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Abstract

The role of language models in SMT is to
promote fluent translation output, but tradi-
tional n-gram language models are unable to
capture fluency phenomena between distant
words, such as some morphological agree-
ment phenomena, subcategorisation, and syn-
tactic collocations with string-level gaps. Syn-
tactic language models have the potential to
fill this modelling gap. We propose a lan-
guage model for dependency structures that is
relational rather than configurational and thus
particularly suited for languages with a (rel-
atively) free word order. It is trainable with
Neural Networks, and not only improves over
standard n-gram language models, but also
outperforms related syntactic language mod-
els. We empirically demonstrate its effective-
ness in terms of perplexity and as a feature
function in string-to-tree SMT from English
to German and Russian. We also show that
using a syntactic evaluation metric to tune the
log-linear parameters of an SMT system fur-
ther increases translation quality when cou-
pled with a syntactic language model.

1 Introduction

Many languages exhibit fluency phenomena that are
discontinuous in the surface string, and are thus not
modelled well by traditional n-gram language mod-
els. Examples include morphological agreement,
e.g. subject-verb agreement in languages that do not
(exclusively) follow SVO word order, subcategori-
sation, and collocations involving distant, but syn-
tactically linked words.

Syntactic language models try to overcome the
limitation to a local n-gram context by using syn-
tactically related words (and non-terminals) as con-
text information. Despite their theoretical attractive-
ness, it has proven difficult to improve SMT with
parsers as language models (Och et al., 2004; Post
and Gildea, 2008).

This paper describes an effective method to
model, train, decode with, and weight a syntactic
language model for SMT. While all these aspects are
important for successfully applying a syntactic lan-
guage model, our primary contributions are a novel
dependency language model which improves over
prior work by making relational modelling assump-
tions, which we argue are better suited for languages
with a (relatively) free word order, and the use of a
syntactic evaluation metric for optimizing the log-
linear parameters of the SMT model.

While language models that operate on words
linked through a dependency chain – called syntactic
n-grams (Sidorov et al., 2013) – can improve trans-
lation, some of the improvement is invisible to an
n-gram metric such as BLEU. As a result, tuning
to BLEU does not show the full value of a syntactic
language model. What does show its value is an op-
timization metric that operates on the same syntactic
n-grams that are modelled by the dependency LM.

The paper is structured as follows. Section 2 de-
scribes our relational dependency language model;
section 3 describes our neural network training pro-
cedure, and the integration of the model into an SMT
decoder. We describe the syntactic evaluation metric
we use for tuning in Section 4. The language mod-
els are evaluated on the basis of perplexity and SMT
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performance in section 5. We discuss related work
in section 6, and finish with concluding remarks in
section 7.

2 A Relational Dependency Language
Model

As motivation, and working example for the model
description, consider the dependency tree in Figure
1, which is taken from the output of our baseline
string-to-tree SMT system.1 The output contains
two errors:

• a morphological agreement error between the
subject Ergebnisse (plural) and the finite verb
wird (singular).

• a subcategorisation error: überraschen is tran-
sitive, but the translation has a prepositional
phrase instead of an object.

While these errors might not have occurred if the
words involved were adjacent to one another here
and throughout the training set, non-adjacency is
common, especially where the distance between
subject and finite verb, or between a full verb and
its arguments can be arbitrarily long.

Prior work on syntactic language modelling has
typically focused on English, and we argue that
some modelling decisions do not transfer well to
other languages. The dependency models proposed
by Shen et al. (2010) and Zhang (2009) rely heav-
ily on structural information such as the direction
and distance of the dependent from the parent. In
a language where the order of syntactic dependents
is more flexible than in English, such as German2,
grammatical function (and thus the inflection) is
hard to predict from the dependent order. Instead,
we make dependency labels, which encode gram-
matical relations, a core element of our model.3

1The tree is converted into constituency format for compati-
bility with SCFG decoding algorithms, with dependency edges
represented as non-terminal nodes.

2German has a strict word order within noun phrases and for
the placement of verbs, but has different word order for main
clauses and subordinated clauses, and some flexibility in the
order of dependents of a verb.

3Tsarfaty (2010) classifies parsing approaches into config-
urational approaches that rely on structural information, and
relational ones that take grammatical relations as primitives.
While she uses dependency syntax as a prototypical example of

Shen et al. (2010) propose a model that estimates
probability of each token given its parent and/or pre-
ceding siblings. We start with a variant of their
model that does not hard-code configurational mod-
elling assumptions, and then extend it by including
dependency labels.

2.1 Unlabelled Model
Let S be a sequence of terminal symbols
w1, w2, ..., wn with a dependency topology T , and
let hs(i) and ha(i) be lists of heads of preceding
siblings and ancestors of wi according to T , from
closest to furthest. In our example in Figure 1:

• w4 = jüngsten

• hs(4) = (der)

• ha(4) = (Umfrage,Ergebnisse,wird, ε)

Note that ha and its subsequences are instances
of syntactic n-grams. For this model, we follow re-
lated work and assume that T is available (Popel and
Marecek, 2010), approximating P (S) as P (S|T ).
We make the Markov assumption that the probabil-
ity of each word only depends on its preceding sib-
lings4 and ancestors, and decompose the probability
of a sentence like this:

P (S) = P (w1, w2, ..., wn)

≈
n∏

i=1

P (wi|hs(i), ha(i))
(1)

We further make the Markov assumption that only a
fixed window of the closest q siblings, and the clos-
est r ancestors, affect the probability of a word.

P (S) ≈
n∏

i=1

P (wi|hs(i)q1, ha(i)r1) (2)

Equation 2 represents our basic, unlabelled model. It
differs from that of Shen et al. (2010) in two ways.

relational approaches, the dependency LM by Shen et al. (2010)
would fall into the configurational category, while ours is rela-
tional.

4Shen et al. (2010) use the siblings that are between the word
and its parent, i.e. the following siblings if the word comes be-
fore its parent. We believe both preceding and following sib-
lings are potentially useful, but leave expansion of the context
to future work.
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die Ergebnisse der jüngsten Umfrage wird für viele überraschen .
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Figure 1: Translation output of baseline English→German string-to-tree SMT system with original dependency rep-
resentation and conversion into constituency representation.

First, it uses separate context windows for siblings
and ancestors. In contrast, Shen et al. (2010) treat
the ancestor as the first symbol in a context window
that is shared between the ancestor and siblings. Our
formulation encodes our belief that the model should
always assume dependence on the r nearest ancestor
nodes, regardless of the number of siblings. Sec-
ondly, Shen et al. (2010) separate dependents to the
left and to the right of the parent. While the fixed
SVO verb order in English is compatible with such
a separation, allowing PL to model subjects, PR to
model objects, most arguments can occur before or
after the head verb in German main clauses. We thus
argue that left and right dependents should be mod-
elled by a single model to allow for sharing of sta-
tistical strength.5

2.2 Labelled Model

The motivation for the inclusion of dependency la-
bels is twofold. Firstly, having dependency labels
in the context serves as a strong signal for the pre-
diction of the correct inflectional form. Secondly,
dependency labels are the appropriate level of ab-

5Similar arguments have been made for parsing of (rela-
tively) free word-order languages, e.g. by Tsarfaty et al. (2009).

straction to model subcategorisation frames.
Let D be a sequence of dependency labels

l1, l2, ..., ln, with each label li being the label of the
incoming arc at position i in T , and ls(i) and la(i)
the list of dependency labels of the siblings and an-
cestors of wi, respectively. Continuing the example
for w4, these are:

• l4 = attr

• ls(4) = (det)

• la(4) = (gmod, subj, vroot, sent)

We predict both the terminal symbols S and de-
pendency labels D. The latter lets us model sub-
categorisation by penalizing unlikely relations, e.g.
objects whose parent is an intransitive verb. We de-
compose P (S,D) into P (D)× P (S|D) to obtain:

P (S,D) = P (D)× P (S|D)

≈
n∏

i=1

Pl(i)× Pw(i)

Pl(i) =P (li|hs(i)q1, ls(i)q1, ha(i)r1, la(i)r1)
Pw(i) =P (wi|hs(i)q1, ls(i)q1, ha(i)r1, la(i)r1, li)

(3)
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2.3 Head and Label Extraction

We here discuss some details for the extraction of
the context hs and ha. Dependency structures re-
quire no language-specific head extraction rules,
even in a converted constituency representation. In
the constituency representation shown in Figure 1,
each non-terminal node in the tree that is not a pre-
terminal has exactly one pre-terminal child. The
head of a non-terminal node can thus be extracted
by identifying the pre-terminal child, and taking its
terminal symbol as head. An exception is the virtual
node sent, which is added to the root of the tree to
combine subtrees that are not connected in the orig-
inal grammar, e.g. the main tree and the punctuation
symbol. If a node has no pre-terminal child, we use
a special token ε as its head.

If the sibling of a node is a pre-terminal node, we
represent this through a special token in hs and ls.
We also use special out-of-bound tokens (separate
for hs, ha, ls and la) to fill up the context window
if the window is larger than the number of siblings
and/or ancestors.

The context extraction rules are language-
independent and can be applied to any dependency
structure. Language-specific or grammar-specific
rules are possible in principle. For instance, for ver-
bal heads in German, one could consider separable
verb prefixes part of the head, and thus model differ-
ences in subcategorisation between schlagen (Engl.
beat) and schlagen ... vor (Engl. suggest).

2.4 Predicting the Tree Topology

The model in equation 3 still assumes the topology
of the dependency tree to be given, and we remedy
this by also predicting pre-terminal nodes, and a vir-
tual STOP node as the last child of each node. This
models the position of the head in a subtree (through
the prediction of pre-terminal nodes), and the prob-
ability that a word has no more dependents (by as-
signing probability mass to the STOP node).

Instead of generating all n terminal symbols as
in equation 3, we generate all m nodes in the de-
pendency tree in top-down, depth-first order, with li
being PT for pre-terminals, and the node label oth-
erwise, and wi being either the head of the node, or
ε if the node has no pre-terminal child. Our final
model is given in equation 4.

N 3 4 5
D det attr gmod
S der jüngsten Umfrage
T 5 5 2

N 8 9 10 11 12 13 14 15 16
D gmod det PT STOP attr PT STOP PT STOP

S Umfrage der ε ε jüngsten ε ε ε ε
T 3 8 9 9 8 12 12 8 8

Figure 2: Snippet of prediction steps when generating ter-
minals (top) or all nodes in tree (bottom) for dependency
tree in Figure 1.

P (S,D, T ) ≈
m∏

i=1

{
Pl(i)× Pw(i), if wi 6= ε

Pl(i), otherwise
(4)

Figure 2 illustrates the prediction of a subtree of
the dependency tree in Figure 1. Note that T is
encoded implicitly, and can be retrieved from D
through a stack to which all nodes (except for pre-
terminal and STOP nodes) are pushed after predic-
tion, and from which the last node is popped when
predicting a STOP node.

3 Neural Network Training and SMT
Decoding

We extract all training instances from automatically
parsed training text, and perform training with a
standard feed-forward neural network (Bengio et
al., 2003), using the NPLM toolkit (Vaswani et al.,
2013). Back-off smoothing schemes are unsatisfac-
tory because it is unclear which part of the context
should be forgotten first, and neural networks ele-
gantly solve this problem. We use two separate net-
works, one for Pw and one for Pl. Both networks
share the same input vocabulary, but are trained
and applied independently. The model input is a
(2q+2r)-word context vector (+1 for Pw to encode
li), each word being mapped to a shared embedding
layer. We use a single hidden layer with rectified-
linear activation function, and noise-contrastive es-
timation (NCE).

We integrate our dependency language models
into a string-to-tree SMT system as additional fea-
ture functions that score each translation hypothe-
sis. The model in equation 4 predicts P (S,D, T ).
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model input input entropy rate
5-gram 5-gram A B C D E 5.25
bigram bigram D E 5.96
5-gram bigram ε1 ε2 ε3 D E 6.13

Table 1: Handling unavailable input words by replacing
them with null words.

Obtaining the probability of the translation hypoth-
esis P (S) would require the (costly) marginaliza-
tion over all sequences of dependency labels D and
topologies T , but like the SMT decoder itself, we
approximate the search for the best translation by
searching for the highest-scoring derivation, mean-
ing that we directly integrate Pw and Pl as two fea-
tures into the log-linear SMT model. We use self-
normalized neural networks with precomputation of
the hidden layer, which makes the integration into
decoding reasonably fast.

The decoder builds the translation bottom-up, and
the full context is not available for all symbols in the
hypothesis. Vaswani et al. (2013) propose to use a
special null word for unavailable context, their em-
bedding being the weighted average of the input em-
beddings of all other words. We adopt this strategy,
with the difference that we use separate null words
for each position in the context window in order to
reflect distributional differences between the differ-
ent positions, e.g. between ancestor labels and sib-
ling labels. Symbols are re-scored as more context
becomes available in decoding, but poor approxima-
tions could affect pruning and thus lead to search
errors. In Table 1, we illustrate the use of null words
with a 5-gram and a bigram NNLM model. We ob-
serve a small increase in entropy when querying the
5-gram model with bigrams, compared to querying
a bigram model directly.

Some hierarchical SMT systems allow glue rules
which concatenate two subtrees. Since the resulting
glue structures do not occur in the training data, we
do not estimate their probability in our model. When
encountering the root of a glue rule in our language
model, we recursively evaluate its children, but ig-
nore the glue node itself. This could introduce a
bias towards using more glue rules during transla-
tion. To counter this, and encourage the production
of linguistically plausible trees, we assign a fixed,
high cost to glue rules. Glue rules thus play a small

role in our systems, with about 100 glue rule appli-
cations per 3000 sentences, and could be abandoned
entirely.6

4 Optimizing Syntactic N-grams

N-gram based metrics such as BLEU (Papineni et
al., 2002) are still predominantly used to optimize
the log-linear parameters of SMT systems, and (to
a lesser extent) to evaluate the final translation sys-
tems. However, n-gram metrics are not well suited
to measure fluency phenomena with string-level
gaps, and there is a danger that BLEU underesti-
mates the modelling power of dependency language
models, resulting in a suboptimal assignment of log-
linear weights. As an alternative metric that operates
on the level of syntactic n-grams, we use a variant
of the head-word chain metric (HWCM) (Liu and
Gildea, 2005).

HWCM is a precision metric similar to BLEU,
but instead of counting n-gram matches between
the translation output and the reference, it compares
head-word chains, or syntactic n-grams. HWCM
is not only suitable for our task because it operates
on the same structures as the dependency language
models, but also because our string-to-tree SMT ar-
chitecture produces trees that can be evaluated di-
rectly, without requiring a separate parse of the
translation output, a task for which few parsers are
optimized. For extracting syntactic n-grams from
the reference translations of the respective develop-
ment and test sets, we automatically parse them, us-
ing the same preprocessing as for training.

We count syntactic n-grams of sizes 1 to 4, mirror-
ing the typical usage of BLEU. Banerjee and Lavie
(2005) have demonstrated the importance of recall in
MT evaluation, and we compute the harmonic mean
of precision and recall, which we denote HWCMf ,
instead of the original, precision-based metric.

5 Evaluation

We perform three evaluations of our dependency
language models. Our perplexity evaluation mea-
sures model perplexity on the 1-best output of a

6For efficiency reasons, our experimental systems only per-
form SCFG parsing for spans of up to 50 words, and use glue
rules to concatenate partial derivations in longer sentences. Bet-
ter decoding algorithms have reduced the need for this limit
(Sennrich, 2014).
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baseline SMT system and a human reference trans-
lation. Our SMT evaluation integrates the model as a
feature function in a string-to-tree SMT system and
evaluates its impact on translation quality. Finally,
we quantify the effect of different language mod-
els on grammaticality by measuring the number of
agreement errors of our SMT systems.

We refer to the unlabelled variant of our model
(equation 2) as DLM, and to the labelled variant
(equation 4) as RDLM, emphasizing that the latter
is a relational dependency LM.

5.1 Data and Methods

We perform our experiments on English→German
data from the WMT 2014 shared translation task
(Bojar et al., 2014), consisting of about 4.5 million
sentence pairs of parallel data and 120 million sen-
tences of monolingual German data. We train all
language models on the German side of the par-
allel text and the monolingual data. We also per-
form some experiments on the English→Russian
data from the same translation task, with 2 million
sentence pairs of parallel data and 34 million sen-
tences of monolingual Russian data.

For a 5-gram Neural Network LM baseline
(NNLM), and the dependency language models, we
train feed-forward Neural Network language models
with the NPLM toolkit. We use 150 dimensions for
the input embeddings, and a single hidden layer with
750 dimensions. We use a vocabulary of 500 000
words (70 for the output vocabulary of Pl), from
which we draw 100 noise samples for NCE (50 for
Pl). We train for two epochs, each epoch being a full
traversal of the training text. For unknown words,
we back-off to a special unk token for the sequence
models and Pl, and to the pre-terminal symbol for
the other dependency models. We report perplex-
ity values with softmax normalization, but disable
normalization during decoding, relying on the self-
normalization of NCE for efficiency. For the transla-
tion experiments with DLM and RDLM, we set the
sibling window size q to 1, and the ancestor window
size r to 2.7

We train baseline language models with interpo-
lated modified Kneser-Ney smoothing with SRILM

7On our test set, a node has an average of 4.6 ancestors (σ =
2.5), and 1.2 left siblings (σ = 1.3).

(Stolcke, 2002). The model in the SMT baseline
uses the full vocabulary and a linear interpolation of
component models for domain adaptation. For the
perplexity evaluation, we use the same vocabulary
and training data as for the Neural Network models.

For the English→German SMT evaluation, our
baseline system is a string-to-tree SMT system with
Moses (Koehn et al., 2007), with dependency pars-
ing of the German texts (Sennrich et al., 2013).
It is described in more detail in (Williams et al.,
2014). This setup was ranked 1–2 (out of 18) in
the WMT 2014 shared translation task and is state-
of-the art. Our biggest deviation from this setup
is that we do not enforce the morphological agree-
ment constraints that are provided by a unification
grammar (Williams and Koehn, 2011), but use them
for analysis instead. For English→Russian, we
copy the language-independent settings from the the
English→German set-up, and perform dependency
parsing with a Russian model for the Maltparser
(Nivre et al., 2006; Sharoff and Nivre, 2011), ap-
plying projectivization after parsing.

We tune our system on a development set of 2000
sentences with k-best batch MIRA (Cherry and Fos-
ter, 2012) on BLEU and a linear interpolation of
BLEU and HWCMf , and report both scores for eval-
uation. We also report METEOR (Denkowski and
Lavie, 2011) for German and TER (Snover et al.,
2006). We control for optimizer instability by run-
ning the optimization three times per system and
performing significance testing with Multeval (Clark
et al., 2011), which we enhanced to also perform sig-
nificance testing for HWCMf .

5.2 Implementation notes on model by Shen et
al. (2010)

We reimplement the model by Shen et al. (2010) for
our evaluation. The authors did not specify training
and smoothing of their model, so we only adopt their
definition of the context window, and use the same
neural network architecture as for our other models.
Specifically, we use two neural networks: one for
left dependents, and one for right dependents. We
use maximum-likelihood estimation for the head of
root nodes, ignoring unseen events. To distinguish
between parents and siblings in the context window,
we double the input vocabulary and mark parents
with a suffix. Like Shen et al. (2010), we ignore the
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language model
perplexity entropy

ref. 1-best difference
5-gram (KN) 232.9 183.3 -4.4%
5-gram NNLM 207.3 207.5 0.0%
Shen et al. (2010) 345.1 383.0 1.8%
DLM (q=1; r=1) 213.7 259.9 3.6%
DLM (q=1; r=2) 136.9 188.3 6.5%
RDLM (q=1; r=2) 349.2 734.6 12.7%
RDLM, Pw 58.1 85.1 9.4%
RDLM, Pl 6.0 8.6 20.1%

Table 2: Perplexity of different Neural Network language
models (and baseline with Kneser-Ney smoothing) on
German reference translation (newstest2013) and base-
line English→German translation output. Our goal is a
language model that prefers the reference over the trans-
lation hypothesis, indicated by a lower perplexity and a
positive entropy difference.

prediction of STOP labels, meaning that our imple-
mentation assumes the dependency topology to be
given. We use a trigram model like the original au-
thors. Peter et al. (2012) experiment with higher or-
ders variants, but do not consider grandparent nodes.
We consider scalability to a larger ancestor context
a real concern, since another duplication of the vo-
cabulary may be necessary for each ancestor level.

5.3 Perplexity

There are a number of factors that make a direct
comparison of the reference set perplexity unfair.
Mainly, the unlabelled dependency model DLM and
the one by Shen et al. (2010) assume that the de-
pendency topology is given; Pw even assumes this
for the dependency labels D. Conversely, the full
RDLM predicts the terminal sequence, the depen-
dency labels, and the dependency topology, and we
thus expect it to have a higher perplexity.8 Also note
that we compare 5-gram n-gram models to 3- and 4-
gram dependency models. A more minor difference
is that n-gram models also predict end-of-sentence
tokens, which the dependency models do not.

Rather than directly comparing perplexity be-
tween different models, our focus lies on a perplex-
ity comparison between a human reference transla-
tion and the 1-best SMT output of a baseline transla-

8For better comparability, we measure perplexity per surface
word, not per prediction.

tion system. Our basic assumption is that the differ-
ence in perplexity (or cross-entropy) tells us whether
a model contains information that is not already part
of the baseline model, and if incorporating it into our
SMT system can nudge the system towards produc-
ing a translation that is more similar to the reference.

Results for English→German are shown in ta-
ble 2. The baseline 5-gram language model with
Kneser-Ney smoothing prefers the SMT output over
the reference translation, which is natural given that
this language model is part of the system producing
the SMT output. The 5-gram NNLM improves over
the Kneser-Ney models, and happens to assign al-
most the same perplexity score to both texts. This
still means that it is less biased towards the SMT
output than the baseline model, and can be a valu-
able addition to the model.

The dependency language models all show a pref-
erence for the reference translation, with DLM hav-
ing a stronger preference than the model by Shen et
al. (2010), and RDLM having the strongest prefer-
ence. The direct comparison of DLM and Pw, which
is the component of RDLM that predicts the termi-
nal symbols, shows that dependency labels serve as
a strong signal for predicting the terminals, confirm-
ing our initial hypothesis. The prediction of the de-
pendency topology and labels through Pl means that
the full RDLM has the highest perplexity of all mod-
els. However, it also strongly prefers the human ref-
erence text over the baseline SMT output.

5.4 Translation Quality
Translation results for English→German with dif-
ferent language models added to our baseline are
shown in Table 3. Considering the systems tuned
on BLEU, we observe that the 5-gram NNLM and
RDLM are best in terms of BLEU and TER, but that
RDLM is the only winner9 according to HWCMf

and METEOR. In particular, we observe a sizable
gap of 0.6 HWCMf points between the NNLM and
the RDLM systems, despite similar BLEU scores.
The unlabelled DLM and the dependency LM by
Shen et al. (2010), which are generally weaker than
RDLM, also tend to improve HWCMf more than
BLEU. This reflects the fact that the dependency

9We denote a system a winner if no other system [in the
group of systems under consideration] is significantly better ac-
cording to significance testing with Multeval.
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MIRA system dev newstest2013 newstest2014
objective BLEU HWCMf METEOR TER BLEU HWCMf METEOR TER BLEU HWCMf METEOR TER

BLEU

baseline 34.4 32.6 52.5 47.4 19.8 22.8 39.7* 62.4 20.3 23.2 42.0* 62.7
5-gram NNLM 35.3 33.1 53.2* 46.4 20.4 23.2 40.2 61.7 21.0 23.5 42.5* 62.2
Shen et al. (2010) 34.4* 33.2 52.7* 46.9 20.0 23.2 40.0* 62.3 20.4 23.5 42.3* 62.9
DLM 34.9* 33.8 53.1* 46.8 20.3 23.6 40.1* 61.7 20.8 23.9 42.3* 62.2
RDLM 35.0 33.9 53.1* 46.7 20.5 23.8 40.4* 61.7 21.0 24.1 42.7* 62.2
5-gram + RDLM 35.5 34.0 53.4* 46.3 20.7 23.7 40.6* 61.5 21.4 24.1 42.9* 61.7

BLEU

+
HWCMf

baseline 34.4 33.0* 52.4 46.9* 20.0* 23.0* 39.6 61.9* 20.5* 23.3* 41.8 62.2*
5-gram NNLM 35.2 33.5* 53.0 46.0* 20.6* 23.4* 40.1 60.9* 21.1* 23.6 42.3 61.5*
Shen et al. (2010) 34.2 33.8* 52.4 46.4* 20.2* 23.5* 39.8 61.8* 20.7* 23.7* 42.1 62.2*
DLM 34.8 34.3* 52.7 45.9* 20.4 23.8* 39.8 60.7* 21.4* 24.2* 42.0 60.9*
RDLM 34.9 34.5* 53.0 45.8* 20.9* 24.2* 40.3 60.7* 21.6* 24.5* 42.5 60.8*
5-gram + RDLM 35.4 34.6* 53.2 45.4* 21.0* 24.1* 40.4 60.5* 21.8* 24.4* 42.7 60.6*

Table 3: Translation quality of English→German string-to-tree SMT system with different language models, with k-
best batch MIRA optimization on BLEU and BLEU+HWCMf . Average of 3 optimization runs. bold: no other system
in same block is significantly better (p < 0.05); *: significantly better than same model with other MIRA objective
(p < 0.05). Higher scores are better for BLEU, HWCMf and METEOR; lower scores are better for TER.

LMs improve fluency along the syntactic n-grams
that HWCM measures, whereas NNLM only im-
proves local fluency, to which BLEU is most sen-
sitive. The fact that the models cover different phe-
nomena is also reflected in the fact that we see fur-
ther gains from combining the 5-gram NNLM with
the strongest dependency LM, RDLM, for a total im-
provement of 0.9–1.1 BLEU over the baseline.

If we use BLEU+HWCMf as our tuning objec-
tive, the difference between the models increases.
Compared to the 5-gram NNLM, the RDLM system
gains 0.8–0.9 points in HWCMf and 0.3–0.5 points
in BLEU. Compared to the original baseline, tuned
only on BLEU, the system with RDLM that is tuned
on BLEU+HWCMf yields an improvement of 1.1–
1.3 BLEU and 1.3–1.4 HWCMf .

If we compare the same system being trained
on both tuning objectives, we observe that tuning
on BLEU+HWCMf , unsurprisingly, yields higher
HWCMf scores than tuning on BLEU only. What
is more surprising is that adding HWCMf as a tun-
ing objective also yields significantly higher BLEU

on the test sets for 9 out of 10 data points. The gap
is larger for the two systems with RDLM (0.3–0.6
BLEU) than for the baseline or the NNLM system
(0.1–0.2 BLEU). We hypothesize that the inclusion
of HWCMf as a tuning metric reduces overfitting
and encourages the production of more grammat-
ically well-formed constructions, which we expect
to be a robust objective across different texts, espe-

cially when coupled with a strong dependency lan-
guage model such as RDLM.

Some example translations are shown in table 4.
They illustrate three error types in the baseline sys-
tem:

1. an error in subject-verb agreement.

2. a subcategorisation error: gelten is a valid
translation of the intransitive meaning of apply,
but cannot be used for transitive constructions,
where anwenden is correct.

3. a collocation error: two separate collocations
are conflated in the baseline translation:

• reach a decision on [...]
eine Entscheidung über [...] treffen

• reach an agreement on [...]
eine Einigung über [...] erzielen

All errors are due to inter-dependencies in the sen-
tence that have string-level gaps, but which can be
modelled through syntactic n-grams, and are cor-
rected by the system with RDLM and tuning on
BLEU+HWCMf .

We evaluate a subset of the systems on an
English→Russian task to test whether the im-
provements from adding RDLM and tuning on
BLEU+HWCMf apply to other language pairs. Re-
sults are shown in Table 5. The system with RDLM
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1

source also the user manages his identity and can therefore be anonymous.
baseline auch der Benutzer verwaltet seine Identität und können daher anonym sein.
best auch der Benutzer verwaltet seine Identität und kann daher anonym sein.
reference darüber hinaus verwaltet der Inhaber seine Identität und kann somit anonym bleiben.

2

source how do you apply this definition to their daily life and social networks?
baseline wie kann man diese Definition für ihr tägliches Leben und soziale Netzwerke gelten?
best wie kann man diese Definition auf ihren Alltag und sozialen Netzwerken anwenden?
reference wie wird diese Definition auf seinen Alltag und die sozialen Netzwerke angewendet?

3

source the City Council must reach a decision on this in December.
baseline Der Stadtrat muss im Dezember eine Entscheidung darüber erzielen.
best Im Dezember muss der Stadtrat eine Entscheidung darüber treffen.
reference Im Dezember muss dann noch die Stadtverordnetenversammlung entscheiden.

Table 4: SMT output of baseline system and best system (RDLM tuned on BLEU+HWCMf ).

MIRA system dev newstest2013 newstest2014
objective BLEU HWCMf TER BLEU HWCMf TER BLEU HWCMf TER

BLEU

baseline 22.5 21.6 56.7 17.1 18.8 64.7 25.9 23.9 54.5
DLM 23.3* 23.5 56.0 17.5 20.2 64.0 26.4 26.1 53.8
RDLM 23.1 23.7 56.0 17.6 20.4 63.8 26.6 26.5 53.7

BLEU+
HWCMf

baseline 22.5 22.9* 56.1* 17.2 19.7* 63.9* 25.8 25.1* 54.1*
DLM 23.0 24.1* 55.6* 17.6 20.8* 63.2* 26.4 26.9* 53.3*
RDLM 23.1 24.4* 55.4* 17.6 20.9* 63.1* 26.8* 27.3* 53.0*

Table 5: Translation quality of English→Russian string-to-tree SMT system with DLM and RDLM, with k-best batch
MIRA optimization on BLEU and BLEU+HWCMf . Average of 3 optimization runs. bold: no other system in same
block is significantly better (p < 0.05); *: significantly better than same model with other MIRA objective (p < 0.05).
Higher scores are better for BLEU and HWCMf ; lower scores are better for TER.

is the consistent winner, and significantly outper-
forms the baseline for all metrics and test sets. Tun-
ing on BLEU+HWCMf results in further improve-
ments in HWCMf and TER. Looking at the com-
bined effect of adding RDLM and changing the tun-
ing objective, we observe gains in BLEU by 0.5–0.9
points, and gains in HWCMf by 2.1–3.4 points.

5.5 Morphological Agreement

We argue that the dependency language models and
HWCMf as a tuning metric improve grammatical-
ity, and we are able to quantify one aspect thereof,
morphological agreement, for English→German.
Williams and Koehn (2011) introduce a unification
grammar with hand-crafted agreement constraints to
identify and suppress selected morphological agree-
ment violations in German, namely in regards to
noun phrase agreement, prepositional phrase agree-
ment, and subject-verb agreement. We can use their
grammar to analyse the effect of different models on
morphological agreement by counting the number of
translations that violate at least one agreement con-
straint. We assume that the number of false posi-

system MIRA objective
BLEU BLEU+HWCMf

baseline 1028 1018
5-gram NNLM 845 825
Shen et al. (2010) 884 844
DLM 680 599
RDLM 550 468
5-gram + RDLM 576 484

Table 6: Number of English→German translation hy-
potheses with at least one agreement error according
to unification grammar (Williams and Koehn, 2011) on
newstest2013 (3000 sentences). Average of three MIRA
runs.

tives (i.e. correct analyses that trigger an agreement
violation) remains roughly constant throughout all
systems, so that a reduction in the number of agree-
ment violations is an indicator of better grammatical
agreement.

Table 6 shows the results. While the 5-gram
NNLM reduces the number of agreement errors
somewhat compared to the baseline (-18%), the
reduction is greater for DLM (-34%) and RDLM
(-46%). Neither the baseline nor the 5-gram NNLM
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profits strongly from tuning on HWCMf , while the
number of agreement errors is further reduced for
the system with DLM (-41%) and RDLM (-54%).
Adding the 5-gram NNLM to the RDLM system
yields no further reduction on the number of agree-
ment errors.

Enforcing the agreement constraints on the base-
line system (tuned on BLEU+HWCMf ) provides us
with a gain of 0.3 in both BLEU and HWCMf ; on
the RDLM system, only 0.03. The fact that the ben-
efit of enforcing the agreement constraints drops off
more sharply than the number of constraint viola-
tions indicates that the remaining violations tend to
be harder for the model to correct, e.g. because the
translation model has not learned to produce the re-
quired inflection of a word, or because some of the
remaining violations are false positives. While the
dependency language models’ effect of improving
morphological agreement is not (fully) cumulative
with the benefit from enforcing the unification con-
straints formulated by Williams and Koehn (2011),
our model has the advantage of being language-
independent, learning from the data itself rather than
relying on manually developed, grammar-specific
constraints, and covering a wider range of phenom-
ena such as subcategorisation and syntactic colloca-
tions.

The results confirm that the RDLM is more ef-
fective at reducing morphological agreement errors
than a similarly trained n-gram NNLM and the unla-
belled DLM, and that adding HWCMf to the train-
ing objective is beneficial. On a a meta-evaluation
level, we compare the rank correlation between the
automatic metrics and the numer of agreement er-
rors with Kendall’s τ correlation, and observe that he
number of agreement errors is more strongly (nega-
tively) correlated with HWCMf (τ = −0.92) than
with BLEU (τ = −0.77), METEOR (τ = −0.54)
or TER (τ = 0.69). This supports our theoretical
expectation that HWCMf is more sensitive to mor-
phological agreement, which is enforced along syn-
tactic n-grams, than n-gram metrics such as BLEU,
or the unigram metric METEOR.

6 Related Work

While there has been a wide range of dependency
language models proposed (e.g. (Chelba et al., 1997;

Quirk et al., 2004; Shen et al., 2010; Zhang, 2009;
Popel and Marecek, 2010)), there are vast differ-
ences in modelling assumptions. Our work is most
similar to the dependency language model described
in Shen et al. (2010), or the h-gram model proposed
by Zhang (2009), both of which have been used
for SMT. We make different modelling assumptions,
relying less on configurational information, but in-
cluding the prediction of dependency labels in the
model. We argue that our relational modelling as-
sumptions are more suitable for languages with a
relatively free word order such as German.

To a lesser extent, our work is similar to other
parsing models that have been used for language
modelling, such as lexicalized PCFGs (Charniak,
2001; Collins, 2003; Charniak et al., 2003), or struc-
tured language models (Chelba and Jelinek, 2000);
previous efforts to include them in the translation
process failed to improve translation performance
(Och et al., 2004; Post and Gildea, 2008). Differ-
ences in our work that could explain why we see im-
provements include the use of Neural Networks for
training the model on the automatically parsed train-
ing text, instead of re-using existing parser mod-
els, which could be seen as a form of self-training
(McClosky et al., 2006), and the integration of the
language model into the decoder instead of n-best
reranking. Also, there are major differences in the
parsing models themselves. For instance, note that
the structured LM by Chelba and Jelinek (2000) uses
a binary branching structure, and that complex label
sets would be required to encode subcategorisation
frames in binary trees (Hockenmaier and Steedman,
2002).

Our neural network is a standard feed-forward
neural network as introduced by Bengio et al.
(2003). Recently, recursive neural networks have
been proposed for syntactic parsing (Socher et al.,
2010; Le and Zuidema, 2014). The recursive na-
ture of such models allows for the encoding of more
context; for an efficient integration into the dynamic
programming search of SMT decoding, we deem
our model, which makes stronger Markov assump-
tions, more suitable.

While BLEU has been the standard objective func-
tion for tuning the log-linear parameters in SMT sys-
tems, recent work has investigated alternative objec-
tive functions. Some authors concluded that none of
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the tested alternatives could consistently outperform
BLEU (Cer et al., 2010; Callison-Burch et al., 2011).
Liu et al. (2011) report that tuning on the TESLA
metric gives better results than tuning on BLEU; Lo
et al. (2013) do the same for MEANT.

There is related work on improving morpholog-
ical agreement and subcategorisation through post-
editing (Rosa et al., 2012) or independent models
for inflection generation (Toutanova et al., 2008;
Weller et al., 2013). The latter models initially pro-
duce a stemmed translation, then predict the inflec-
tion through feature-rich sequence models. Such
a pipeline of prediction steps is less powerful than
our joint prediction of stems and inflection. For in-
stance, in example 2 in Table 4, our model chooses a
different stem to match the subcategorisation frame
of the translation; it is not possible to fix the baseline
translation with inflection changes alone.

7 Conclusion

The main contribution of this paper is the description
of a relational dependency language model.10 We
show that it is a valuable asset to a state-of-the-art
SMT system by comparing perplexity values with
other types of languages models, and by its integra-
tion into decoding, which results in improvements
according to automatic MT metrics and reduces the
number of agreement errors. We show that the dis-
fluencies that our model captures are qualitatively
different from an n-gram Neural Network language
model, with our model being more effective at mod-
elling fluency phenomena along syntactic n-grams.

A second important contribution is the optimiza-
tion of the log-linear parameters of an SMT sys-
tem based on syntactic n-grams. We are to our
knowledge the first to tune an SMT system on a
non-shallow syntactic similarity metric. Apart from
showing improvements by tuning on HWCMf , our
results also shed light on the interaction between
models and tuning metrics. With n-gram language
models, the choice of tuning metric only had a small
effect on the English→German translation results.
Only with dependency language models, which are
able to model the syntactic n-grams that HWCM
scores, did we see large improvements from adding

10We have released an implementation of RDLM and tuning
on HWCMf as part of the Moses decoder.

HWCMf to the objective function. On the one hand,
this has implications when evaluating new model
components: using an objective function that can-
not capture the impact of a model component can
result in false negatives because the model compo-
nent will not receive an appropriate weight, and the
model may thus seem to be of little use, even in a
human evaluation. On the other hand, it is an im-
portant finding for the evaluation of objective func-
tions: the performance of an objective function is
tied to the power of the underlying model. Without
a model that is able to model syntactic n-grams, we
might have concluded that HWCM is of little help
as an objective function. Now, we hypothesize that
HWCM is well-suited to optimize dependency lan-
guage models because both operate on syntactic n-
grams, just like BLEU and n-gram models are natu-
ral counterparts.

The approach we present is language-
independent, and we evaluated it on SMT into
German and Russian. While we have no empirical
data on the model’s effectiveness for other target
languages, we suspect that syntactic n-grams are
especially suited for modelling and evaluating
translations into languages with inter-dependencies
between distant words and relatively free word
order, such as German, Czech, or Russian.

In this work, we relied on parse hypotheses being
provided by a string-to-tree SMT decoder, but other
settings are conceivable for future work, such as per-
forming n-best string reranking by coupling the rela-
tional dependency LM with a monolingual parse al-
gorithm. Another obvious extension of the relational
dependency LM is the inclusion of more context, for
instance through larger windows for siblings and an-
cestors, or source-context as in (Devlin et al., 2014).
Also, we believe that the model can benefit from
further advances in neural network modelling, for
instance recent findings that ensembles of networks
outperform a single network (Mikolov et al., 2011;
Devlin et al., 2014)
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