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Abstract

Adaptor grammars are a flexible, powerful
formalism for defining nonparametric, un-
supervised models of grammar productions.
This flexibility comes at the cost of expensive
inference. We address the difficulty of infer-
ence through an online algorithm which uses
a hybrid of Markov chain Monte Carlo and
variational inference. We show that this in-
ference strategy improves scalability without
sacrificing performance on unsupervised word
segmentation and topic modeling tasks.

1 Introduction

Nonparametric Bayesian models are effective tools
to discover latent structure in data (Müller and Quin-
tana, 2004). These models have had great success in
text analysis, especially syntax (Shindo et al., 2012).
Nonparametric distributions provide support over a
countably infinite long-tailed distributions common
in natural language (Goldwater et al., 2011).

We focus on adaptor grammars (Johnson et al.,
2006), syntactic nonparametric models based on
probabilistic context-free grammars. Adaptor gram-
mars weaken the strong statistical independence as-
sumptions PCFGs make (Section 2).

The weaker statistical independence assumptions
that adaptor grammars make come at the cost of ex-
pensive inference. Adaptor grammars are not alone
in this trade-off. For example, nonparametric exten-
sions of topic models (Teh et al., 2006) have substan-
tially more expensive inference than their parametric
counterparts (Yao et al., 2009).

A common approach to address this compu-
tational bottleneck is through variational infer-
ence (Wainwright and Jordan, 2008). One of the
advantages of variational inference is that it can be
easily parallelized (Nallapati et al., 2007) or trans-
formed into an online algorithm (Hoffman et al.,

2010), which often converges in fewer iterations
than batch variational inference.

Past variational inference techniques for adap-
tor grammars assume a preprocessing step that
looks at all available data to establish the support
of these nonparametric distributions (Cohen et al.,
2010). Thus, these past approaches are not directly
amenable to online inference.

Markov chain Monte Carlo (MCMC) inference, an
alternative to variational inference, does not have
this disadvantage. MCMC is easier to implement,
and it discovers the support of nonparametric mod-
els during inference rather than assuming it a priori.

We apply stochastic hybrid inference (Mimno et
al., 2012) to adaptor grammars to get the best of both
worlds. We interleave MCMC inference inside vari-
ational inference. This preserves the scalability of
variational inference while adding the sparse statis-
tics and improved exploration MCMC provides.

Our inference algorithm for adaptor grammars
starts with a variational algorithm similar to Cohen
et al. (2010) and adds hybrid sampling within varia-
tional inference (Section 3). This obviates the need
for expensive preprocessing and is a necessary step
to create an online algorithm for adaptor grammars.

Our online extension (Section 4) processes exam-
ples in small batches taken from a stream of data.
As data arrive, the algorithm dynamically extends
the underlying approximate posterior distributions
as more data are observed. This makes the algo-
rithm flexible, scalable, and amenable to datasets
that cannot be examined exhaustively because of
their size—e.g., terabytes of social media data ap-
pear every second—or their nature—e.g., speech ac-
quisition, where a language learner is limited to the
bandwidth of the human perceptual system and can-
not acquire data in a monolithic batch (Börschinger
and Johnson, 2012).

We show our approach’s scalability and effective-
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ness by applying our inference framework in Sec-
tion 5 on two tasks: unsupervised word segmenta-
tion and infinite-vocabulary topic modeling.

2 Background

In this section, we review probabilistic context-free
grammars and adaptor grammars.

2.1 Probabilistic Context-free Grammars
Probabilistic context-free grammars (PCFG) de-
fine probability distributions over derivations of a
context-free grammar. We define a PCFG G to be
a tuple 〈W ,N ,R, S,θ〉: a set of terminals W , a
set of nonterminals N , productions R, start sym-
bol S ∈ N and a vector of rule probabilities θ.
The rules that rewrite nonterminal c is R(c). For
a more complete description of PCFGs, see Manning
and Schütze (1999).

PCFGs typically use nonterminals with a syntactic
interpretation. A sequence of terminals (the yield)
is generated by recursively rewriting nonterminals
as sequences of child symbols (either a nonterminal
or a symbol). This builds a hierarchical phrase-tree
structure for every yield.

For example, a nonterminal VP represents a verb
phrase, which probabilistically rewrites into a se-
quence of nonterminals V,N (corresponding to verb
and noun) using the production rule VP → V N.
Both nonterminals can be further rewritten. Each
nonterminal has a multinomial distribution over ex-
pansions; for example, a multinomial for nonter-
minal N would rewrite as “cake”, with probability
θN→cake = 0.03. Rewriting terminates when the
derivation has reached a terminal symbol such as
“cake” (which does not rewrite).

While PCFGs are used both in the supervised set-
ting and in the unsupervised setting, in this paper
we assume an unsupervised setting, in which only
terminals are observed. Our goal is to predict the
underlying phrase-structure tree.

2.2 Adaptor Grammars
PCFGs assume that the rewriting operations are in-
dependent given the nonterminal. This context-
freeness assumption often is too strong for modeling
natural language.

Adaptor grammars break this independence as-
sumption by transforming a PCFG’s distribution over

Algorithm 1 Generative Process
1: For nonterminals c ∈ N , draw rule probabilities
θc ∼ Dir(αc) for PCFG G.

2: for adapted nonterminal c in c1, . . . , c|M| do
3: Draw grammaton Hc ∼ PYGEM(ac, bc, Gc) according

to Equation 1, where Gc is defined by the PCFG rulesR.
4: For i ∈ {1, . . . , D}, generate a phrase-structure tree tS,i

using the PCFG rules R(e) at non-adapted nonterminal e
and the grammatons Hc at adapted nonterminals c.

5: The yields of trees t1, . . . , tD are observations x1, . . . , xD .

trees Gc rooted at nonterminal c into a richer distri-
bution Hc over the trees headed by a nonterminal c,
which is often referred to as the grammaton.

A Pitman-Yor Adaptor grammar (PYAG) forms
the adapted tree distributionsHc using a Pitman-Yor
process (Pitman and Yor, 1997, PY), a generalization
of the Dirichlet process (Ferguson, 1973, DP).1 A
draw Hc ≡ (πc, zc) is formed by the stick break-
ing process (Sudderth and Jordan, 2008, PYGEM)
parametrized by scale parameter a, discount factor
b, and base distribution Gc:

π′k ∼Beta(1− b, a+ kb), zk ∼Gc,
πk ≡π′k

∏k−1
j=1(1− π′j), H ≡∑k πkδzk . (1)

Intuitively, the distribution Hc is a discrete recon-
struction of the atoms sampled from Gc—hence,
reweights Gc. Grammaton Hc assigns non-zero
stick-breaking weights π to a countably infinite
number of parse trees z. We describe learning these
grammatons in Section 3.

More formally, a PYAG is a quintuple A =
〈G,M ,a, b,α〉 with: a PCFG G; a set of adapted
nonterminals M ⊆ N ; Pitman-Yor process param-
eters ac, bc at each adaptor c ∈ M and Dirichlet
parameters αc for each nonterminal c ∈ N . We
also assume an order on the adapted nonterminals,
c1, . . . , c|M | such that cj is not reachable from ci in
a derivation if j > i.2

Algorithm 1 describes the generative process of
an adaptor grammar on a set of D observed sen-
tences x1, . . . , xD.

1Adaptor grammars, in their general form, do not have to
use the Pitman-Yor process but have only been used with the
Pitman-Yor process.

2This is possible because we assume that recursive nonter-
minals are not adapted.
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Given a PYAG A, the joint probability for a set of
sentencesX and its collection of trees T is

p(X,T ,π,θ, z|A) =
∏
c∈M p(πc|ac, bc)p(zc|Gc)

·∏c∈N p(θc|αc)
∏
xd∈X p(xd, td|θ,π, z),

where xd and td represent the dth observed string
and its corresponding parse. The multinomial PCFG

parameter θc is drawn from a Dirichlet distribution
at nonterminal c ∈ N . At each adapted nontermi-
nal c ∈M , the stick-breaking weights πc are drawn
from a PYGEM (Equation 1). Each weight has an as-
sociated atom zc,i from base distribution Gc, a sub-
tree rooted at c. The probability p(xd, td |θ,π, z) is
the PCFG likelihood of yield xd with parse tree td.

Adaptor grammars require a base PCFG such that
it does not have recursive adapted nonterminals, i.e.,
there cannot be a path in a derivation from a given
adapted nonterminal to a second appearance of that
adapted nonterminal.

3 Hybrid Variational-MCMC Inference

Discovering the latent variables of the model—trees,
adapted probabilities, and PCFG rules—is a problem
of posterior inference given observed data. Previ-
ous approaches use MCMC (Johnson et al., 2006) or
variational inference (Cohen et al., 2010).

MCMC discovers the support of nonparametric
models during the inference, but does not scale to
larger datasets (due to tight coupling of variables).
Variational inference, however, is inherently paral-
lel and easily amendable to online inference, but re-
quires preprocessing to discover the adapted produc-
tions. We combine the best of both worlds and pro-
pose a hybrid variational-MCMC inference algorithm
for adaptor grammars.

Variational inference posits a variational distribu-
tion over the latent variables in the model; this in
turn induces an “evidence lower bound” (ELBO, L)
as a function of a variational distribution q, a lower
bound on the marginal log-likelihood. Variational
inference optimizes this objective function with re-
spect to the parameters that define q.

In this section, we derive coordinate-ascent up-
dates for these variational parameters. A key math-
ematical component is taking expectations with re-
spect to the variational distribution q. We strategi-
cally use MCMC sampling to compute the expecta-

tion of q over parse trees z. Instead of explicitly
computing the variational distribution for all param-
eters, one can sample from it. This produces a sparse
approximation of the variational distribution, which
improves both scalability and performance. Sparse
distributions are easier to store and transmit in im-
plementations, which improves scalability. Mimno
et al. (2012) also show that sparse representations
improve performance. Moreover, because it can
flexibly adjust its support, it is a necessary prereq-
uisite to online inference (Section 4).

3.1 Variational Lower Bound

We posit a mean-field variational distribution:

q(π,θ,T |γ,ν,φ) =
∏
c∈M

∏∞
i=1 q(π

′
c,i|ν1c,i, ν2c,i)

·∏c∈N q(θc|γc)
∏
xd∈X q(td|φd), (2)

where π′c,i is drawn from a variational Beta distri-
bution parameterized by ν1c,i, ν

2
c,i; and θc is from a

variational Dirichlet prior γc ∈ R|R(c)|
+ . Index i

ranges over a possibly infinite number of adapted
rules. The parse for the dth observation, td is mod-
eled by a multinomial φd, where φd,i is the proba-
bility generating the ith phrase-structure tree td,i.

The variational distribution over latent variables
induces the following ELBO on the likelihood:

L(z,π,θ,T ,D;a, b,α) = H[q(θ,π,T )]

+
∑

c∈N Eq[log p(θc|αc)] (3)

+
∑

c∈M
∑∞

i=1 Eq[log p(π′c,i|ac, bc)]
+
∑

c∈M
∑∞

i=1 Eq[log p(zc,i |π,θ)]

+
∑

xd∈X Eq[log p(xd, td |π,θ, z)],

where H[•] is the entropy function.
To make this lower bound tractable, we truncate

the distribution over π to a finite set (Blei and Jor-
dan, 2005) for each adapted nonterminal c ∈ M ,
i.e., π′c,Kc

≡ 1 for some indexKc. Because the atom
weights πk are deterministically defined by Equa-
tion 1, this implies that πc,i is zero beyond index
Kc. Each weight πc,i is associated with an atom zc,i,
a subtree rooted at c. We call the ordered set of zc,i
the truncated nonterminal grammaton (TNG). Each
adapted nonterminal c ∈M has its own TNGc. The
ith subtree in TNGc is denoted TNGc(i).
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In the rest of this section, we describe approxi-
mate inference to maximize L. The most impor-
tant update is φd,i, which we update using stochastic
MCMC inference (Section 3.2). Past variational ap-
proaches for adaptor grammars (Cohen et al., 2010)
rely on a preprocessing step and heuristics to define
a static TNG. In contrast, our model dynamically
discovers trees. The TNG grows as the model sees
more data, allowing online updates (Section 4).

The remaining variational parameters are opti-
mized using expected counts of adaptor grammar
rules. These expected counts are described in Sec-
tion 3.3, and the variational updates for the vari-
ational parameters excluding φd,i are described in
Section 3.4.

3.2 Stochastic MCMC Inference
Each observation xd has an associated variational
multinomial distribution φd over trees td that can
yield observation xd with probability φd,i. Hold-
ing all other variational parameters fixed, the
coordinate-ascent update (Mimno et al., 2012;
Bishop, 2006) for φd,i is

φd,i ∝ exp{E¬φd
q [log p(td,i|xd,π,θ, z)]}, (4)

where φd,i is the probability generating the ith

phrase-structure tree td,i and E¬φd
q [•] is the expec-

tation with respect to the variational distribution q,
excluding the value of φd.

Instead of computing this expectation explicitly,
we turn to stochastic variational inference (Mimno
et al., 2012; Hoffman et al., 2013) to sample from
this distribution. This produces a set of sampled
trees σd ≡ {σd,1, . . . , σd,k}. From this set of trees
we can approximate our variational distribution over
trees φ using the empirical distribution σd, i.e.,

φd,i ∝ I[σd,j = td,i, ∀σd,j ∈ σd]. (5)

This leads to a sparse approximation of variational
distribution φ.3

Previous inference strategies (Johnson et al.,
2006; Börschinger and Johnson, 2012) for adaptor
grammars have used sampling. The adaptor gram-
mar inference methods use an approximate PCFG to
emulate the marginalized Pitman-Yor distributions

3In our experiments, we use ten samples.

at each nonterminal. Given this approximate PCFG,
we can then sample a derivation z for string x from
the possible trees (Johnson et al., 2007).

Sampling requires a derived PCFG G′ that approx-
imates the distribution over tree derivations condi-
tioned on a yield. It includes the original PCFG rules
R = {c → β} that define the base distribution and
the new adapted productions R′ = {c ⇒ z, z ∈
TNGc}. Under G′, the probability θ′ of adapted pro-
duction c⇒ z is

log θ′c⇒z =





Eq[log πc,i], if TNGc(i) = z

Eq[log πc,Kc ] + Eq[log θc⇒z],

otherwise

(6)

where Kc is the truncation level of TNGc and πc,Kc

represents the left-over stick weights in the stick-
breaking process for adaptor c ∈ M . θc⇒z repre-
sents the probability of generating tree c⇒ z under
the base distribution. See also Cohen (2011).

The expectation of the Pitman-Yor multinomial
πc,i under the truncated variational stick-breaking
distribution is

Eq[log πa,i] = Ψ(ν1a,i)−Ψ(ν1a,i + ν2a,i) (7)

+
∑i−1

j=1(Ψ(ν2a,j)−Ψ(ν1a,j + ν2a,j)),

and the expectation of generating the phrase-
structure tree a ⇒ z based on PCFG productions
under the variational Dirichlet distribution is

Eq[log θa⇒z] =
∑

c→β∈a⇒z
(
Ψ(γc→β) (8)

−Ψ(
∑

c→β′∈Rc
γc→β′)

)

where Ψ(•) is the digamma function, and c →
β ∈ a ⇒ z represents all PCFG productions in the
phrase-structure tree a⇒ z.

This PCFG can compose arbitrary subtrees and
thus discover new trees that better describe the data,
even if those trees are not part of the TNG. This is
equivalent to creating a “new table” in MCMC in-
ference and provides truncation-free variational up-
dates (Wang and Blei, 2012) by sampling a unseen
subtree with adapted nonterminal c ∈M at the root.
This frees our model from preprocessing to initial-
ize truncated grammatons in Cohen et al. (2010).
This stochastic approach has the advantage of creat-
ing sparse distributions (Wang and Blei, 2012): few
unique trees will be represented.

468



S→AB
B→{a,b,c}
A→B

B
a

B
b

Grammar Seating Assignments 
(nonterminal A)

Yield Parse Counts

ca
B cA

S B a

New Seating

B
a

B

b

B

c

h(A →c) +=1
g(B →c) +=1
g(B →a) +=1

ab
B aA

S B b
B
a

B

b

B

a

h(A →a) +=1
g(B →a) +=1
g(B →b) +=1

ba
B bA

S B a
B
a

B

b f(A →b) +=1
g(B →a) +=1

Figure 1: Given an adaptor grammar, we sample derivations
given an approximate PCFG and show how these affect counts.
The sampled derivations can be understood via the Chinese
restaurant metaphor (Johnson et al., 2006). Existing cached
rules (elements in the TNG) can be thought of as occupied ta-
bles; this happens in the case of the yield “ba”, which increases
counts for unadapted rules g and for entries in TNGA, f . For
the yield “ca”, there is no appropriate entry in the TNG , so it
must use the base distribution, which corresponds to sitting at a
new table. This generates counts for g, as it uses the unadapted
rule and for h, which represents entries that could be included
in the TNG in the future. The final yield, “ab”, shows that even
when compatible entries are in the TNG , it might still create a
new table, changing the underlying base distribution.

Parallelization As noted in Cohen et al. (2010),
the inside-outside algorithm dominates the runtime
of every iteration, both for sampling and variational
inference. However, unlike MCMC, variational in-
ference is highly parallelizable and requires fewer
synchronizations per iteration (Zhai et al., 2012). In
our approach, both inside algorithms and sampling
process can be distributed, and those counts can be
aggregated afterwards. In our implementation, we
use multiple threads to parallelize tree sampling.

3.3 Calculating Expected Rule Counts

For every observation xd, the hybrid approach pro-
duces a set of sampled trees, each of which contains
three types of productions: adapted rules, original
PCFG rules, and potentially adapted rules. The last
set is most important, as these are new rules dis-
covered by the sampler. These are explained using
the Chinese restaurant metaphor in Figure 1. The
multiset of all adapted productions is M(td,i) and
the multiset of non-adapted productions that gener-
ate tree td,i is N(td,i). We compute three counts:

1: f is the expected number of productions within
the TNG. It is the sum over the probability of a
tree td,k times the number of times an adapted
production appeared in td,k, fd(a⇒ za,i) =

∑
k

(
φd,k |a⇒ za,i : a⇒ za,i ∈M(td,k)|︸ ︷︷ ︸

count of rule a⇒ za,i in tree td,k

)
.

2: g is the expected counts of PCFG productionsR
that defines the base distribution of the adaptor
grammar, gd(a→ β) =

∑
k (φd,k |a→ β : a→ β ∈ N(td,k)|) .

3: Finally, a third set of productions are newly dis-
covered by the sampler and not in the TNG.
These subtrees are rules that could be adapted,
with expected counts hd(c⇒ zc,i) =

∑
k (φd,k |c⇒ zc,i : c⇒ zc,i /∈M(td,k)|) .

These subtrees—lists of PCFG rules sampled
from Equation 6—correspond to adapted pro-
ductions not yet present in the TNG.

3.4 Variational Updates
Given the sparse vectors φ sampled from the hybrid
MCMC step, we update all variational parameters as

γa→β =αa→β +
∑

xd∈X gd(a→ β)

+
∑

b∈M
∑Kb

i=1 n(a→ β, zb,i),

ν1a,i =1− ba +
∑

xd∈X fd(a⇒ za,i)

+
∑

b∈M
∑Kb

k=1 n(a⇒ za,i, zb,k),

ν2a,i =aa + iba +
∑

xd∈X
∑Ka

j=1 fd(a⇒ za,j)

+
∑

b∈M
∑Kb

k=1

∑Ka
j=1 n(a⇒ za,j , zb,k),

where n(r, t) is the expected number of times pro-
duction r is in tree t, estimated during sampling.

Hyperparameter Update We update our PCFG

hyperparameter α, PYGEM hyperparameters a and
b as in Cohen et al. (2010).

4 Online Variational Inference

Online inference for probabilistic models requires us
to update our posterior distribution as new observa-
tions arrive. Unlike batch inference algorithms, we
do not assume we always have access to the entire
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dataset. Instead, we assume that observations arrive
in small groups called minibatches. The advantage
of online inference is threefold: a) it does not re-
quire retaining the whole dataset in memory; b) each
online update is fast; and c) the model usually con-
verges faster. All of these make adaptor grammars
scalable to larger datasets.

Our approach is based on the stochastic varia-
tional inference for topic models (Hoffman et al.,
2013). This inference strategy uses a form of
stochastic gradient descent (Bottou, 1998): using
the gradient of the ELBO, it finds the sufficient
statistics necessary to update variational parameters
(which are mostly expected counts calculated using
the inside-outside algorithm), and interpolates the
result with the current model.

We assume data arrive in minibatches B (a set of
sentences). We accumulate expected counts

f̃ (l)(a⇒ za,i) =(1− ε) · f̃ (l−1)(a⇒ za,i) (9)

+ ε · |X||Bl|
∑

xd∈Bl
fd(a⇒ za,i),

g̃(l)(a→ β) =(1− ε) · g̃(l−1)(a→ β) (10)

+ ε · |X||Bl|
∑

xd∈Bl
gd(a→ β),

with decay factor ε ∈ (0, 1) to guarantee conver-
gence. We set it to ε = (τ + l)−κ, where l is the
minibatch counter. The decay inertia τ prevents pre-
mature convergence, and decay rate κ controls the
speed of change in sufficient statistics (Hoffman et
al., 2010). We recover batch variational approach
whenB = D and κ = 0.

The variables f̃ (l) and g̃(l) are accumulated suffi-
cient statistics of adapted and unadapted productions
after processing minibatch Bl. They update the ap-
proximate gradient. The updates for variational pa-
rameters become

γa→β =αa→β + g̃(l)(a→ β) (11)

+
∑

b∈M
∑Kb

i=1 n(a→ β, zb,i),

ν1a,i =1− ba + f̃ (l)(a⇒ za,i) (12)

+
∑

b∈M
∑Kb

k=1 n(a⇒ za,i, zb,k),

ν2a,i =aa + iba +
∑Ka

j=1 f̃
(l)(a⇒ za,j) (13)

+
∑

b∈M
∑Kb

k=1

∑Ka
j=1 n(a⇒ za,j , zb,k),

where Ka is the size of the TNG at adaptor a ∈M .

4.1 Refining the Truncation

As we observe more data during inference, our TNGs
need to change. New rules should be added, useless
rules should be removed, and derivations for existing
rules should be updated. In this section, we describe
heuristics for performing each of these operations.

Adding Productions Sampling can identify pro-
ductions that are not adapted but were instead drawn
from the base distribution. These are candidates for
the TNG. For every nonterminal a, we add these
potentially adapted productions to TNGa after each
minibatch. The count associated with candidate pro-
ductions is now associated with an adapted produc-
tion, i.e., the h count contributes to the relevant f
count. This mechanism dynamically expands TNGa.

Sorting and Removing Productions Our model
does not require a preprocessing step to initialize the
TNGs, rather, it constructs and expands all TNGs on
the fly. To prevent the TNG from growing unwieldy,
we prune TNG after every u minibatches. As a re-
sult, we need to impose an ordering over all the parse
trees in the TNG. The underlying PYGEM distribu-
tion implicitly places an ranking over all the atoms
according to their corresponding sufficient statis-
tics (Kurihara et al., 2007), as shown in Equation 9.
It measures the “usefulness” of every adapted pro-
duction throughout inference process.

In addition to accumulated sufficient statistics,
Cohen et al. (2010) add a secondary term to discour-
age short constituents (Mochihashi et al., 2009). We
impose a reward term for longer phrases in addition
to f̃ and sort all adapted productions in TNGa using
the ranking score

Λ(a⇒ za,i) = f̃ (l)(a⇒ za,i) · log(ε · |s|+ 1),

where |s| is the number of yields in production a⇒
za,i. Because ε decreases each minibatch, the reward
for long phrases diminishes. This is similar to an
annealed version of Cohen et al. (2010)—where the
reward for long phrases is fixed, see also Mochihashi
et al. (2009). After sorting, we remove all but the top
Ka adapted productions.

Rederiving Adapted Productions For MCMC in-
ference, Johnson and Goldwater (2009) observe that
atoms already associated with a yield may have trees
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Algorithm 2 Online inference for adaptor grammars
1: Random initialize all variational parameters.
2: for minibatch of l = 1, 2, . . . do
3: Construct approximate PCFG θ′ of A (Equation 6).
4: for input sentence d = 1, 2, . . . , Dl do
5: Accumulate inside probabilities from approximate

PCFG θ′.
6: Sample phrase-structure trees σ and update the tree

distribution φ (Equation 5).
7: For every adapted nonterminal c, append adapted pro-

ductions to TNGc.
8: Accumulate sufficient statistics (Equations 9 and 10).
9: Update γ, ν1, and ν2 (Equations 11-13).

10: Refine and prune the truncation every u minibatches.

that do not explain their yield well. They propose ta-
ble label resampling to rederive yields.

In our approach this is equivalent to “mutating”
some derivations in a TNG. After pruning rules ev-
ery u minibatches, we perform table label resam-
pling for adapted nonterminals from general to spe-
cific (i.e., a topological sort). This provides better
expected counts n(r, •) for rules used in phrase-
structure subtrees. Empirically, we find table la-
bel resampling only marginally improves the word-
segmentation result.

Initialization Our inference begins with random
variational Dirichlets and empty TNGs, which obvi-
ates the preprocessing step in Cohen et al. (2010).
Our model constructs and expands all TNGs on the
fly. It mimics the incremental initialization of John-
son and Goldwater (2009). Algorithm 2 summarizes
the pseudo-code of our online approach.

4.2 Complexity
Inside and outside calls dominate execution time
for adaptor grammar inference. Variational ap-
proaches compute inside-outside algorithms and es-
timate the expected counts for every possible tree
derivation (Cohen et al., 2010). For a dataset withD
observations, variational inference requires O

(
DI
)

calls to inside-outside algorithm, where I is the
number of iterations, typically in the tens.

In contrast, MCMC only needs to accumulate in-
side probabilities, and then sample a tree deriva-
tion (Chappelier and Rajman, 2000). The sampling
step is negligible in processing time compared to the
inside algorithm. MCMC inference requires O

(
DI
)

calls to the inside algorithm—hence every iteration

co
llo

ca
tio

n

SENT 7→ COLLOC

SENT 7→ COLLOC SENT

COLLOC 7→ WORDS

un
ig

ra
m

WORDS 7→ WORD

WORDS 7→ WORD WORDS

WORD 7→ CHARS

CHARS 7→ CHAR

CHARS 7→ CHAR CHARS

CHAR 7→ ?

In
fV

oc
LD

A

SENT 7→ DOCj
j=1, 2, . . . D

DOCj 7→ −j TOPICi
i=1, 2, . . . K

TOPICi 7→WORD

WORD 7→ CHARS

CHARS 7→ CHAR

CHARS 7→ CHAR CHARS

CHAR 7→ ?

Table 1: Grammars used in our experiments. The nonterminal
CHAR is a non-adapted rule that expands to all characters used
in the data, sometimes called pre-terminals. Adapted nonter-
minals are underlined. For the unigram grammar, only nonter-
minal WORD is adapted; whereas for the collocation grammar,
both nonterminals WORD and COLLOC are adapted. For the IN-
FVOC LDA grammar, D is the total number of documents and
K is the number of topics. Therefore, j ranges over {1, . . . , D}
and i ranges over {1, . . . ,K}.

is much faster than variational approach—but I is
usually on the order of thousands.

Likewise, our hybrid approach also only needs
the less expensive inside algorithm to sample trees.
And while each iteration is less expensive, our ap-
proach can achieve reasonable results with only a
single pass through the data. And thus only requires
O(D) calls to the inside algorithm.

Because the inside-outside algorithm is funda-
mental to each of these algorithms, we use it as a
common basis for comparison across different im-
plementations. This is over-generous to variational
approaches, as the full inside-outside computation
is more expensive than the inside algorithm required
for sampling in MCMC and our hybrid approach.

5 Experiments and Discussion

We implement our online adaptor grammar model
(ONLINE) in Python4 and compare it against both
MCMC (Johnson and Goldwater, 2009, MCMC) and
the variational inference (Cohen et al., 2010, VARI-
ATIONAL). We use the latest implementation of
MCMC sampler for adaptor grammars5 and simulate
the variational approach using our implementation.
For MCMC approach, we use the best settings re-
ported in Johnson and Goldwater (2009) with incre-
mental initialization and table label resampling.

4Available at http://www.umiacs.umd.edu/˜zhaike/.
5http://web.science.mq.edu.au/˜mjohnson/code/

py-cfg-2013-02-25.tgz
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Model and Settings
ctb7 pku cityu

unigram collocation unigram collocation unigram collocation

M
C

M
C

500 iter 72.70 (2.81) 50.53 (2.82) 72.01 (2.82) 49.06 (2.81) 74.19 (3.55) 63.14 (3.53)
1000 iter 72.65 (2.83) 62.27 (2.79) 71.81 (2.81) 62.47 (2.77) 74.37 (3.54) 70.62 (3.51)
1500 iter 72.17 (2.80) 69.65 (2.77) 71.46 (2.80) 70.20 (2.73) 74.22 (3.54) 72.33 (3.50)
2000 iter 71.75 (2.79) 71.66 (2.76) 71.04 (2.79) 72.55 (2.70) 74.01 (3.53) 73.15 (3.48)

O
N

L
IN

E

κ τ KWord = 30k KColloc = 100k KWord = 40k KColloc = 120k KWord = 50k KColloc = 150K

0.6
32 70.17 (2.84) 68.43 (2.77) 69.93 (2.89) 68.09 (2.71) 72.59 (3.62) 69.27 (3.61)
128 72.98 (2.72) 65.20 (2.81) 72.26 (2.63) 65.57 (2.83) 74.73 (3.40) 64.83 (3.62)
512 72.76 (2.78) 56.05 (2.85) 71.99 (2.74) 58.94 (2.94) 73.68 (3.60) 60.40 (3.70)

0.8
32 71.10 (2.77) 70.84 (2.76) 70.31 (2.78) 70.91 (2.71) 73.12 (3.60) 71.89 (3.50)
128 72.79 (2.64) 70.93 (2.63) 72.08 (2.62) 72.02 (2.63) 74.62 (3.45) 72.28 (3.51)
512 72.82 (2.58) 68.53 (2.76) 72.14 (2.58) 70.07 (2.69) 74.71 (3.37) 72.58 (3.49)

1.0
32 69.98 (2.87) 70.71 (2.63) 69.42 (2.84) 71.45 (2.67) 73.18 (3.59) 72.42 (3.45)
128 71.84 (2.72) 71.29 (2.58) 71.29 (2.67) 72.56 (2.61) 73.23 (3.39) 72.61 (3.41)
512 72.68 (2.62) 70.67 (2.60) 71.86 (2.63) 71.39 (2.66) 74.45 (3.41) 72.88 (3.38)

VARIATIONAL 69.83 (2.85) 67.78 (2.75) 67.82 (2.80) 66.97 (2.75) 70.47 (3.72) 69.06 (3.69)

Table 2: Word segmentation accuracy measured by word token F1 scores and negative log-likelihood on held-out test dataset in the
brackets (lower the better, on the scale of 106) for our ONLINE model against MCMC approach (Johnson et al., 2006) on various
dataset using the unigram and collocation grammar.7
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(b) collocation grammar.

Figure 2: Word segmentation accuracy measured by word token
F1 scores on brent corpus of three approaches against number
of inside-outside function call using unigram (upper) and collo-
cation (lower) grammars in Table 1.6

6Our ONLINE settings are batch size B = 20, decay inertia
τ = 128, decay rate κ = 0.6 for unigram grammar; and mini-
batch size B = 5, decay inertia τ = 256, decay rate κ = 0.8
for collocation grammar. TNGs are refined at interval u = 50.
Truncation size is set to KWord = 1.5k and KColloc = 3k. The
settings are chosen from cross validation. We observe simi-
lar behavior under κ = {0.7, 0.9, 1.0}, τ = {32, 64, 512},
B = {10, 50} and u = {10, 20, 100}.

7For ONLINE inference, we parallelize each minibatch with
four threads with settings: batch size B = 100 and TNG refine-
ment interval u = 100. ONLINE approach runns for two passes
over datasets. VARIATIONAL runs fifty iterations, with the same
truncation level as in ONLINE. For negative log-likelihood eval-
uation, we train the model on a random 70% of the data, and
hold out the rest for testing. We observe similar behavior for

5.1 Word Segmentation
We evaluate our online adaptor grammar on the task
of word segmentation, which focuses on identify-
ing word boundaries from a sequence of characters.
This is especially the case for Chinese, since char-
acters are written in sequence without word bound-
aries.

We first evaluate all three models on the stan-
dard Brent version of the Bernstein-Ratner cor-
pus (Bernstein-Ratner, 1987; Brent and Cartwright,
1996, brent). The dataset contains 10k sentences,
1.3k distinct words, and 72 distinct characters. We
compare the results on both unigram and colloca-
tion grammars introduced in Johnson and Goldwater
(2009) as listed in Table 1.

Figure 2 illustrates the word segmentation ac-
curacy in terms of word token F1-scores on brent
against the number of inside-outside function calls
for all three approaches using unigram and colloca-
tion grammars. In both cases, our ONLINE approach
converges faster than MCMC and VARIATIONAL ap-
proaches, yet yields comparable or better perfor-
mance when seeing more data.

In addition to the brent corpus, we also evalu-
ate three approaches on three other Chinese datasets
compiled by Xue et al. (2005) and Emerson (2005):8

• Chinese Treebank 7.0 (ctb7): 162k sentences,
57k distinct words, 4.5k distinct characters;

our model under κ = {0.7, 0.9} and τ = {64, 256}.
8We use all punctuation as natural delimiters (i.e., words

cannot cross punctuation).
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• Peking University (pku): 183k sentences, 53k
distinct words, 4.6k distinct characters; and
• City University of Hong Kong (cityu): 207k

sentences, 64k distinct words, and 5k distinct
characters.

We compare our inference method against other
approaches on F1 score. While other unsupervised
word segmentation systems are available (Mochi-
hashi et al. (2009), inter alia),9 our focus is on a di-
rect comparison of inference techniques for adaptor
grammar, which achieve competitive (if not state-of-
the-art) performance.

Table 2 shows the word token F1-scores and neg-
ative likelihood on held-out test dataset of our model
against MCMC and VARIATIONAL. We randomly
sample 30% of the data for testing and the rest for
training. We compute the held-out likelihood of the
most likely sampled parse trees out of each model.10

Our ONLINE approach consistently better segments
words than VARIATIONAL and achieves comparable
or better results than MCMC.

For MCMC, Johnson and Goldwater (2009) show
that incremental initialization—or online updates in
general—results in more accurate word segmenta-
tion, even though the trees have lower posterior
probability. Similarly, our ONLINE approach initial-
izes and learns them on the fly, instead of initializing
the grammatons and parse trees for all data upfront
as for VARIATIONAL. This uniformly outperforms
batch initialization on the word segmentation tasks.

5.2 Infinite Vocabulary Topic Modeling
Topic models often can be replicated using a care-
fully crafted PCFG (Johnson, 2010). These pow-
erful extensions can capture topical collocations
and sticky topics; these embelishments could fur-
ther improve NLP applications of simple unigram
topic models such as word sense disambigua-
tion (Boyd-Graber and Blei, 2007), part of speech

9Their results are not directly comparable: they use different
subsets and assume different preprocessing.

10Note that this is only an approximation to the true held-out
likelihood, since it is impossible to enumerate all the possible
parse trees and hence compute the likelihood for a given sen-
tence under the model.

11We train all models with 5 topics with settings: TNG re-
finement interval u = 100, truncation size KTopic = 3k, and
the mini-batch size B = 50. We observe a similar behavior
under κ ∈ {0.7, 0.9} and τ ∈ {64, 256}.
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Figure 3: The average coherence score of topics on de-news
datasets against INFVOC approach and other inference tech-
niques (MCMC, VARIATIONAL) under different settings of de-
cay rate κ and decay inertia τ using the InfVoc LDA grammar in
Table 1. The horizontal axis shows the number of passes over
the entire dataset.11

tagging (Toutanova and Johnson, 2008) or dialogue
modeling (Zhai and Williams, 2014). However, ex-
pressing topic models in adaptor grammars is much
slower than traditional topic models, for which fast
online inference (Hoffman et al., 2010) is available.

Zhai and Boyd-Graber (2013) argue that online
inference and topic models violate a fundamental
assumption in online algorithms: new words are
introduced as more data are streamed to the algo-
rithm. Zhai and Boyd-Graber (2013) then introduce
an inference framework, INFVOC, to discover words
from a Dirichlet process with a character n-gram
base distribution.

We show that their complicated model and on-
line inference can be captured and extended via an
appropriate PCFG grammar and our online adap-
tor grammar inference algorithm. Our extension to
INFVOC generalizes their static character n-gram
model, learning the base distribution (i.e., how
words are composed from characters) from data. In
contrast, their base distribution was learned from a
dictionary as a preprocessing step and held fixed.

This is an attractive testbed for our online infer-
ence. Within a topic, we can verify that the words we
discover are relevant to the topic and that new words
rise in importance in the topic over time if they are
relevant. For these experiments, we treat each token
(with its associated document pseudo-word −j) as a
single sentence, and each minibatch contains only
one sentence (token).

12The plot is generated with truncation size KTopic = 2k,
mini-batch size B = 1, truncation pruning interval u = 50,
decay inertia τ = 256, and decay rate κ = 0.8. All PY hyper-
parameters are optimized.
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new words added at corresponding minibatch
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Figure 4: The evolution of one topic—concerning tax policy—out of five topics learned using online adaptor grammar inference
on the de-news dataset. Each minibatch represents a word processed by this online algorithm; time progresses from left to right. As
the algorithm encounters new words (bottom) they can make their way into the topic. The numbers next to words represent their
overall rank in the topic. For example, the word “pension” first appeared in mini-batch 100, was ranked at 229 after minibatch 400
and became one of the top 10 words in this topic after 2000 minibatches (tokens).12

Quantitatively, we evaluate three different infer-
ence schemes and the INFVOC approach13 on a col-
lection of English daily news snippets (de-news).14

We used the InfVoc LDA grammar (Table 1). For
all approaches, we train the model with five topics,
and evaluate topic coherence (Newman et al., 2009),
which correlates well with human ratings of topic
interpretability (Chang et al., 2009). We collect the
co-occurrence counts from Wikipedia and compute
the average pairwise pointwise mutual information
(PMI) score between the top 10 ranked words of ev-
ery topic. Figure 3 illustrates the PMI score, and our
approach yields comparable or better results against
all other approaches under most conditions.

Qualitatively, Figure 4 shows an example of a
topic evolution using online adaptor grammar for
the de-news dataset. The topic is about “tax pol-
icy”. The topic improves over time; words like
“year”, “tax” and “minist(er)” become more promi-
nent. More importantly, the online approach discov-
ers new words and incorporates them into the topic.

13Available at http://www.umiacs.umd.edu/˜zhaike/.
14The de-news dataset is randomly selected subset of 2.2k

English documents from http://homepages.inf.ed.ac.

uk/pkoehn/publications/de-news/. It contains 6.5k
unique types and over 200k word tokens. Tokenization and
stemming provided by NLTK (Bird et al., 2009).

For example, “schroeder” (former German chancel-
lor) first appeared in minibatch 300, was success-
fully picked up by our model, and became one of
the top ranked words in the topic.

6 Conclusion

Probabilistic modeling is a useful tool in understand-
ing unstructured data or data where the structure is
latent, like language. However, developing these
models is often a difficult process, requiring signifi-
cant machine learning expertise.

Adaptor grammars offer a flexible and quick way
to prototype and test new models. Despite ex-
pensive inference, they have been used for topic
modeling (Johnson, 2010), discovering perspec-
tive (Hardisty et al., 2010), segmentation (Johnson
and Goldwater, 2009), and grammar induction (Co-
hen et al., 2010).

We have presented a new online, hybrid inference
scheme for adaptor grammars. Unlike previous ap-
proaches, it does not require extensive preprocess-
ing. It is also able to faster discover useful structure
in text; with further development, these algorithms
could further speed the development and application
of new nonparametric models to large datasets.
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