD = Vd

However, this is not necessarily the optimal con-
struction of W SVD for word similarity tasks. We
note that in the SVD-based factorization, the re-
sulting word and context matrices have very dif-
ferent properties. In particular, the context ma-
trix CSVD is orthonormal while the word matrix
W SVD is not. On the other hand, the factorization
achieved by SGNS’s training procedure is much
more “symmetric”, in the sense that neitherWW2V

nor CW2V is orthonormal, and no particular bias is
given to either of the matrices in the training ob-
jective. Similar symmetry can be achieved with
the following factorization:

W = Ud ·
√

Σd C = Vd ·
√

Σd (5)

Alternatively, the eigenvalue matrix can be dis-
missed altogether:

W = Ud C = Vd (6)

While it is not theoretically clear why the
symmetric approach is better for semantic tasks,
it does work much better empirically (see Sec-
tion 6.1). A similar observation was made by
Caron (2001), who suggested adding a parameter
p to control the eigenvalue matrix Σ:

W SVDp = Ud · Σp
d

Later studies show that weighting the eigenvalue
matrix Σd with the exponent p can have a signif-
icant effect on performance, and should be tuned
(Bullinaria and Levy, 2012; Turney, 2012). Adapt-
ing the notion of symmetric decomposition from
SGNS, this study experiments only with symmet-
ric variants of SVD (p = 0, p = 0.5; equations (6)
and (5)) and the traditional factorization (p = 1;
equation (1)).

Vector Normalization (nrm) As mentioned in
Section 2, all vectors (i.e. W ’s rows) are normal-
ized to unit length (L2 normalization), rendering
the dot product operation equivalent to cosine sim-
ilarity. This normalization is a hyperparameter set-
ting in itself, and other normalizations are also ap-
plicable. The trivial case is using no normalization
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Hyper- Explored Applicable
parameter Values Methods
win 2, 5, 10 All
dyn none, with All
sub none, dirty, clean† All
del none, with† All
neg 1, 5, 15 PPMI, SVD, SGNS
cds 1, 0.75 PPMI, SVD, SGNS
w+c only w, w + c SVD, SGNS, GloVe
eig 0, 0.5, 1 SVD
nrm none†, row, col†, both† All

Table 1: The space of hyperparameters explored in this work.
†Explored only in preliminary experiments.

at all. Another setting, used by Pennington et al.
(2014), normalizes the columns of W rather than
its rows. It is also possible to consider a fourth
setting that combines both row and column nor-
malizations.

Note that column normalization is akin to dis-
missing the eigenvalues in SVD. While the hy-
perparameter setting eig = 0 has an important
positive impact on SVD, the same cannot be said
of column normalization on other methods. In
preliminary experiments, we tried the four differ-
ent normalization schemes described above (none,
row, column, and both), and found the standard L2

normalization of W ’s rows (i.e. using the cosine
similarity measure) to be consistently superior.

4 Experimental Setup

We explored a large space of hyperparameters,
representations, and evaluation datasets.

4.1 Hyperparameter Space
Table 1 enumerates the hyperparameter space. We
generated 72 PPMI, 432 SVD, 144 SGNS, and 24
GloVe representations; 672 overall.

4.2 Word Representations
Corpus All models were trained on English
Wikipedia (August 2013 dump), pre-processed by
removing non-textual elements, sentence splitting,
and tokenization. The corpus contains 77.5 mil-
lion sentences, spanning 1.5 billion tokens. Mod-
els were derived using windows of 2, 5, and 10
tokens to each side of the focus word (the window
size parameter is denoted win). Words that ap-
peared less than 100 times in the corpus were ig-
nored, resulting in vocabularies of 189,533 terms
for both words and contexts.

Training Embeddings We trained a 500-
dimensional representation with SVD, SGNS, and

GloVe. SGNS was trained using a modified ver-
sion of word2vec which receives a sequence of
pre-extracted word-context pairs (Levy and Gold-
berg, 2014a). GloVe was trained with 50 itera-
tions using the original implementation (Penning-
ton et al., 2014), applied to the pre-extracted word-
context pairs.

4.3 Test Datasets
We evaluated each word representation on eight
datasets covering similarity and analogy tasks.

Word Similarity We used six datasets to eval-
uate word similarity: the popular WordSim353
(Finkelstein et al., 2002) partitioned into two
datasets, WordSim Similarity and WordSim Relat-
edness (Zesch et al., 2008; Agirre et al., 2009);
Bruni et al.’s (2012) MEN dataset; Radinsky et
al.’s (2011) Mechanical Turk dataset; Luong et
al.’s (2013) Rare Words dataset; and Hill et al.’s
(2014) SimLex-999 dataset. All these datasets con-
tain word pairs together with human-assigned sim-
ilarity scores. The word vectors are evaluated by
ranking the pairs according to their cosine similar-
ities, and measuring the correlation (Spearman’s
ρ) with the human ratings.

Analogy The two analogy datasets present ques-
tions of the form “a is to a∗ as b is to b∗”, where
b∗ is hidden, and must be guessed from the entire
vocabulary. MSR’s analogy dataset (Mikolov et
al., 2013c) contains 8000 morpho-syntactic anal-
ogy questions, such as “good is to best as smart is
to smartest”. Google’s analogy dataset (Mikolov
et al., 2013a) contains 19544 questions, about half
of the same kind as in MSR (syntactic analogies),
and another half of a more semantic nature, such
as capital cities (“Paris is to France as Tokyo is to
Japan”). After filtering questions involving out-
of-vocabulary words, i.e. words that appeared in
English Wikipedia less than 100 times, we remain
with 7118 instances in MSR and 19258 instances
in Google. The analogy questions are answered
using 3CosAdd (addition and subtraction):

arg max
b∗∈VW \{a∗,b,a}

cos(b∗, a∗ − a+ b) =

arg max
b∗∈VW \{a∗,b,a}

(cos(b∗, a∗)− cos(b∗, a) + cos(b∗, b))

as well as 3CosMul, which is state-of-the-art in
analogy recovery (Levy and Goldberg, 2014b):

arg max
b∗∈VW \{a∗,b,a}

cos(b∗, a∗) · cos(b∗, b)
cos(b∗, a) + ε
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Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Add / Mul Add / Mul

PPMI .709 .540 .688 .648 .393 .338 .491 / .650 .246 / .439
SVD .776 .658 .752 .557 .506 .422 .452 / .498 .357 / .412

SGNS .724 .587 .686 .678 .434 .401 .530 / .552 .578 / .592
GloVe .666 .467 .659 .599 .403 .398 .442 / .465 .529 / .576

Table 2: Performance of each method across different tasks in the “vanilla” scenario (all hyperparameters set to default):
win = 2; dyn = none; sub = none; neg = 1; cds = 1; w+c = only w; eig = 0.0.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Add / Mul Add / Mul

PPMI .755 .688 .745 .686 .423 .354 .553 / .629 .289 / .413
SVD .784 .672 .777 .625 .514 .402 .547 / .587 .402 / .457

SGNS .773 .623 .723 .676 .431 .423 .599 / .625 .514 / .546
GloVe .667 .506 .685 .599 .372 .389 .539 / .563 .503 / .559
CBOW .766 .613 .757 .663 .480 .412 .547 / .591 .557 / .598

Table 3: Performance of each method across different tasks using word2vec’s recommended configuration: win = 2;
dyn = with; sub = dirty; neg = 5; cds = 0.75; w+c = only w; eig = 0.0. CBOW is presented for comparison.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Add / Mul Add / Mul

PPMI .755 .697 .745 .686 .462 .393 .553 / .679 .306 / .535
SVD .793 .691 .778 .666 .514 .432 .554 / .591 .408 / .468

SGNS .793 .685 .774 .693 .470 .438 .676 / .688 .618 / .645
GloVe .725 .604 .729 .632 .403 .398 .569 / .596 .533 / .580

Table 4: Performance of each method across different tasks using the best configuration for that method and task combination,
assuming win = 2.

ε = 0.001 is used to prevent division by zero. We
abbreviate the two methods “Add” and “Mul”, re-
spectively. The evaluation metric for the analogy
questions is the percentage of questions for which
the argmax result was the correct answer (b∗).

5 Results

We begin by comparing the effect of various hy-
perparameter configurations, and observe that dif-
ferent settings have a substantial impact on per-
formance (Section 5.1); at times, this improve-
ment is greater than that of switching to a dif-
ferent representation method. We then show that,
in some tasks, careful hyperparameter tuning can
also outweigh the importance of adding more data
(5.2). Finally, we observe that our results do not
agree with a few recent claims in the word embed-
ding literature, and suggest that these discrepan-
cies stem from hyperparameter settings that were
not controlled for in previous experiments (5.3).

5.1 Hyperparameters vs Algorithms

We first examine a “vanilla” scenario (Table 2), in
which all hyperparameters are “turned off” (set to

default values): small context windows (win =
2), no dynamic contexts (dyn = none), no sub-
sampling (sub = none), one negative sample
(neg = 1), no smoothing (cds = 1), no context
vectors (w+c = only w), and default eigenvalue
weights (eig = 0.0).5 Overall, SVD outperforms
other methods on most word similarity tasks, often
having a considerable advantage over the second-
best. In contrast, analogy tasks present mixed re-
sults; SGNS yields the best result in MSR’s analo-
gies, while PPMI dominates Google’s dataset.

The second scenario (Table 3) sets the hyper-
parameters to word2vec’s default values: small
context windows (win = 2),6 dynamic contexts
(dyn = with), dirty subsampling (sub = dirty),
five negative samples (neg = 5), context distribu-
tion smoothing (cds = 0.75), no context vectors
(w+c = only w), and default eigenvalue weights

5While it is more common to set eig = 1, this setting
degrades SVD’s performance considerably (see Section 6.1).

6While word2vec’s default window size is 5, we present
a single window size (win = 2) in Tables 2-4, in order to iso-
late win’s effect from the effects of other hyperparameters.
Running the same experiments with different window sizes
reveals similar trends. Additional results with broader win-
dow sizes are shown in Table 5.
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win Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Add / Mul Add / Mul

2

PPMI .732 .699 .744 .654 .457 .382 .552 / .677 .306 / .535
SVD .772 .671 .777 .647 .508 .425 .554 / .591 .408 / .468

SGNS .789 .675 .773 .661 .449 .433 .676 / .689 .617 / .644
GloVe .720 .605 .728 .606 .389 .388 .649 / .666 .540 / .591

5

PPMI .732 .706 .738 .668 .442 .360 .518 / .649 .277 / .467
SVD .764 .679 .776 .639 .499 .416 .532 / .569 .369 / .424

SGNS .772 .690 .772 .663 .454 .403 .692 / .714 .605 / .645
GloVe .745 .617 .746 .631 .416 .389 .700 / .712 .541 / .599

10

PPMI .735 .701 .741 .663 .235 .336 .532 / .605 .249 / .353
SVD .766 .681 .770 .628 .312 .419 .526 / .562 .356 / .406

SGNS .794 .700 .775 .678 .281 .422 .694 / .710 .520 / .557
GloVe .746 .643 .754 .616 .266 .375 .702 / .712 .463 / .519

10
SGNS-LS .766 .681 .781 .689 .451 .414 .739 / .758 .690 / .729
GloVe-LS .678 .624 .752 .639 .361 .371 .732 / .750 .628 / .685

Table 5: Performance of each method across different tasks using 2-fold cross-validation for hyperparameter tuning. Configu-
rations on large-scale (LS) corpora are also presented for comparison.

(eig = 0.0). The results in this scenario are quite
different than those of the vanilla scenario, with
better performance in many cases. However, this
change is not uniform, as we observe that differ-
ent settings boost different algorithms. In fact, the
question “Which method is best?” might have a
completely different answer when comparing on
the same task but with different hyperparameter
values. Looking at Table 2 and Table 3, for ex-
ample, SVD is the best algorithm for SimLex-999
in the vanilla scenario, whereas in the word2vec
scenario, it does not perform as well as SGNS.

The third scenario (Table 4) enables the full
range of hyperparameters given small context win-
dows (win = 2); we evaluate each method on
each task given every hyperparameter configura-
tion, and choose the best performance. We see
a considerable performance increase across all
methods when comparing to both the vanilla (Ta-
ble 2) and word2vec scenarios (Table 3): the
best combination of hyperparameters improves up
to 15.7 points beyond the vanilla setting, and over
6 points on average. It appears that selecting the
right hyperparameter settings often has more im-
pact than choosing the most suitable algorithm.

Main Result The numbers in Table 4 result from
an “oracle” experiment, in which the hyperparam-
eters are tuned on the test data, providing an upper
bound on the potential performance improvement
of hyperparameter tuning. Are such gains achiev-
able in practice?

Table 5 describes a realistic scenario, where the
hyperparameters are tuned on a training set, which
is separate from the unseen test data. We also

report results for different window sizes (win =
2, 5, 10). We use 2-fold cross validation, in which,
for each task, the hyperparameters are tuned on
each half of the data and evaluated on the other
half. The numbers reported in Table 5 are the av-
erages of the two runs for each data-point.

The results indicate that approaching the ora-
cle’s improvements are indeed feasible. When
comparing the performance of the trained config-
uration (Table 5) to that of the optimal one (Ta-
ble 4), their average difference is about 1%, with
larger datasets usually finding the optimal configu-
ration. It is therefore both practical and beneficial
to properly tune hyperparameters for word simi-
larity and analogy detection tasks.

An interesting observation, which immediately
appears when looking at Table 5, is that there is
no single method that consistently performs better
than the rest. This behavior is visible across all
window sizes, and is discussed in further detail in
Section 5.3.

5.2 Hyperparameters vs Big Data

An important factor in evaluating distributional
methods is the size of corpus and vocabulary,
where larger corpora tend to yield better repre-
sentations. However, training word vectors from
larger corpora is more costly in computation time,
which could be spent in tuning hyperparameters.

To compare the effect of bigger data versus
more flexible hyperparameter settings, we created
a large corpus with over 10.5 billion words (7
times larger than our original corpus). This cor-
pus was built from an 8.5 billion word corpus sug-
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gested by Mikolov for training word2vec,7 to
which we added UKWaC (Ferraresi et al., 2008).
As with the original setup, our vocabulary con-
tained every word that appeared at least 100 times
in the corpus, amounting to about 620,000 words.
Finally, we fixed the context windows to be broad
and dynamic (win = 10,dyn = with), and ex-
plored 16 hyperparameter settings comprising of:
subsampling (sub), shifted PMI (neg = 1, 5),
context distribution smoothing (cds), and adding
context vectors (w+c). This space is somewhat
more restricted than the original hyperparameter
space.

In terms of computation, SGNS scales nicely,
requiring about half a day of computation per
setup. GloVe, on the other hand, took several days
to run a single 50-iteration instance for this corpus.
Applying the traditional count-based methods to
this setting proved technically challenging, as they
consumed too much memory to be efficiently ma-
nipulated. We thus present results for only SGNS
and GloVe (Table 5).

Remarkably, there are some cases (3/6 word
similarity tasks) in which tuning a larger space
of hyperparameters is indeed more beneficial than
expanding the corpus. In other cases, however,
more data does seem to pay off, as evident with
both analogy tasks.

5.3 Re-evaluating Prior Claims

Prior art raises several claims regarding the superi-
ority of certain methods over the others. However,
these studies did not control for the hyperparame-
ters presented in this work. We thus revisit these
claims, and examine their validity based on the re-
sults in Table 5.8

Are embeddings superior to count-based dis-
tributional methods? It is commonly believed
that modern prediction-based embeddings per-
form better than traditional count-based methods.
This claim was recently supported by a series of
systematic evaluations by Baroni et al. (2014).
However, our results suggest a different trend. Ta-
ble 5 shows that in word similarity tasks, the av-
erage score of SGNS is actually lower than SVD’s
when win = 2, 5, and it never outperforms SVD

7http://word2vec.googlecode.com/svn/
trunk/demo-train-big-model-v1.sh

8We note that all conclusions drawn in this section rely on
the specific data and settings with which we experiment. It is
indeed feasible that experiments on different tasks, data, and
hyperparameters may yield other conclusions.

by more than 1.7 points in those cases. In Google’s
analogies SGNS and GloVe indeed perform bet-
ter than PPMI, but only by a margin of 3.7 points
(compare PPMI with win = 2 and SGNS with
win = 5). MSR’s analogy dataset is the only case
where SGNS and GloVe substantially outperform
PPMI and SVD.9 Overall, there does not seem to
be a consistent significant advantage to one ap-
proach over the other, thus refuting the claim that
prediction-based methods are superior to count-
based approaches.

The contradictory results in (Baroni et al.,
2014) stem from creating word2vec embed-
dings with somewhat pre-tuned hyperparameters
(recommended by word2vec), and comparing
them to “vanilla” PPMI and SVD representa-
tions. In particular, shifted PMI (negative sam-
pling) and context distribution smoothing (cds =
0.75, equation (3) in Section 3.2) were turned
on for SGNS, but not for PPMI and SVD. An
additional difference is Baroni et al.’s setting of
eig=1, which significantly deteriorates SVD’s
performance (see Section 6.1).

Is GloVe superior to SGNS? Pennington et al.
(2014) show a variety of experiments in which
GloVe outperforms SGNS (among other meth-
ods). However, our results show the complete op-
posite. In fact, SGNS outperforms GloVe in every
task (Table 5). Only when restricted to 3CosAdd,
a suboptimal configuration, does GloVe show a 0.8
point advantage over SGNS. This trend persists
when scaling up to a larger corpus and vocabulary.

This contradiction can be explained by three
major differences in the experimental setup. First,
in our experiments, hyperparameters were allowed
to vary; in particular, w+c was applied to all the
methods, including SGNS. Secondly, Pennington
et al. (2014) only evaluated on Google’s analo-
gies, but not on MSR’s. Finally, in our work, all
methods are compared using the same underlying
corpus.

It is also important to bear in mind that, by
definition, GloVe cannot use two hyperparame-
ters: shifted PMI (neg) and context distribution
smoothing (cds). Instead, GloVe learns a set of
bias parameters that subsumes these two modifica-
tions and many other potential changes to the PMI
metric. Albeit its greater flexibility, GloVe does
not fair better than SGNS in our experiments.

9Unlike PPMI, SVD underperforms in both analogy tasks.
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Is PPMI on-par with SGNS on analogy tasks?
Levy and Goldberg (2014b) show that PPMI and
SGNS perform similarly on both Google’s and
MSR’s analogy tasks. Nevertheless, the results
in Table 5 show a clear advantage to SGNS.
While the gap on Google’s analogies is not very
large (PPMI lags behind SGNS by only 3.7
points), SGNS consistently outperforms PPMI by
a large margin on the MSR dataset. MSR’s
analogy dataset captures syntactic relations, such
as singular-plural inflections for nouns and tense
modifications for verbs. We conjecture that cap-
turing these syntactic relations may rely on certain
types of contexts, such as determiners and func-
tion words, which SGNS might be better at cap-
turing – perhaps due to the way it assigns weights
to different examples, or because it also captures
negative correlations which are filtered by PPMI.

A deeper look into Levy and Goldberg’s
(2014b) experiments reveals the use of PPMI with
positional contexts (i.e. each context is a conjunc-
tion of a word and its relative position to the target
word), whereas SGNS was employed with regular
bag-of-words contexts. Positional contexts might
contain relevant information for recovering syn-
tactic analogies, explaining PPMI’s relatively high
score on MSR’s analogy task in (Levy and Gold-
berg, 2014b).

Does 3CosMul recover more analogies than
3CosAdd? Levy and Goldberg (2014b) show
that using similarity multiplication (3CosMul)
rather than addition (3CosAdd) improves results
on all methods and on every task. This claim
is consistent with our findings; indeed, 3CosMul
dominates 3CosAdd in every case. The improve-
ment is particularly noticeable for SVD and PPMI,
which considerably underperform other methods
when using 3CosAdd.

5.4 Comparison with CBOW

Another algorithm featured in word2vec is
CBOW. Unlike the other methods, CBOW cannot
be easily expressed as a factorization of a word-
context matrix; it ties together the tokens of each
context window by representing the context vec-
tor as the sum of its words’ vectors. It is thus more
expressive than the other methods, and has a po-
tential of deriving better word representations.

While Mikolov et al. (2013b) found SGNS to
outperform CBOW, Baroni et al. (2014) reports
that CBOW had a slight advantage. We com-

win eig Average Performance
0 .612

2 0.5 .611
1 .551
0 .616

5 0.5 .612
1 .534
0 .584

10 0.5 .567
1 .484

Table 6: The average performance of SVD on word similarity
tasks given different values of eig, in the vanilla scenario.

pared CBOW to the other methods when setting
all the hyperparameters to the defaults provided
by word2vec (Table 3). With the exception
of MSR’s analogy task, CBOW is not the best-
performing method of any other task in this sce-
nario. Other scenarios showed similar trends in
our preliminary experiments.

While CBOW can potentially derive better rep-
resentations by combining the tokens in each con-
text window, this potential is not realized in prac-
tice. Nevertheless, Melamud et al. (2014) show
that capturing joint contexts can indeed improve
performance on word similarity tasks, and we be-
lieve it is a direction worth pursuing.

6 Hyperparameter Analysis

We analyze the individual impact of each hyper-
parameter, and try to characterize the conditions
in which a certain setting is beneficial.

6.1 Harmful Configurations
Certain hyperparameter settings might cripple the
performance of a certain method. We observe two
scenarios in which SVD performs poorly.

SVD does not benefit from shifted PPMI. Set-
ting neg > 1 consistently deteriorates SVD’s per-
formance. Levy and Goldberg (2014c) made a
similar observation, and hypothesized that this is
a result of the increasing number of zero-cells,
which may cause SVD to prefer a factorization
that is very close to the zero matrix. SVD’s L2 ob-
jective is unweighted, and it does not distinguish
between observed and unobserved matrix cells.

Using SVD “correctly” is bad. The traditional
way of representing words with SVD uses the
eigenvalue matrix (eig = 1): W = Ud · Σd. De-
spite being theoretically well-motivated, this set-
ting leads to very poor results in practice, when
compared to other settings (eig = 0.5 or 0). Ta-
ble 6 demonstrates this gap.
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The drop in average accuracy when setting
eig = 1 is astounding. The performance gap
persists under different hyperparameter settings as
well, and drops in performance of over 15 points
(absolute) when using eig = 1 instead of eig =
0.5 or 0 are not uncommon. This setting is one of
the main reasons for SVD’s inferior results in the
study by Baroni et al. (2014), and also the reason
we chose to use eig = 0.5 as the default setting
for SVD in the vanilla scenario.

6.2 Beneficial Configurations

To identify which hyperparameter settings are
beneficial, we looked at the best configuration of
each method on each task. We then counted the
number of times each hyperparameter setting was
chosen in these configurations (Table 7). Some
trends emerge, such as PPMI and SVD’s prefer-
ence towards shorter context windows10 (win =
2), and that SGNS always prefers numerous nega-
tive samples (neg > 1).

To get a closer look and isolate the effect of
each hyperparameter, we controlled for said hy-
perparameter, and compared the best configura-
tions given each of the hyperparameter’s settings.
Table 8 shows the difference between default and
non-default settings of each hyperparameter.

While many hyperparameter settings can im-
prove performance, they may also degrade it when
chosen incorrectly. For instance, in the case
of shifted PMI (neg), SGNS consistently profits
from neg > 1, while SVD’s performance is dra-
matically reduced. For PPMI, the utility of ap-
plying neg > 1 depends on the type of task:
word similarity or analogy. Another example is
dynamic context windows (dyn), which is benefi-
cial for MSR’s analogy task, but largely detrimen-
tal to other tasks.

It appears that the only hyperparameter that can
be “blindly” applied in any situation is context
distribution smoothing (cds = 0.75), yielding
a consistent improvement at an insignificant risk.
Note that cds helps PPMI more than it does other
methods; we suggest that this is because it re-
duces the relative impact of rare words on the dis-
tributional representation, thus addressing PMI’s
“Achilles’ heel”.

10This might also relate to PMI’s bias towards infrequent
events (see Section 2.1). Broader windows create more ran-
dom co-occurrences with rare words, “polluting” the distribu-
tional vector with random words that have high PMI scores.

7 Practical Recommendations

It is generally advisable to tune all hyperparam-
eters, as well as algorithm-specific hyperparame-
ters, for the task at hand. However, this may be
computationally expensive. We thus provide some
“rules of thumb”, which we found to work well in
our setting:

• Always use context distribution smoothing
(cds = 0.75) to modify PMI, as described in
Section 3.2. It consistently improves performance,
and is applicable to PPMI, SVD, and SGNS.

•Do not use SVD “correctly” (eig = 1). Instead,
use one of the symmetric variants (Section 3.3).

• SGNS is a robust baseline. While it might not be
the best method for every task, it does not signif-
icantly underperform in any scenario. Moreover,
SGNS is the fastest method to train, and cheapest
(by far) in terms of disk space and memory con-
sumption.

•With SGNS, prefer many negative samples.

• for both SGNS and GloVe, it is worthwhile to ex-
periment with the ~w+~c variant, which is cheap to
apply (does not require retraining) and can result
in substantial gains (as well as substantial losses).

8 Conclusions

Recent embedding methods introduce a plethora
of design choices beyond network architecture and
optimization algorithms. We reveal that these
seemingly minor variations can have a large im-
pact on the success of word representation meth-
ods. By showing how to adapt and tune these hy-
perparameters in traditional methods, we allow a
proper comparison between representations, and
challenge various claims of superiority from the
word embedding literature.

This study also exposes the need for more
controlled-variable experiments, and extending
the concept of “variable” from the obvious task,
data, and method to the often ignored prepro-
cessing steps and hyperparameter settings. We
also stress the need for transparent and repro-
ducible experiments, and commend authors such
as Mikolov, Pennington, and others for making
their code publicly available. In this spirit, we
make our code available as well.11

11http://bitbucket.org/omerlevy/
hyperwords
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Method win dyn sub neg cds w+c
2 : 5 : 10 none : with none : dirty 1 : 5 : 15 1.00 : 0.75 only w : w + c

PPMI 7 : 1 : 0 4 : 4 4 : 4 2 : 6 : 0 1 : 7 —
SVD 7 : 1 : 0 4 : 4 1 : 7 8 : 0 : 0 2 : 6 7 : 1

SGNS 2 : 3 : 3 6 : 2 4 : 4 0 : 4 : 4 3 : 5 4 : 4
GloVe 1 : 3 : 4 6 : 2 7 : 1 — — 4 : 4

Table 7: The impact of each hyperparameter, measured by the number of tasks in which the best configuration had that hyper-
parameter setting. Non-applicable combinations are marked by “—”.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Mul Mul

PPMI +0.5% –1.0% 0.0% +0.1% +0.4% –0.1% –0.1% +1.2%
SVD –0.8% –0.2% 0.0% +0.6% +0.4% –0.1% +0.6% +2.1%

SGNS –0.9% –1.5% –0.3% +0.1% –0.1% –0.1% –1.0% +0.7%
GloVe –0.8% –1.2% –0.9% –0.8% +0.1% –0.9% –3.3% +1.8%

(a) Performance difference between best models with dyn = with and dyn = none.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Mul Mul

PPMI +0.6% +1.9% +1.3% +1.0% –3.8% –3.9% –5.0% –12.2%
SVD +0.7% +0.2% +0.6% +0.7% +0.8% –0.3% +4.0% +2.4%

SGNS +1.5% +2.2% +1.5% +0.1% –0.4% –0.1% –4.4% –5.4%
GloVe +0.2% –1.3% –1.0% –0.2% –3.4% –0.9% –3.0% –3.6%

(b) Performance difference between best models with sub = dirty and sub = none.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Mul Mul

PPMI +0.6% +4.9% +1.3% +1.0% +2.2% +0.8% –6.2% –9.2%
SVD –1.7% –2.2% –1.9% –4.6% –3.4% –3.5% –13.9% –14.9%

SGNS +1.5% +2.9% +2.3% +0.5% +1.5% +1.1% +3.3% +2.1%
GloVe — — — — — — — —

(c) Performance difference between best models with neg > 1 and neg = 1.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Mul Mul

PPMI +1.3% +2.8% 0.0% +2.1% +3.5% +2.9% +2.7% +9.2%
SVD +0.4% –0.2% +0.1% +1.1% +0.4% –0.3% +1.4% +2.2%

SGNS +0.4% +1.4% 0.0% +0.1% 0.0% +0.2% +0.6% 0.0%
GloVe — — — — — — — —

(d) Performance difference between best models with cds = 0.75 and cds = 1.

Method
WordSim WordSim Bruni et al. Radinsky et al. Luong et al. Hill et al. Google MSR
Similarity Relatedness MEN M. Turk Rare Words SimLex Mul Mul

PPMI — — — — — — — —
SVD –0.6% –0.2% –0.4% –2.1% –0.7% +0.7% –1.8% –3.4%

SGNS +1.4% +2.2% +1.2% +1.1% –0.3% –2.3% –1.0% –7.5%
GloVe +2.3% +4.7% +3.0% –0.1% –0.7% –2.6% +3.3% –8.9%

(e) Performance difference between best models with w+c = w + c and w+c = only w.

Table 8: The added value versus the risk of setting each hyperparameter. The figures show the differences in performance
between the best achievable configurations when restricting a hyperparameter to different values. This difference indicates the
potential gain of tuning a given hyperparameter, as well as the risks of decreased performance when not tuning it. For example,
an entry of +9.2% in Table (d) means that the best model with cds = 0.75 is 9.2% more accurate (absolute) than the best
model with cds = 1; i.e. on MSR’s analogies, using cds = 0.75 instead of cds = 1 improved PPMI’s accuracy from .443
to .535.
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