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Abstract

As automated image analysis progresses, there
is increasing interest in richer linguistic an-
notation of pictures, with attributes of ob-
jects (e.g., furry, brown. . . ) attracting most
attention. By building on the recent “zero-
shot learning” approach, and paying atten-
tion to the linguistic nature of attributes as
noun modifiers, and specifically adjectives,
we show that it is possible to tag images
with attribute-denoting adjectives even when
no training data containing the relevant an-
notation are available. Our approach relies
on two key observations. First, objects can
be seen as bundles of attributes, typically ex-
pressed as adjectival modifiers (a dog is some-
thing furry, brown, etc.), and thus a function
trained to map visual representations of ob-
jects to nominal labels can implicitly learn
to map attributes to adjectives. Second, ob-
jects and attributes come together in pictures
(the same thing is a dog and it is brown).
We can thus achieve better attribute (and ob-
ject) label retrieval by treating images as “vi-
sual phrases”, and decomposing their linguis-
tic representation into an attribute-denoting
adjective and an object-denoting noun. Our
approach performs comparably to a method
exploiting manual attribute annotation, it out-
performs various competitive alternatives in
both attribute and object annotation, and it au-
tomatically constructs attribute-centric repre-
sentations that significantly improve perfor-
mance in supervised object recognition.

∗ Current affiliation: Thomas J. Watson Research Center,
IBM, gdinu@us.ibm.com

1 Introduction

As the quality of image analysis algorithms im-
proves, there is increasing interest in annotating im-
ages with linguistic descriptions ranging from sin-
gle words describing the depicted objects and their
properties (Farhadi et al., 2009; Lampert et al.,
2009) to richer expressions such as full-fledged im-
age captions (Kulkarni et al., 2011; Mitchell et al.,
2012). This trend has generated wide interest in lin-
guistic annotations beyond concrete nouns, with the
role of adjectives in image descriptions receiving, in
particular, much attention.

Adjectives are of special interest because of their
central role in so-called attribute-centric image rep-
resentations. This framework views objects as bun-
dles of properties, or attributes, commonly ex-
pressed by adjectives (e.g., furry, brown), and uses
the latter as features to learn higher-level, seman-
tically richer representations of objects (Farhadi et
al., 2009).1 Attribute-based methods achieve better
generalization of object classifiers with less train-
ing data (Lampert et al., 2009), while at the same
time producing semantic representations of visual
concepts that more accurately model human se-

1In this paper, we assume that, just like nouns are the lin-
guistic counterpart of visual objects, visual attributes are ex-
pressed by adjectives. An informal survey of the relevant litera-
ture suggests that, when attributes have linguistic labels, they
are indeed mostly expressed by adjectives. There are some
attributes, such as parts, that are more naturally expressed by
prepositional phrases (PPs: with a tail). Interestingly, Dinu and
Baroni (2014) showed that the decomposition function we will
adopt here can derive both adjective-noun and noun-PP phrases,
suggesting that our approach could be seamlessly extended to
visual attributes expressed by noun-modifying PPs.
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mantic intuition (Silberer et al., 2013). Moreover,
automated attribute annotation can facilitate finer-
grained image retrieval (e.g., searching for a rocky
beach rather than a sandy beach) and provide the
basis for more accurate image search (for example
in cases of visual sense disambiguation (Divvala et
al., 2014), where a user disambiguates their query by
searching for images of wooden cabinet as furniture
and not just cabinet, which can also mean council).

Classic attribute-centric image analysis requires,
however, extensive manual and often domain-
specific annotation of attributes (Vedaldi et al.,
2014), or, at best, complex unsupervised image-
and-text-mining procedures to learn them (Berg et
al., 2010). At the same time, resources with high-
quality per-image attribute annotations are limited;
to the best of our knowledge, coverage of all pub-
licly available datasets containing non-class specific
attributes does not exceed 100 attributes,2 orders
of magnitude smaller than the equivalent object-
annotated datasets (Deng et al., 2009). Moreover,
many visual attributes currently available (e.g., 2D-
boxy, furniture leg), albeit visually meaningful, do
not have straightforward linguistic equivalents, ren-
dering them inappropriate for applications requir-
ing natural linguistic expressions, such as the search
scenarios considered above.

A promising way to limit manual attribute anno-
tation effort is to extend recently proposed zero-shot
learning methods, until now applied to object recog-
nition, to the task of labeling images with attribute-
denoting adjectives. The zero-shot approach relies
on the possibility to extract, through distributional
methods, semantically effective vector-based word
representations from text corpora, on a large scale
and without supervision (Turney and Pantel, 2010).
In zero-shot learning, training images labeled with
object names are also represented as vectors (of fea-
tures extracted with standard image-analysis tech-
niques), which are paired with the vectors repre-
senting the corresponding object names in language-
based distributional semantic space. Given such

2The attribute datasets we are aware of are the ones of
Farhadi et al. (2010), Ferrari and Zisserman (2007) and Rus-
sakovsky and Fei-Fei (2010), containing annotations for 64, 7
and 25 attributes, respectively. (This count excludes the SUN
Attributes Database (Patterson et al., 2014), whose attributes
characterize scenes rather than concrete objects.)
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Figure 1: t-SNE (Van der Maaten and Hinton, 2008) visu-
alization of 3 objects together with the 2 nearest attributes
in our visual space (left), and of the corresponding nouns
and adjectives in linguistic space (right).

paired training data, various algorithms (Socher et
al., 2013; Frome et al., 2013; Lazaridou et al., 2014)
can be used to induce a cross-modal projection of
images onto linguistic space. This projection is then
applied to map previously unseen objects to the cor-
responding linguistic labels. The method takes ad-
vantage of the similarities in the vector space topolo-
gies of the two modalities, allowing information
propagation from the limited number of objects seen
in training to virtually any object with a vector-based
linguistic representation.

To adapt zero-shot learning to attributes, we rely
on their nature as (salient) properties of objects, and
on how this is reflected linguistically in modifier re-
lations between adjectives and nouns. We build on
the observation that visual and linguistic attribute-
adjective vector spaces exhibit similar structures:
The correlation ρ between the pairwise similari-
ties in visual and linguistic space of all attributes-
adjectives from our experiments is 0.14 (significant
at p < 0.05).3 While the correlation is smaller
than for object-noun data (0.23), we conjecture it
is sufficient for zero-shot learning of attributes. We
will confirm this by testing a cross-modal projection
function from attributes, such as colors and shapes,
onto adjectives in linguistic semantic space, trained
on pre-existing annotated datasets covering less than
100 attributes (Experiment 1).

We proceed to develop an approach achieving
equally good attribute-labeling performance without
manual attribute annotation. Inspired by linguistic
and cognitive theories that characterize objects as at-
tribute bundles (Murphy, 2002), we hypothesize that
when we learn to project images of objects to the
corresponding noun labels, we implicitly learn to

3In this paper, we report significance at α = 0.05 threshold.
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Figure 2: Images tagged with orange and liqueur are
mapped in linguistic space closer to the vector of the
phrase orange liqueur than to the orange or liqueur vec-
tors (t-SNE visualization) (the figure also shows the near-
est neighbours of phrase, adjective and noun in linguis-
tic space). The mapping is trained using solely noun-
annotated images.

associate the visual properties/attributes of the ob-
jects to the corresponding adjectives. As an exam-
ple, Figure 1 (left) displays the nearest attributes of
car, bird and puppy in the visual space and, inter-
estingly, the relative distance between the noun de-
noting objects and the adjective denoting attributes
is also preserved in the linguistic space (right).

We further observe that, as also highlighted by
recent work in object recognition, any object in an
image is, in a sense, a visual phrase (Sadeghi and
Farhadi, 2011; Divvala et al., 2014), i.e., the object
and its attributes are mutually dependent. For exam-
ple, we cannot visually isolate the object drum from
attributes such as wooden and round. Indeed, within
our data, in 80% of the cases the projected image
of an object is closer to the semantic representation
of a phrase describing it than to either the object or
attribute labels. See Figure 2 for an example.

Motivated by this observation, we turn to recent
work in distributional semantics defining a vector
decomposition framework (Dinu and Baroni, 2014)
which, given a vector encoding the meaning of a
phrase, aims at decoupling its constituents, produc-
ing vectors that can then be matched to a sequence
of words best capturing the semantics of the phrase.
We adopt this framework to decompose image rep-
resentations projected onto linguistic space into an

adjective-noun phrase. We show that the method
yields results comparable to those obtained when us-
ing attribute-labeled training data, while only requir-
ing object-annotated data. Interestingly, this decom-
positional approach also doubles the performance
of object/noun annotation over the standard zero-
shot approach (Experiment 2). Given the positive
results of our proposed method, we conclude with
an extrinsic evaluation (Experiment 3); we show
that attribute-centric representations of images cre-
ated with the decompositional approach boost per-
formance in an object classification task, supporting
claims about its practical utility.

In addition to contributions to image annotation,
our work suggests new test beds for distributional
semantic representations of nouns and associated
adjectives, and provides more in-depth evidence of
the potential of the decompositional approach.

2 General experimental setup

2.1 Cross-Modal Mapping
Our approach relies on cross-modal mapping
from a visual semantic space V, populated with
vector-based representations of images, onto a
linguistic (distributional semantic) space W of word
vectors. The mapping is performed by first inducing
a function fproj : Rd1 → Rd2 from data points
(vi, wi), where vi ∈ Rd1 is a vector representation
of an image tagged with an object or an attribute
(such as dog or metallic), and wi ∈ Rd2 is the
linguistic vector representation of the corresponding
word. The mapping function can subsequently be
applied to any given image vi ∈ V to obtain its
projection w′i ∈W onto linguistic space:

w′i = fproj(vi)

Specifically, we consider two mapping methods. In
the RIDGE regression approach, we learn a linear
function Fproj ∈ Rd2×d1 by solving the Tikhonov-
Phillips regularization problem, which minimizes
the following objective:

||W Tr − FprojV
Tr||22 − ||λFproj ||22,

where W Tr and V Tr are obtained by stacking the
word vectors wi and corresponding image vectors
vi, from the training set.4

4The parameter λ is determined through cross-validation on
the training data.
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Second, motivated by the success of Canonical
Correlations Analysis (CCA) (Hotelling, 1936) in
several vision-and-language tasks, such as image
and caption retrieval (Gong et al., 2014; Hardoon et
al., 2004; Hodosh et al., 2013), we adapt normalized
Canonical Correlations Analysis (NCCA) to our
setup. Given two paired observation matrices X
and Y , in our case W Tr and V Tr, CCA seeks two
projection matrices A and B that maximize the
correlation between ATX and BTY . This can be
solved efficiently by applying SVD to

Ĉ
1/2
XXĈXY Ĉ

1/2
Y Y = UΣV T

where Ĉ stands for the covariance matrix. Finally,
the projection matrices are defined as A = Ĉ

1/2
XXU

and B = Ĉ
1/2
Y Y V . Gong et al. (2014) propose a nor-

malized variant of CCA, in which the projection ma-
trices are further scaled by some power λ of the sin-
gular values Σ returned by the SVD solution. In our
experiments, we tune the choice of λ on the training
data. Trivially, if λ = 0, NCCA reduces to CCA.

Note that other mapping functions could also be
used. We leave a more extensive exploration of pos-
sible alternatives to further research, since the details
of how the vision-to-text conversion is conducted are
not crucial for the current study. As increasingly
more effective mapping methods are developed, we
can easily plug them into our architecture.

Through the selected cross-modal mapping func-
tion, any image can be projected onto linguistic
space, where the word (possibly of the appropriate
part of speech) corresponding to the nearest vector
is returned as a candidate label for the image (fol-
lowing standard practice in distributional semantics,
we measure proximity by the cosine measure).

2.2 Decomposition
Dinu and Baroni (2014) have recently proposed a
general decomposition framework that, given a dis-
tributional vector encoding a phrase meaning and
the syntactic structure of that phrase, decomposes
it into a set of vectors expected to express the se-
mantics of the words that composed the phrase. In
our setup, we are interested in a decomposition func-
tion fDec : Rd2 → R2d2 which, given a visual vec-
tor projected onto the linguistic space, assumes it
represents the meaning of an adjective-noun phrase,
and decomposes it into two vectors corresponding to

the adjective and noun constituents [wadj ;wnoun] =
fDec(wAN ). We take fDec to be a linear function
and, following Dinu and Baroni (2014), we use as
training data vectors of adjective-noun bigrams di-
rectly extracted from the corpus together with the
concatenation of the corresponding adjective and
noun word vectors. We estimate fDec by solving a
ridge regression problem minimizing the following
objective:

||[W Tr
adj ;W

Tr
noun]− FdecW

Tr
AN ||22 − ||λFdec||22

whereW Tr
adj ,W

Tr
noun,W Tr

AN are the matrices obtained
by stacking the training data vectors. The λ param-
eter is tuned through generalized cross-validation
(Hastie et al., 2009).

2.3 Representational Spaces
Linguistic Space We construct distributional vec-
tors from text through the method recently proposed
by Mikolov et al. (2013), to which we feed a cor-
pus of 2.8 billion words obtained by concatenating
English Wikipedia, ukWaC and BNC.5 Specifically,
we used the CBOW algorithm, which induces vec-
tors by predicting a target word given the words sur-
rounding it. We construct vectors of 300 dimensions
considering a context window of 5 words to either
side of the target, setting the sub-sampling option to
1e-05 and the negative sampling parameter to 5.6

Visual Spaces Following standard practice, im-
ages are represented as bags of visual words
(BoVW) (Sivic and Zisserman, 2003).7 Local low-
level image features are clustered into a set of visual
words that act as higher-level descriptors. In our
case, we use PHOW-color image features, a vari-
ant of dense SIFT (Bosch et al., 2007), and a vi-
sual vocabulary of 600 words. Spatial information
is preserved with a two-level spatial pyramid rep-
resentation (Lazebnik et al., 2006), achieving a fi-
nal dimensionality of 12,000. The entire pipeline
is implemented using the VLFeat library (Vedaldi
and Fulkerson, 2010), and its setup is identical to the

5http://wacky.sslmit.unibo.it, http:
//www.natcorp.ox.ac.uk

6The parameters are tuned on the MEN word similarity
dataset (Bruni et al., 2014).

7In future research, we might obtain a performance boost
simply by using the more advanced visual features recently in-
troduced by Krizhevsky et al. (2012).
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Category Attributes
Color black, blue, brown, gray, green,

orange, pink, red, violet, white, yellow
Pattern spotted, striped
Shape long, round, rectangular, square
Texture furry, smooth, rough, shiny, metallic,

vegetation, wooden, wet

Table 1: List of attributes in the evaluation dataset.

Image Attributes Object
furry cat
white
smooth

green cocktail
shiny

Table 2: Sample annotations from the evaluation dataset.

toolkit’s basic recognition sample application.8 We
apply Positive Pointwise Mutual Information (Evert,
2005) to the BoVW counts, and reduce the resulting
vectors to 300 dimensions using SVD.

2.4 Evaluation Dataset

For evaluation purposes, we use the dataset consist-
ing of images annotated with adjective-noun phrases
introduced in Russakovsky and Fei-Fei (2010),
which pertains to 384 WordNet/ImageNet synsets
with 25 images per synset. The images were manu-
ally annotated with 25 attribute-denoting adjectives
related to texture, color, pattern and shape, respect-
ing the constraints that a color must cover a signifi-
cant part of the target object, and all other attributes
must pertain to the object as a whole (as opposed
to parts). Table 1 lists the 25 attributes and Table 2
illustrates sample annotations.9

In order to increase annotation quality, we only
consider attributes with full annotator consensus, for
a total of 8,449 annotated images, with 2.7 attributes
per-image on average. Furthermore, to make the lin-
guistic annotation more natural and avoid sparsity
problems, we renamed excessively specific objects
with a noun denoting a more general category, fol-
lowing recent work on entry-level categories (Or-

8http://www.vlfeat.org/applications/
apps.html

9Although vegetation is a noun, we have kept it in the eval-
uation set, treating it as an adjective.

Training Evaluation
#im. #attr. #obj. #im. #attr. #obj.

Exp. 1 10,749 97 - leave-one-attribute-out
Exp. 2 23,000 - 750 8,449 25 203

Table 3: Summary of training and evaluation sets.

donez et al., 2013); e.g., colobus guereza was re-
labeled as monkey. The final evaluation dataset con-
tains 203 distinct objects.

3 Experiment 1: Zero-shot attribute
learning

In Section 1, we showed that there is a signifi-
cant correlation between pairwise similarities of ad-
jectives in a language-based distributional seman-
tic space and those of visual feature vectors ex-
tracted from images labeled with the corresponding
attributes. In the first experiment, we test whether
this correspondence in attribute-adjective similar-
ity structure across modalities suffices to success-
fully apply zero-shot labeling. We learn a cross-
modal function from an annotated dataset and use
it to label images from an evaluation dataset with
attributes outside the training set. We will refer to
this approach as DIRA, for Direct Retrieval using
Attribute annotation. Note that this is the first time
that zero-shot techniques are used in the attribute
domain. In the present evaluation, we distinguish
DIRA-RIDGE and DIRA-NCCA, according to the
cross-modal function used to project from images to
linguistic representations (see Section 2.1 above).

3.1 Cross-modal training and evaluation

To gather sufficient data to train a cross-modal
mapping function for attributes/adjectives, we com-
bine the publicly available datasets of Farhadi et al.
(2009) and Ferrari and Zisserman (2007) with at-
tributes and associated images extracted from MIR-
FLICKR (Huiskes and Lew, 2008).10 The resulting
dataset contains 72 distinct attributes and 2,300 im-
ages. Each image-attribute pair represents a training
data point (v, wadj), where v is the vector represen-
tation of the image, and wadj is the linguistic vector
of the attribute (corresponding to an adjective). No
information about the depicted object is needed.

10We filtered out attributes not expressed by adjectives, such
as wheel or leg.
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Figure 3: Performance of zero-shot attribute classification (as measured by AUC) compared to the supervised method
of Russakovsky and Fei-Fei (2010), where available. The dark-red horizontal line marks chance performance.

To further maximize the amount of training data
points, we conduct a leave-one-attribute-out evalua-
tion, in which the cross-modal mapping function is
repeatedly learned on all 72 attributes from the train-
ing set, as well as all but one attribute from the eval-
uation set (Section 2.4), and the associated images.
This results in 72+(25−1) = 96 training attributes
in total. On average, 45 images per attribute are
used. The performance is measured for the single
attribute that was excluded from training. A numeri-
cal summary of the experiment setup is presented in
the first row of Table 3.

3.2 Results and discussion

Russakovsky and Fei-Fei (2010) trained separate
SVM classifiers for each attribute in the evaluation
dataset in a cross-validation setting. This fully su-
pervised approach can be seen as an ambitious up-
per bound for zero-shot learning, and we directly
compare our performance to theirs using their figure
of merit, namely area under the ROC curve (AUC),
which is commonly used for binary classification
problems.11 A perfect classifier achieves an AUC of
1, whereas an AUC of 0.5 indicates random guess-
ing. For purposes of AUC computation, DIRA is
considered to label test images with a given adjec-
tive if the linguistic-space distance between their
mapped representation and the adjective is below
a certain threshold. AUC measures the aggregated
performance over all thresholds. To get a sense of

11Table 4 reports hit@k results for DIRA, which will be dis-
cussed below in the context of Experiment 2.

what AUC compares to in terms of precision and re-
call, the AUC of DIRA for furry is 0.74, while the
precision is 71% and the corresponding recall 14%.
For the more difficult blue case, AUC is at 0.5, pre-
cision and recall are 2% and 55%, respectively.

The AUC results are presented in Figure 3 (ig-
nore red bars for now). We observe first that, of the
two mapping functions we considered, RIDGE (blue
bars) clearly outperforms NCCA (yellow bars). Ac-
cording to a series of paired permutation tests,
RIDGE has a significantly larger AUC in 13/25
cases, NCCA in only 2. This is somewhat surpris-
ing given the better performance of NCCA in the
experiments of Gong et al. (2014). However, our
setup is quite different from theirs: They perform
all retrieval tasks by projecting the input visual and
language data onto a common multimodal space dif-
ferent from both input spaces. NCCA is a well-
suited algorithm for this. We aim instead at produc-
ing linguistic annotations of images, which is most
straightforwardly accomplished by projecting visual
representations onto linguistic space. Regression-
based learning (in our case, via RIDGE) is a more
natural choice for this purpose.

Coming now to a more general analysis of the re-
sults, as expected, and analogously to the supervised
setting, DIRA-RIDGE performance varies across at-
tributes. Some achieve performance close to the
supervised model (e.g., rectangular or wooden)
and, for 18 out of 25, the performance is well
above chance (bootstrap test). The exceptions are:
blue, square, round, vegetation, smooth, spotted and
striped. Interestingly, for the last 4 attributes in
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this list, Russakovsky and Fei-Fei (2010) achieved
their lowest performance, attributing it to the lower-
quality of the corresponding image annotations.
Furthermore, Russakovsky and Fei-Fei (2010) ex-
cluded 5 attributes due to insufficient training data.
Of these, our performance for blue, vegetation and
square is not particularly encouraging, but for violet
and pink we achieve more than 0.7 AUC, at the level
of the supervised classifiers, suggesting that the pro-
posed method can complement the latter when an-
notated data are not available.

For a different perspective on the performance
of DIRA, we took several objects and queried the
model for their most common attribute, based on the
average attribute rank across all images of the object
in the dataset. Reassuringly, we learn that sunflow-
ers are on average yellow (mean rank 2.3), fields are
green (4.4), cabinets are wooden (4) and vans metal-
lic (6.6) (strawberries are, suspiciously, blue, 2.7).

Overall, this experiment shows that, just like ob-
ject classification, attribute classifiers benefit from
knowledge transfer between the visual and linguis-
tic modalities, and zero-shot learning can achieve
reasonable performance on attributes and the corre-
sponding adjectives. This conclusion is based on the
assumption that per-image annotations of attributes
are available; in the following section, we show how
equal and even better performance can be attained
using data sets annotated with objects only, there-
fore without any hand-coded attribute information.

4 Experiment 2: Learning attributes from
objects and visual phrases

Having shown that reasonably accurate annotations
of unseen attributes can be obtained with zero-shot
learning when a small amount of manual annota-
tion is available, we now proceed to test the intu-
ition, preliminarily supported by the data in Figure
1, that, since objects are bundles of attributes, at-
tributes are implicitly learned together with objects.
We thus try to induce attribute-denoting adjective la-
bels by exploiting only widely-available object-noun
data. At the same time, building on the observa-
tion illustrated in Figure 2 that pictures of objects
are pictures of visual phrases, we experiment with
a vector decomposition model which treats images
as composite and derives adjective and noun anno-

tations jointly. We compare it with standard zero-
shot learning using direct label retrieval as well as
against a number of challenging alternatives that ex-
ploit gold-standard information about the depicted
objects. The second row of Table 3 gives a numeri-
cal summary of the setup for this experiment.

4.1 Cross-modal training

We now assume object annotations only, in the form
of training data (v, wnoun), where v is the vector
representation of an image tagged with an object and
wnoun is the linguistic vector of the corresponding
noun. To ensure high imageability and diversity, we
use as training object labels those appearing in the
CIFAR-100 dataset (Krizhevsky, 2009), combined
with those previously used in the work of Farhadi
et al. (2009), as well as the most frequent nouns in
our corpus that also exist in ImageNet, for a total
of 750 objects-nouns. For each object label, we in-
clude at most 50 images from the corresponding Im-
ageNet synset, resulting in ≈ 23, 000 training data
points. Images containing objects from the evalua-
tion dataset are excluded, so that both adjective and
noun retrieval adhere to the zero-shot paradigm.

4.2 Object-agnostic models

DIRO The Direct Retrieval using Object annota-
tion approach projects an image onto the linguistic
space and retrieves the nearest adjectives as candi-
date attribute labels. The only difference with DIRA

(more precisely, DIRA-RIDGE), the zero-shot ap-
proach we tested above, is that the mapping function
has been trained on object-noun data only.

DEC The Decomposition method uses the fDec

function inspired by Dinu and Baroni (2014) (see
Section 2.2), to associate the image vector projected
onto linguistic space to an adjective and a noun. We
train fDec with about ≈ 50, 000 training instances,
selected based on corpus frequency. These data
are further balanced by not allowing more than 100
training samples for any adjective or noun in order
to prevent very frequent words such as other or new
from dominating the training data. No image data
are used, and there is no need for manual annota-
tion, as the adjective-noun tuples are automatically
extracted from the corpus.

At test time, given an image to be labeled,
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we project its visual representation onto the lin-
guistic space and decompose the resulting vector
w′ into two candidate adjective and noun vectors:
[w′adj ;w

′
noun] = fDec(w

′). We then search the lin-
guistic space for adjectives and nouns whose vectors
are nearest to w′adj and w′noun, respectively.

4.3 Object-informed models

A cross-modal function trained exclusively on
object-noun data might be able to capture only pro-
totypical characteristics of an object, as induced
from text, independently of whether they are de-
picted in an image. Although the gold annotation
of our dataset should already penalize this image-
independent labeling strategy (see Section 2.4), we
control for this behaviour by comparing against
three models that have access to the gold noun an-
notations of the image and favor adjectives that are
typical modifiers of the nouns.

LM We build a bigram Language Model by using
the Berkeley LM toolkit (Pauls and Klein, 2012)12

on the one-trillion-token Google Web1T corpus13

and smooth probabilities with the “Stupid” back-
off technique (Brants et al., 2007). Given an
image with object-noun annotation, we score all
attributes-adjectives based on the language-model-
derived conditional probability p(adjective|noun).
All images of the same object produce identical
rankings. As an example, among the top attributes
of cocktail we find heady, creamy and fruity.

VLM LM does not exploit visual information
about the image to be annotated. A natural way to
enhance it is to combine it with DIRO, our cross-
modal mapping adjective retrieval method. In the
visually-enriched Language Model, we interpolate
(using equal weights) the ranks produced by the
two models. In the resulting combination, attributes
that are both linguistically sensible and likely to be
present in the given image should be ranked high-
est. We expect this approach to be challenging to
beat. MacKenzie (2014) recently introduced a simi-
lar model in a supervised setting, where it improved
over standard attribute classifiers.

12https://code.google.com/p/berkeleylm/
13https://catalog.ldc.upenn.edu/

LDC2006T13

LM SP VLM DIRO DEC DIRA

@1 2 0 5 1 10 7
@5 5 7 16 4 31 23
@10 8 9 29 9 44 37
@20 18 17 50 19 59 51
@50 33 32 72 43 81 68
@100 56 55 82 67 89 77

Table 4: Percentage hit@k attribute retrieval scores.

SP The Selectional Preference model robustly
captures semantic restrictions imposed by a noun on
the adjectives modifying it (Erk et al., 2010). Con-
cretely, for each noun denoting a target object, we
identify a set of adjectives ADJnoun that co-occur
with it in a modifier relation more that 20 times.
By averaging the linguistic vectors of these adjec-
tives, we obtain a vector wprototypical

noun , which should
capture the semantics of the prototypical adjectives
for that noun. Adjectives that have higher similar-
ity with this prototype vector are expected to denote
typical attributes of the corresponding noun and will
be ranked as more probable attributes. Similarly to
LM, all images of the same object produce identical
rankings. As an example, among the top attributes
of cocktail we find fantastic, delicious and perfect.

4.4 Results

We evaluate the performance of the models on
attribute-denoting adjective retrieval, using a search
space containing the top 5,000 most frequent ad-
jectives in our corpus. Tables 4 and 5 present
hit@k and recall@k results, respectively (k ∈
{1, 5, 10, 20, 50, 100}). Hit@k measures the per-
centage of images for which at least one gold at-
tribute exists among the top k retrieved attributes.
Recall@k measures the proportion of gold attributes
retrieved among the top k, relative to the total num-
ber of gold attributes for each image.14

First of all, we observe that LM and SP – the two
models that have access to gold object-noun annota-
tion and are entirely language-based – although well
above the random baseline (k/5,000), achieve rather
low performance. This confirms that to model our
test set accurately, it is not sufficient to predict typi-
cal attributes of the depicted objects.

14Due to the leave-one-attribute-out approach used to train
and test DIRA (see Section 3), it is not possible to compute
recall results for this model.
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LM SP VLM DIRO DEC

@1 1 0 2 0 4
@5 2 3 7 2 15
@10 3 5 15 4 23
@20 9 10 30 9 35
@50 20 20 49 22 59
@100 35 34 61 44 70

Table 5: Percentage recall@k attribute retrieval scores.

DIRO DEC DIRA

@1 1 2 0
@5 3 10 0
@10 5 14 1
@20 9 20 2
@50 20 29 6
@100 33 41 12

Table 6: Percentage hit@k noun retrieval scores.

The DIRO method, which exploits visual in-
formation, performs numerically similarly to the
object-informed models LM and SP, with better
hit and recall at high ranks. Although worse than
DIRA, the relatively high performance of DIRO is
a promising result, suggesting object annotations to-
gether with linguistic knowledge extracted in an un-
supervised manner from large corpora can replace,
to some extent, manual attribute annotations. How-
ever, DIRO does not directly model any semantic
compatibility constraints between the retrieved ad-
jectives and the object present in the image (see ex-
amples below). Hence, the object-informed model
VLM, which combines visual information wit lin-
guistic co-occurrence statistics, doubles the perfor-
mance of DIRO, LM and SP.

Our DEC model, which treats images as visual
phrases and jointly decouples their semantics, out-
performs even VLM by a large margin. It also out-
performs DIRA, the standard zero-shot learning ap-
proach using attribute-adjective annotated data (see
also the attribute-by-attribute AUC comparison be-
tween DEC, DIRA and the fully-supervised ap-
proach of Russakovsky and Fei-Fei in Figure 3).

Interestingly, accounting for the phrasal nature of
visual information leads to substantial performance
improvement in object recognition through zero-
shot learning (i.e., tagging images with the depicted
nouns) as well. Table 6 provides the hit@k results
obtained with the DIRO and DEC methods for the
noun retrieval task in a search space of 10,000 most

Image Model Top item Top hit (Rank)

A: white, brown
N: dog

DEC
A: white white (1)
N: dog dog (1)

DIRO A: animal white (27)
N: goat dog (25)

LM A: stray brown (74)

VLM A: pet brown (17)

A: shiny, round
N: syrup

DEC
A: shiny shiny (1)
N: flan syrup (170)

DIRO A: crunchy shiny (15)
N: ramekin syrup (113)

LM A: chocolate shiny (84)

VLM A: chocolate shiny (17)

Table 7: Images with gold attribute-adjective and object-
noun labels, and highest-ranked items for each model
(Top item), as well as highest-ranked correct item and
rank (Top hit). Noun results for (V)LM are omitted since
these models have access to the gold noun label.

frequent nouns from our corpus. Note that DIRO

represents the label retrieval technique that has been
standardly used in conjunction with zero-shot learn-
ing for objects: The cross-modal function is trained
on images annotated with nouns that denote the ob-
jects they depict, and it is then used for noun label
retrieval of unseen objects through a nearest neigh-
bor search of the mapped image representation (the
DIRA column shows that zero-shot noun retrieval
using the mapping function trained on adjectives
works very poorly). DEC decomposes instead the
mapped image representation into two vectors de-
noting adjective and noun semantics, respectively,
and uses the latter to perform the nearest neigh-
bor search for a noun label. Although not directly
comparable, the results of DEC reported here are in
the same range of state-of-the-art zero-shot learning
models for object recognition (Frome et al., 2013).

Annotation examples Table 7 presents some in-
teresting patterns we observed in the results. The
first example illustrates the case in which conducting
adjective and noun retrieval independently results in
mixing information, which damages the DIRO ap-
proach: Adjectival and nominal properties are not
decoupled properly, since the animal property of the
depicted dog is reflected in both the animal adjec-
tive and the goat noun. At the same time, the white-
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ness of the object (an adjectival property) influences
noun selection, since goats tend to be white. Instead,
DEC unpacks the visual semantics in an accurate
and meaningful way, producing correct attribute and
noun annotations that form acceptable phrases. LM
and VLM are negatively affected by co-occurrence
statistics and guess stray and pet as adjectives, both
typical but generic and abstract dog properties.

In the next example, DIRO predicts a reason-
able noun label (ramekin), focusing on the container
rather than the liquid it contains. By ignoring the
relation between the adjective and the noun, the re-
sulting adjective annotation (crunchy) is semanti-
cally incompatible with the noun label, emphasizing
the inability of this method to account for semantic
relations between attributes-adjectives and object-
nouns. DEC, on the other hand, mistakenly anno-
tates the object as flan instead of syrup. However,
having captured the right general category of the ob-
ject (“smooth gelatinous items that reflect light”),
it ranks a semantically appropriate and correct at-
tribute (shiny) at the top. Finally, LM and VLM
choose chocolate, an attribute semantically appro-
priate for syrup but irrelevant for the target image.

Semantic plausibility of phrases The examples
above suggest that one fundamental way in which
DEC improves over DIRO is by producing seman-
tically coherent adjective-noun combinations. More
systematic evidence for this conjecture is provided
by a follow-up experiment on the linguistic qual-
ity of the generated phrases. We randomly sampled
2 images for each of the 203 objects in our data
set. For each image, we let the two models gen-
erate 9 descriptive phrases by combining their re-
spective top 3 adjective and noun predictions. From
the resulting lists of 3,654 phrases, we picked the
200 most common ones for each model, with only
1/8 of these common phrases being shared by both.
The selected phrases were presented (in random or-
der and concealing their origin) to two linguistically-
sophisticated annotators, who were asked to rate
their degree of semantic plausibility on a 1-3 scale
(the annotators were not shown the corresponding
images and had to evaluate phrases purely on lin-
guistic/semantic grounds). Since the two judges
were largely in agreement (ρ=0.63), we averaged
their ratings. The mean averaged plausibility score

DEC LM vLM DIRO DIRA

0.25

0.3

0.35

0.4

0.45

0.5

0.55

SP

Figure 4: Distributions of (per-image) concreteness
scores across different models. Red line marks median
values, box edges correspond to 1st and 3rd quartiles, the
wiskers extend to the most extreme data points and out-
liers are plotted individually.

for DIRO phrases was 1.74 (s.d.: 0.76), for DEC it
was 2.48 (s.d.: 0.64), with the difference significant
according to a Mann-Whitney test. The two anno-
tators agreed in assigning the lowest score (“com-
pletely implausible”) to more than 1/3 of the DIRO

phrases (74/200; e.g., tinned tostada, animal bird,
hollow hyrax), but they unanimously assigned the
lowest score to only 7/200 DEC phrases (e.g., cylin-
drical bed-sheet, sweet ramekin, wooden meat). We
thus have solid quantitative support that the superior-
ity of DEC is partially due to how it learns to jointly
account for adjective and noun semantics, producing
phrases that are linguistically more meaningful.

Adjective concreteness We can gain further in-
sight into the nature of the adjectives chosen by
the models by considering the fact that phrases that
are meant to describe an object in a picture should
mostly contain concrete adjectives, and thus the de-
gree of concreteness of the adjectives produced by a
model is an indirect measure of its quality. Follow-
ing Hill and Korhonen (2014), we define the con-
creteness of an adjective as the average concreteness
score of the nouns it modifies in our text corpus.
Noun concreteness scores are taken, in turn, from
Turney et al. (2011). For each test image and model,
we obtain a concreteness score by averaging the con-
creteness of the top 5 adjectives that the model se-
lected for the image. Figure 4 reports the distribu-
tions of the resulting scores across models. We con-
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firm that the purely language-based models (LM,
SP) are producing generic abstract adjectives that
are not appropriate to describe images (e.g., crypto-
graphic key, homemade bread, Greek salad, beaten
yolk). The image-informed VLM and DIRO models
produce considerably more concrete adjectives. Not
surprisingly, DIRA, that was directly trained on con-
crete adjectives, produces the most concrete ones.
Importantly, DEC, despite being based on a cross-
modal function that was not explicitly exposed to
adjectives, produced adjectives that are approaching
the concreteness level of those of DIRA (both differ-
ences between DEC and DIRO, DEC and DIRA are
significant as by paired Mann-Whitney tests).

5 Using DEC for attribute-based object
classification

As discussed in the introduction, attributes can ef-
fectively be used for attribute-based object clas-
sification. In this section, we show that clas-
sifiers trained on attribute representations created
with DEC – which does not require any attribute-
annotated training data nor training a battery of at-
tribute classifiers – outperform (and are complemen-
tary to) standard BoVW features.

We use a subset of the Pascal VOC 2008 dataset.15

Specifically, following Farhadi et al. (2009), we use
the original VOC training set for training/validation,
and the VOC validation set for testing. One-vs-all
linear-SVM classifiers are trained for all VOC ob-
jects, using 3 alternative image representations.

First, we train directly on BoVW features
(PHOW, see Section 2.3), as in the classic object
recognition pipeline. We compare PHOW to an
attribute-centric approach with attribute labels auto-
matically generated by DEC. All VOC images are
projected onto the linguistic space using the cross-
modal mapping function trained with object-noun
data only (see Section 4.1), from which we further
removed all images depicting a VOC object. Each
image projection is then decomposed through DEC

into two vectors representing adjective and noun in-
formation. The final attribute-centric vector repre-
senting an image is created by recording the cosine
similarities of the DEC-generated adjective vector

15http://pascallin.ecs.soton.ac.uk/
challenges/VOC/voc2008/

Image Object Predicted
Attributes

aeroplane thick, wet, dry,
cylindrical,
motionless,
translucent

dog cuddly, wild,
cute, furry,
white, coloured

Table 8: Two VOC images with some top attributes as-
signed by DEC: these attributes, together with their co-
sine similarities to the mapped image vectors, serve as
attribute-centric representations.

with all the adjectives in our linguistic space. Infor-
mally, this representation can be thought of as a vec-
tor of weights describing the appropriateness of each
adjective as an annotation for the image.16 This is
comparable to standard attribute-based classification
(Farhadi et al., 2009), in which images are repre-
sented as distributions over attributes estimated with
a set of ad hoc supervised attribute-specific classi-
fiers. Table 8 show examples of top attributes auto-
matically assigned by DEC. While not nearly as ac-
curate as manual annotation, many attributes are rel-
evant to the objects, both as specifically depicted in
the image (the aeroplane is wet), but also more pro-
totypically (aeroplanes are cylindrical in general).

We also perform feature-level fusion (FUSED) by
concatenating the PHOW and DEC features, and re-
ducing the resulting vector to 100 dimensions with
SVD (Bruni et al., 2014) (SVD dimensionality de-
termined by cross-validation on the training set).

5.1 Results

There is an improvement over PHOW visual features
when using DEC-based attribute vectors, with accu-
racy raising from 30.49% to 32.76%. The confusion
matrices in Figure 5 show that PHOW and DEC do
not only differ in quantitative performance, but make
different kinds of errors, in part pointing at the dif-
ferent modalities the two models tap into. PHOW,
for example, tends to confuse cats with sofas, prob-
ably because the former are often pictured lying on

16Given that the resulting representations are very dense, we
sparsify them by setting to zeros all adjective dimensions with
cosine below the global mean cosine value.
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Figure 5: Confusion matrices for PHOW (top) and DEC
(bottom). Warmer-color cells correspond to higher pro-
portions of images with gold row label tagged by an algo-
rithm with the column label (e.g., the first cells show that
DEC tags a larger proportion of aeroplanes correctly).

the latter. DEC, on the other hand, tends to con-
fuse chairs with TV monitors, partially misguided
by the taxonomic information encoded in language
(both are pieces of furniture). Indeed, the combined
FUSED approach outperforms both representations
by a large margin (35.81%), confirming that the
linguistically-enriched information brought by DEC

is to a certain extent complementary to the lower-
level visual evidence directly exploited by PHOW.
Overall, the performance of our system is quite close
to the one obtained by Farhadi et al. (2009) with en-
sembles of supervised attribute classifiers trained on
manually annotated data (the most comparable ac-
curacy from their Table 1 is at 34.3%).17

17Farhadi and colleagues reduce the bias for the people cat-
egory by reporting mean per-class accuracy; we directly ex-
cluded people from our version of the data set.

6 Conclusion

We extended zero-shot image labeling beyond ob-
jects, showing that it is possible to tag images with
attribute-denoting adjectives that were not seen dur-
ing training. For some attributes, performance was
comparable to that of per-attribute supervised classi-
fiers. We further showed that attributes are implicitly
induced when learning to map visual vectors of ob-
jects to their linguistic realizations as nouns, and that
improvements in both attribute and noun retrieval
are attained by treating images as visual phrases,
whose linguistic representations must be decom-
posed into a coherent word sequence. The resulting
model outperformed a set of strong rivals. While the
performance of the zero-shot decompositional ap-
proach in the adjective-noun phrase labeling alone
might still be low for practical applications, this
model can still produce attribute-based representa-
tions that significantly improve performance in a
supervised object recognition task, when combined
with standard visual features.

By mapping attributes and objects to phrases in
a linguistic space, we are also likely to produce
more natural descriptions than those currently used
in computer vision (fluffy kittens rather than 2-boxy
tables). In future work, we want to delve more
into the linguistic and pragmatic naturalness of at-
tributes: Can we predict not just which attributes
of a depicted object are true, but which are more
salient and thus more likely to be mentioned (red
car over metal car)? Can we pick the most appro-
priate adjective to denote an attribute given the ob-
ject in the picture (moist, rather than damp lips)?
We should also address attribute dependencies: by
ignoring them, we currently get undesired results,
such as the aeroplane in Table 8 being tagged as both
wet and dry. More ambitiously, inspired by Karpa-
thy et al. (2014), we plan to associate image frag-
ments with phrases of arbitrary syntactic structures
(e.g., PPs for backgrounds, a VPs for main events),
paving the way to full-fledged caption generation.
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