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Abstract

Annotated data is prerequisite for many NLP
applications. Acquiring large-scale annotated
corpora is a major bottleneck, requiring sig-
nificant time and resources. Recent work has
proposed turning annotation into a game to
increase its appeal and lower its cost; how-
ever, current games are largely text-based
and closely resemble traditional annotation
tasks. We propose a new linguistic annota-
tion paradigm that produces annotations from
playing graphical video games. The effec-
tiveness of this design is demonstrated using
two video games: one to create a mapping
from WordNet senses to images, and a sec-
ond game that performs Word Sense Disam-
biguation. Both games produce accurate re-
sults. The first game yields annotation qual-
ity equal to that of experts and a cost reduc-
tion of 73% over equivalent crowdsourcing;
the second game provides a 16.3% improve-
ment in accuracy over current state-of-the-art
sense disambiguation games with WordNet.

1 Introduction
Nearly all of Natural Language Processing (NLP)
depends on annotated examples, either for train-
ing systems or for evaluating their quality. Typi-
cally, annotations are created by linguistic experts
or trained annotators. However, such effort is often
very time- and cost-intensive, and as a result cre-
ating large-scale annotated datasets remains a long-
standing bottleneck for many areas of NLP.

As an alternative to requiring expert-based anno-
tations, many studies used untrained, online work-
ers, commonly known as crowdsourcing. When

successful, crowdsourcing enables gathering anno-
tations at scale; however, its performance is still lim-
ited by (1) the difficulty of expressing the annota-
tion task as a simply-understood task suitable for
the layman, (2) the cost of collecting many anno-
tations, and (3) the tediousness of the task, which
can fail to attract workers. Therefore, several groups
have proposed an alternate annotation method us-
ing games: an annotation task is converted into a
game which, as a result of game play, produces an-
notations (Pe-Than et al., 2012; Chamberlain et al.,
2013). Turning an annotation task into a Game with
a Purpose (GWAP) has been shown to lead to better
quality results and higher worker engagement (Lee
et al., 2013), thanks to the annotators being stimu-
lated by the playful component. Furthermore, be-
cause games may appeal to a different group of peo-
ple than crowdsourcing, they provide a complemen-
tary channel for attracting new annotators.

Within NLP, gamified annotation tasks include
anaphora resolution (Hladká et al., 2009; Poesio et
al., 2013), paraphrasing (Chklovski and Gil, 2005),
term associations (Artignan et al., 2009) and dis-
ambiguation (Seemakurty et al., 2010; Venhuizen et
al., 2013). The games’ interfaces typically incorpo-
rate common game elements such as scores, leader-
boards, or difficulty levels. However, the game it-
self remains largely text-based, with a strong resem-
blance to a traditional annotation task, and little re-
semblance to games most people actively play.

In the current work, we propose a radical shift in
NLP-focused GWAP design, building graphical, dy-
namic games that achieve the same result as tradi-
tional annotation. Rather than embellish an annota-
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tion task with game elements, we start from a video
game that is playable alone and build the task into
the game as a central component. By focusing on the
game aspect, players are presented with a more fa-
miliar task, which leads to higher engagement. Fur-
thermore, the video game interface can potentially
attract more interest from the large percentage of the
populace who play video games.

In two video games, we demonstrate how certain
linguistic annotation tasks can be effectively repre-
sented as video games. The first video game, Puz-
zle Racer, produces a mapping between images and
WordNet senses (Fellbaum, 1998), thereby creating
a large-scale library of visual analogs of concepts.
While resources such as ImageNet (Deng et al.,
2009) provide a partial sense-image mapping, they
are limited to only a few thousand concrete noun
senses, whereas Puzzle Racer annotates all parts of
speech and both concrete and abstract senses. Fur-
thermore, Puzzle Racer’s output enables new visual
games for tasks using word senses such as Word
Sense Disambiguation, frame detection, and selec-
tional preference acquisition. The second game,
Ka-boom!, performs Word Sense Disambiguation
(WSD) to identify the meaning of a word in context
by players interacting with pictures. Sense annota-
tion is regarded to be one of the most challenging
NLP annotation tasks (Fellbaum et al., 1998; Ed-
monds and Kilgarriff, 2002; Palmer et al., 2007; Art-
stein and Poesio, 2008), so we view it as a challeng-
ing application for testing the limits of visual NLP
games.

Our work provides the following four contribu-
tions. First, we present a new game-centric design
methodology for NLP games with a purpose. Sec-
ond, we demonstrate with the first game that video
games can produce linguistic annotations equal in
quality to those of experts and at a cost reduc-
tion from gathering the same annotations via crowd-
sourcing; with the second game we show that video
games provide a statistically significant performance
improvement over a current state-of-the-art non-
video game with a purpose for sense annotation.
Third, we release both games as a platform for other
researchers to use in building new games and for
annotating new data. Fourth, we provide multiple
resources produced by the games: (1) an image li-
brary mapped to noun, verb, and adjective Word-

Net senses, consisting of 19,073 images across 443
senses, (2) a set of associated word labels for most
images, (3) sense annotations as a distribution over
images and senses, and (4) mappings between word
senses and related Web queries.

2 Related Work
Games with a Purpose Multiple works have pro-
posed linguistic annotation-based games with a pur-
pose for tasks such as anaphora resolution (Hladká
et al., 2009; Poesio et al., 2013), paraphrasing
(Chklovski and Gil, 2005), term associations (Artig-
nan et al., 2009; Lafourcade and Joubert, 2010; Van-
nella et al., 2014), acquiring common sense knowl-
edge (Kuo et al., 2009; Herdağdelen and Baroni,
2012), and WSD (Chklovski and Mihalcea, 2002;
Seemakurty et al., 2010; Venhuizen et al., 2013).
Notably, all of these linguistic games have play-
ers primarily interacting with text, in contrast to
other highly successful games with a purpose such
as Foldit (Cooper et al., 2010), in which players fold
protein sequences, and the ESP game (von Ahn and
Dabbish, 2004), where players label images with
words.

Most similar to our games are Wordrobe (Ven-
huizen et al., 2013) and Jinx (Seemakurty et al.,
2010), which perform WSD, and The Knowledge
Towers (Vannella et al., 2014), which associates im-
ages with senses. Wordrobe asks players to disam-
biguate nouns and verbs using multiple choice ques-
tions where options are sense definitions and disam-
biguation is limited to terms with at most five senses,
a limitation that does not exist in our games. Jinx
uses two players who both have to independently
provide lexical substitutes of an ambiguous word
and are then scored on the basis of their shared sub-
stitutes. While Jinx has a more game-like feel, pro-
ducing annotations from the substitutes is non-trivial
and requires looking for locality of the substitutes in
the WordNet graph.

In contrast to Wordrobe and Jinx, we provide a
game-centric design methodology for the seamless
integration of the annotation task into a video game
with dynamic, graphical elements.

The Knowledge Towers (TKT) is a video game
for validating the associations between images and
word senses in BabelNet (Navigli and Ponzetto,
2012) and associating each of the senses with new

450



images acquired from a Web query of one of the
sense’s lemmas. To perform the annotation, players
are shown a word and its definition and then asked
to retrieve pictures matching that definition during
game play.

In contrast, our Puzzle Racer game is purely vi-
sual and does not require players to read defini-
tions, instead showing picture examples, increas-
ing its video game-like quality. Furthermore, Puz-
zle Racer is tested on nouns, verbs, and adjectives
whereas TKT is only applicable to annotate nouns
since it relies on the BabelNet knowledge base to
acquire its initial set of image-sense associations,
which contains images only for nouns.

Image Libraries Associating images with con-
ceptual entities is a long-standing goal in Com-
puter Vision (Barnard et al., 2003) and two ap-
proaches have built large-scale image libraries based
on the WordNet hypernym ontology. The data set
of Torralba et al. (2008) contains over 80M im-
ages across all 75,062 non-abstract WordNet noun
synsets. However, to support the size of the data
set, images are down-scaled to 32x32 pixels; fur-
thermore, their image-sense mapping error rates
vary between 25-80% with more general concepts
having higher error rates. The second significant
image library comes from ImageNet (Deng et al.,
2009), which contains 3.2M high-resolution images
for 5,247 non-abstract WordNet noun synsets. No-
tably, both libraries focus only on concrete nouns.
In contrast, the present work provides a methodol-
ogy for generating image-sense associations for all
parts of speech and for both abstract and concrete
concepts. Within NLP resources, BabelNet (Navigli
and Ponzetto, 2012) merges Wikipedia and Word-
Net sense inventories and contains mappings from
WordNet senses to the pictures present on the cor-
responding Wikipedia page. However, since images
come from an encyclopedia, the associations are in-
herently limited to only nouns and, due to inherently
partial mapping, only 38.6% of the WordNet senses
have images, with an average of 3.01 images for
those senses. The present work also varies from pre-
vious approaches in that image-sense pairs are rated
according to the strength of association between the
image and sense, rather than having a binary un-
graded association.

Crowdsourced WSD Many NLP areas have ap-
plied crowdsourcing (Wang et al., 2013); of these
areas, the most related to this work is crowdsourc-
ing word sense annotations. Despite initial success
in performing WSD using crowdsourcing (Snow et
al., 2008), many approaches noted the difficulty of
performing WSD with untrained annotators, espe-
cially as the degree of polysemy increases or when
word senses are related. Several approaches have
attempted to make the task more suitable for un-
trained annotators by (1) using the crowd itself to
define the sense inventory (Biemann and Nygaard,
2010), thereby ensuring the crowd understands the
sense distinctions, (2) modifying the questions to
explicitly model annotator uncertainty (Hong and
Baker, 2011; Jurgens, 2013), or (3) using sophis-
ticated methods to aggregate multiple annotations
(Passonneau et al., 2012; Passonneau and Carpen-
ter, 2013). In all cases, annotation was purely text
based, in contrast to our work.

3 Game 1: Puzzle Racer
The first game was designed to fill an important need
for enabling engaging NLP games: image repre-
sentations of concepts, specifically WordNet senses.
Our goals are two-fold: (1) to overcome the limits
of current sense-image libraries, which have focused
largely on concrete nouns and (2) to provide a gen-
eral game platform for annotation tasks that need to
associate lexical items with images. Following, we
first describe the design, annotation process, and ex-
tensibility of the game, and then discuss how its in-
put data is generated. A live demonstration of the
game is available online.1

3.1 Design and Game Play

Puzzle Racer was designed to be as “video game-
like” as possible, with no mentioning of linguistic
terminology. Because the game is targeted for the
layperson, we view this a fundamental design ob-
jective to make the game more engaging and long-
lasting. Therefore, Puzzle Racer is modeled after
popular games such as Temple Run and Subway
Surfers, but with the twist of combining two game
genres: racing and puzzle solving. Racing provides
the core of game play, while the annotation is em-
bedded as puzzle solving during and after the race.

1http://www.knowledgeforge.org
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Following, we describe the game play and then de-
tail how playing produces annotations.

Racing To race, players navigate a race car along
a linear track filled with obstacles and enemy pieces.
During play, players collect coins, which can be
used to obtain non-annotation achievements and to
increase their score. Enemies were added to intro-
duce variety into the game and increase the strategy
required to keep playing. Players begin the race with
2–4 health points, depending on the racer chosen,
which are decreased when touching enemies. Dur-
ing game play, players may collect power-ups with
familiar actions such as restoring lost health, dou-
bling their speed, or acting as a magnet to collect
coins. To bring a sense of familiarity, the game was
designed using a combination of sprites, sound ef-
fects, and music from Super Mario World, Mario
Kart 64, and custom assets created by us. Races
initially last for 90 seconds, but may last longer if
players collect specific power-ups that add time.

Puzzle Solving Prior to racing, players are shown
three images, described as “puzzle clues,” and in-
structions asking them to find the common theme
in the three pictures (Fig. 1a). Then, during rac-
ing, players encounter obstacles, referred to as puz-
zle gates, that show a series of images. To stay
alive, players must navigate their racer through the
one picture in the series with the same theme as the
puzzle clues. Players activate a gate after touching
one of its images; a gate may only be activated once
and racer movement over other pictures has no ef-
fect. Puzzle gates appear at random intervals during
game play.

Two types of gate appear. In the first, the gate
shows pictures where one picture is known to be re-
lated to the puzzle clues. We refer to these as golden
gates. Racing over an unrelated image in a golden
gate causes the player to lose one health point, which
causes the race to end if their health reaches zero.
The second type of gate, referred to as a mystery
gate, shows three images that are potentially related
to the clue. Moving over an image in a mystery gate
has no effect on health. Prior to activating a gate,
there is no visual difference between the two gates.

Figure 1b shows a racer approaching a puzzle
gate. Upon first moving their racer on one of the
gate’s images, the player receives visual and audi-

tory feedback based on the type of gate. In the
case of a golden gate, the borders around all pic-
tures change colors showing which picture should
have been selected, a feedback icon appears on the
chosen picture (shown in Figure 1c), and an appro-
priate sound effect plays. For mystery gates, borders
become blue, indicating the gate has no effect.

Finally, when the race ends, players are asked to
solve the race’s puzzle by entering a single word that
describes the race’s puzzle theme. For example, in
the race shown in Figure 1, an answer of “paper”
would solve the puzzle. Correctly answering the
puzzle doubles the points accumulated by the player
during the race. The initial question motivates play-
ers to pay attention to picture content shown during
the race; the longer the player stays alive, the more
clues they can observe to help solve the puzzle.

Annotation Image-sense annotation takes place
by means of the puzzle gates. Each race’s puzzle
theme is based on a specific WordNet sense. Ini-
tially, each sense is associated with a small set of
gold standard images, G, and a much larger set of
potentially-associated images, U , whose quality is
unknown. At the start of a race, three gold stan-
dard images are randomly selected from G to serve
as puzzle clues. The details of gold standard image
selection are described later in Sec. 3.2. We note
that not all gold standard images are shown initially
as puzzle clues, helping mask potential differences
between golden and mystery gates.

Mystery gates annotate the images in U . The im-
ages in a mystery gate are chosen by selecting the
least-rated image in U and then pairing it with n-
1 random images from U , where n is the number
of pictures shown per gate. By always including the
least-rated image, we guarantee that, given sufficient
plays, all images for a sense will eventually be rated.
When a player chooses an image in the mystery gate,
that image receives n-1 positive votes for it being
a good depiction of the sense; the remaining unse-
lected images receive one negative vote. Thus, an
image’s rating is the cumulative sum of the positive
and negative votes it receives. This rating scheme
is zero-sum so image ratings cannot become inflated
such that all images have a positive rating. How-
ever, we do note that if U includes many related im-
ages, due to the voting, some good images may have
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(a) Puzzle clues (b) A puzzle gate prior to activation (c) An activated puzzle gate

Figure 1: Screenshots of the key elements of the Puzzle Racer game

negative ratings if even-better images become higher
ranked.

Golden gates are used to measure how well a
player understands the race’s puzzle concept (i.e.,
the sense being annotated). The first three puzzle
gates in a race are always golden gates. We denote
the percentage of golden gates correctly answered
thus far as α. After the three initial golden gates
are shown, the type of new puzzle gates is metered
by α: golden gates are generated with probability
0.3 + 0.7(1 − α) and mystery gates are generated
for the remainder. In essence, accurate players with
high α are more likely to be shown mystery gates
that annotate pictures from U , whereas completely
inaccurate players are prevented from adding new
annotations. This mechanism adjusts the number
of new annotations a player can produce in real-
time based on their current accuracy at recogniz-
ing the target concept, which is not currently pos-
sible in common crowdsourcing platforms. Last,
we note that puzzle answering also provides labels
for the race’s images, data that might prove valu-
able for tasks such as image labeling (Mensink et
al., 2013) and image caption generation (Feng and
Lapata, 2013; Kulkarni et al., 2013).

Additional Game Elements Puzzle Racer incor-
porates a number of standard Game with a Purpose
design elements (von Ahn and Dabbish, 2008), with
two notable features: unlockable achievements and
a leaderboard. Players initially start out with a sin-
gle racer and power-up available. Players can then
unlock new racers and power-ups through various
game play actions of varying difficulty, e.g., cor-

rectly answering three puzzle questions in a row.
This feature proved highly popular and provided
an extrinsic motivation for continued playing. Sec-
ond, players were ranked according to level, which
was determined by the number of correct puzzle an-
swers, correct golden gates, and their total score.
The top-ranking players were shown at the end of
every round and via a special screen in-game. A
full, live-updated leaderboard was added halfway
through the study and proved an important feature
for new players to use in competing for the top ranks.

Extensibility At its core, Puzzle Racer provides
three central annotation-related mechanics: (1) an
initial set of instructions on how players are to inter-
act with images, (2) multiple series of images shown
during game play, and (3) an open-ended question at
the end of the game. These mechanics can be easily
extended to other types of annotation where players
must choose between several concepts shown as op-
tions in the puzzle gates. For example, the instruc-
tions could show players a phrase such as “a bowl
of *” and ask players to race over images of things
that might fit the “*” argument in order to obtain se-
lectional preference annotations of the phrase (à la
Flati and Navigli (2013)); the lemmas or senses as-
sociated with the selected images can be aggregated
to identify the types of arguments preferred by play-
ers for the game’s provided phrase. Similarly, the in-
structions could be changed to provide a set of key-
words or phrases (instead of images associated with
a sense) and ask players to navigate over images of
the words in order to perform image labeling.
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Nouns argument, arm, atmosphere, bank, difficulty,
disc, interest, paper, party, shelter

Verbs activate, add, climb, eat, encounter
expect, rule, smell, suspend, win

Adjectives different, important, simple

Table 1: Lemmas for Puzzle Racer and Ka-boom!

3.2 Image Data

Puzzle Racer requires sets of images G and U as in-
put. Both were constructed using image queries via
the Yahoo! Boss API as follows. Three annotators
were asked to each produce three queries for each
sense of a target word and, for each query, to se-
lect three images as gold standard images. Queries
were checked for uniqueness and to ensure that at
least a few of its image results were related to the
sense. Each query was used to retrieve one result set
of 35 images. Two additional annotators then vali-
dated the queries and gold standard images produced
by the first three annotators. Validation ensured that
each sense had at least three queries and |G| ≥ 6 for
all senses. After validation, the gold standard im-
ages were added toG and all non-gold images in the
result set were added to U , discarding duplicates.

During game play, puzzle clues are sampled
across queries, rather than sampling directly from
G. Query-based sampling ensures that players are
not biased towards images for a single visual repre-
sentation of the sense.

While the construction of G and U is manual,
we note that alternate methods of constructing the
sets could be considered, including automatic ap-
proaches such as those used by ImageNet (Deng et
al., 2009). However, as the focus of this game is on
ranking images, a manual process was used to en-
sure high-quality images in G.

Importantly, we stress that the images in G alone
are often insufficient due to two reasons. First, most
senses – especially those denoting abstract concepts
– can be depicted in many ways. Relying on a small
set of images for a sense can omit common visual-
izations, which may limit downstream applications
that require general representations. Second, many
games rely on a sense of novelty, i.e., not seeing the
same pictures repeatedly; however, limiting the im-
ages to those in G can create issues where too few

disc4n: a flat circular plate
circular plate dish plate plate

paper3n: a daily or weekly publication on folded sheets
news paper daily newspaper newspaper headline

simple2a: elementary, simple, uncomplicated
simple problem 1+1=2 elementary equation

win1
v: be the winner in a contest or competition

olympic winner lottery winner world cup victory

Table 2: Examples of queries used to gather images

images exist to keep player interest high. While ad-
ditional manual annotation could be used to select
more gold standard images, such a process is time-
intensive; hence, one of our game’s purposes is to
eventually move high-quality images from U to G.

4 Puzzle Racer Annotation Analysis
Puzzle Racer is intended to produce a sense-image
mapping comparable to what would be produced by
crowdsourcing. Therefore, we performed a large-
scale study involving over 100 players and 16,000
images. Two experiments were performed. First, we
directly compared the quality of the game-based an-
notations with those of crowdsourcing. Second, we
compared the difference in quality between expert-
based gold standard images and the highest-ranked
images rated by players.

4.1 Experimental Setup

To test the potential of our approach, we selected
a range of 23 polysemous noun, verb, and adjec-
tive lemmas, shown in Table 1. Lemmas had 4-10
senses each, for a total of 132 senses. Many lemmas
have both abstract and concrete senses and some are
known to have highly-related senses (Erk and Mc-
Carthy, 2009). Hence, given their potential annota-
tion difficulty, we view performance on these lem-
mas as a lower bound.

For all lemmas, during the image generation pro-
cess (Sec. 3.2) annotators were able to produce
queries for all but one sense, expect2v;2 this produced
1356 gold images in G and 16,656 unrated images

2The sense expect2v has the definition, “consider obligatory;
request and expect.” Annotators were able to formulate many
queries that could have potentially shown images of this defi-
nition, but the images results of such queries were consistently
unrelated to the meaning.

454



interest1n: a sense of concern with and
curiosity about someone or something

eat1v: take in solid food different1a: unlike in nature or quality or
form or degree

party2
n: a group of people gathered to-

gether for pleasure
expect6v: be pregnant with shelter5n: temporary housing for home-

less or displaced persons

Table 3: Examples of gold standard images

in U . Tables 2 and 3 show examples of the queries
and gold standard images, respectively.

The game play study was conducted over two
weeks using a pool of undergraduate students, who
were allowed to recruit other students. After
an email announcement, 126 players participated.
Players were ranked according to their character’s
level and provided with an incentive that the four
top-ranking players at the end of the study would be
provided with gift cards ranging from $15-25USD,
with a total compensation of $70USD.

4.2 Experiment 1: Crowdsourcing Comparison

The first experiment directly compares the image
rankings produced by the game with those from an
analogous crowdsourcing task. Tasks were created
on the CrowdFlower platform using the identical
set of examples and annotation questions encoun-
tered by players. In each task, workers were shown
three example gold standard images (sampled from
those configurations seen by players) and asked to
identify the common theme among the three exam-
ples. Then, five annotation questions were shown
in which workers were asked to choose which of
three images was most related to the theme. Ques-
tions were created after the Puzzle Racer study fin-
ished in order to use the identical set of questions
seen by players as mystery gates. Workers were paid
$0.03USD per task.

To compare the quality of the Puzzle Racer image
rankings with those from CrowdFlower, the three
highest-rated images of each sense from both rank-
ings were compared. Two annotators were shown a

sense’s definition and example uses, and then asked
to compare the quality of three image pairs, select-
ing whether (a) the left image was a better depic-
tion of the sense, (b) the right image was better, or
(c) the images were approximately equal in quality.
In the case of disagreements, a third annotator was
asked to compare the images; the majority answer
was used when present or, in the case of all three
ratings, images were treated as equal, the latter of
which occurred for only 17% of the questions. For
all 396 questions, the method used to rank the image
was hidden and the order in which images appeared
was randomized.

Results During the study period, players com-
pleted 7199 races, generating 20,253 ratings across
16,479 images. Ratings were balanced across
senses, with a minimum and maximum of 231 and
329 ratings per sense. Players accurately identi-
fied each race’s theme, selecting the correct image
in 83% of all golden puzzle gates shown. Table 4
shows example top-rated images from Puzzle Racer.

Experiment 1 measures differences in the qual-
ity of the three top-ranked images produced by Puz-
zle Racer and CrowdFlower for each sense. Puzzle
Racer and CrowdFlower produced similar ratings,
with at least one image appearing in the top-three
positions of both ranks for 55% of the senses.

Both annotators agreed in 72% of cases in select-
ing the best sense depiction, finding that in 88% of
the agreed cases both images were approximately
equal representations of the sense. In the remain-
ing, the Puzzle Racer image was better in 4% and
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activate4v: aerate (sewage) so as to favor
the growth of organisms that decompose
organic matter

argument2n: a contentious speech act; a
dispute where there is strong disagree-
ment

atmosphere4n: the weather or climate at
some place

climb1
v: go upward with gradual or con-

tinuous progress
important1a: of great significance or
value

rule2v: decide with authority

Table 4: Examples of the three highest-rated images for six senses

CrowdFlower image better in 8%. When resolu-
tions from a third annotator were included, a similar
trend emerges: both images were equivalent in 79%
of all cases, Puzzle Racer images were preferred in
7% and Crowflower images in 14%. These results
show that, as a video game, Puzzle Racer produces
very similar results to what would be expected under
equivalent conditions with crowdsourcing.

4.3 Experiment 2: Image Quality

The second experiment evaluates the ability of the
games to produce high-quality images by measur-
ing the difference in quality between gold stan-
dard images and top-rated images in the game.
CrowdFlower workers were shown a question with a
sense’s definition and example uses and then asked
to choose which of two images was a better visual
representation of the gloss. Questions were created
for each of the three highest-rated images for each
sense, pairing each with a randomly-selected gold
standard image for that sense. Image order was ran-
domized between questions. Five questions were
shown per task and workers were paid $0.05USD
per task.3 The 2670 worker responses were aggre-
gated by selecting each question’s most frequent an-
swer.

Results For senses within each part of speech,
workers preferred the gold standard image to the

3Workers were paid more for the second task to adjust for
the time required to read each question’s sense definition and
example uses; thus, hourly compensation rates in the two ex-
periments were approximately equivalent.

top-rated image for nouns, verbs, and adjectives
57.4%, 53.1%, and 56.2% of the time, respectively.
This preference is not significant at p < 0.05, indi-
cating that the top-ranked images produced through
Puzzle Racer game play are approximately equiva-
lent in quality to images manually chosen by experts
with full knowledge of the sense inventory.

4.4 Cost Comparison

Puzzle Racer annotations cost $70, or $0.0034USD
per rating. In comparison, the analogous Crowd-
Flower annotations cost $256.60, or $0.0126USD
per annotation. Because the game’s costs are fixed,
the cost per annotation is driven down as players
compete. As a result, Puzzle Racer reduces the an-
notation cost to ≤27% of that required by crowd-
sourcing. We note that other factors could have con-
tributed to the cost reduction over crowdsourcing be-
yond the video game itself. However, as we demon-
strate in Vannella et al. (2014), players will play a
video game with a purpose without compensation
just as much as they do when compensated using
a similar setup as was performed in this experiment.
Hence, the video game itself is likely the largest mo-
tivating factor for the cost reduction.

Video game-based annotation does come with in-
direct costs due to game development. For example,
Poesio et al. (2013) report spending £60,000 over
a two-year period to develop their linguistic game
with a purpose. In contrast, Puzzle Racer was cre-
ated using open source software in just over a month
and developed in the context of a Java programming
class, removing any professional development costs.
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Furthermore, Puzzle Racer is easily extensible for
other text-image annotation tasks, enabling the plat-
form to be re-used with minimal effort.

The decreased cost does come with an increase
in the time per annotation. All tasks on the Crowd-
Flower platform required only a few hours to com-
plete, whereas the Puzzle Racer data was gathered
over the two-week contest period. The difference
in collection time reflects an important difference
in the current resources: while crowdsourcing has
established platforms with on-demand workers, no
central platforms exist for games with a purpose
with an analogous pool of game players. However,
although the current games were released in a lim-
ited fashion, later game releases to larger venues
such as Facebook may attract more players and sig-
nificantly decrease both collection times and overall
annotation cost.

5 Game 2: Ka-boom!
Building large-scale sense-annotated corpora is a
long-standing objective (see (Pilehvar and Navigli,
2014)) and has sparked significant interest in de-
veloping effective crowdsourcing annotation and
GWAP strategies (cf. Sec. 2). Therefore, we pro-
pose a second video game, Ka-boom!, that produces
sense annotations from game play. A live demon-
stration of the game is available online.4

Design and Game Play Ka-boom! is an action
game in the style of the popular Fruit Ninja game:
pictures are tossed on screen from the boundaries of
the screen, which the player must then selectively
destroy in order to score points. The game’s chal-
lenge stems from rapidly identifying which pictures
should be destroyed or not destroyed as they appear.

Prior to the start of a round, players are shown
a sentence with a word in bold (Fig. 2a) and asked
to envision pictures related to that word’s meaning
in the context. Players are then instructed to de-
stroy pictures that do not remind them of the bolded
word’s meaning and let live pictures showing some-
thing reminiscent. Once finished reading the instruc-
tions, players begin a round of game play that shows
(1) images for each sense of the word and (2) im-
ages for unrelated lemmas, referred to as distractor
images.

4http://www.knowledgeforge.org/

Players destroy pictures by clicking or touching
them, depending on their device’s input (Fig. 2b).
Players are penalized for failing to destroy the dis-
tractor images. Rounds begin with a limit of at most
three pictures on screen at once, which increases as
the round progresses. The additional images pro-
vide two important benefits: (1) an increasing de-
gree of challenge to keep the player’s interest, (2)
more image interactions to use in producing the an-
notation. Additionally, the increasing picture rate
enables us to measure the interaction between game
play speed and annotation quality in order to help
tune the speeds of future games. The round ends
when players fail to destroy five or more distrac-
tor images or 60 seconds elapses. Ending the game
early after players fail to destroy distractor images
provides Ka-boom! a mechanism for limiting the
impact of inaccurate or adversarial players on anno-
tation quality. After game play finishes, players are
shown their score and all the lemma-related pictures
they spared (Fig. 2c), proving a positive feedback
loop where players can evaluate their choices.

Annotation Traditionally, sense annotation is per-
formed by having an annotator examine a word in
context and then chose the word’s sense from a list
of definitions. Ka-boom! replaces the sense defini-
tions with image examples of that sense. A sense an-
notation is built from the senses associated with the
images that the player spared. Images are presented
to players based on a sequence of flights. Each flight
contains one randomly-selected picture for each of a
word’s n senses and n distractor images. Images
within a flight are randomly ordered. The structure
of a flight’s images ensures that, as the game pro-
gresses, players see the same number of images for
each sense; otherwise, the player’s annotation may
become biased simply due to one sense’s images ap-
pearing more often.

Once the game ends, the senses associated with
the spared images are aggregated to produce a sense
distribution. For simplicity, the sense with the high-
est probability is selected as the player’s answer; in
the case of ties, multiple senses are reported, though,
we note that the game’s annotation method could
also produce a weighted distribution over senses
(Erk et al., 2012), revealing different meanings that
a player considered valid in the context.
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(a) The context and target word (b) Players destroying images (c) The round-over summary

Figure 2: Screenshots of the three key elements of the Ka-boom! game

The highest probability of a sense from this distri-
bution is then multiplied by the duration of the game
to produce the player’s score for the round. Players
maximize their score when they consistently choose
images associated with a single sense, which encour-
ages precise game play.

The annotation design of having players destroy
unrelated images was motivated by two factors.
First, the mechanism of destroying unrelated images
does not introduce noise into the annotation when a
player mistakenly destroys an image; because only
retained images count towards the sense annotation,
players may be highly selective in which images
they retain – even destroying some images that are
associated with the correct sense – while still pro-
ducing a correct annotation. Second, our internal
testing showed the objective of destroying unrelated
pictures keeps players more actively engaged. In the
inverse type of play where players destroy only re-
lated pictures, players often had to wait for a single
picture to destroy, causing them to lose interest.

Extensibility Ka-boom! contains two core me-
chanics: (1) instructions on which pictures should
be destroyed and which should be spared, and (2)
series of images shown to the player during game
play. As with Puzzle Racer, the Ka-boom! mechan-
ics can be modified to extend the game to new types
of annotation. For example, instructions could dis-
play picture examples and ask players to destroy ei-
ther similar or opposite-meaning ideas in order to
annotate synonyms or antonyms. In another setting,
images can be associated with semantic frames (e.g.,
from FrameNet (Baker et al., 1998)) and players
must spare images showing the frame of the game’s

sentence in order to provide frame annotations.

6 Ka-boom! Annotation Analysis

Ka-boom! is intended to provide a complementary
and more-enjoyable method for sense annotation us-
ing only pictures. To test its effectiveness, we per-
form a direct comparison with the state-of-the-art
GWAP for sense annotation, Wordrobe (Venhuizen
et al., 2013), which is not a video game.

6.1 Experimental Setup

Organizers of the Wordrobe project (Venhuizen et
al., 2013) provided a data set of 111 recently-
annotated contexts having between one and nine
games played for each (mean 3.2 games). This data
was distinct from the contexts used to evaluate Wor-
drobe in Venhuizen et al. (2013) in which case all
contexts had six games played each. Contexts were
for 74 noun and 16 verb lemmas with a total of 310
senses (mean 3.4 senses per word). Contexts were
assigned the most-selected sense label from the Wor-
drobe games.

To gather the images for each lemma used with
Ka-boom!, we repeated a similar image-gathering
process as done for the gold standard images in
Puzzle Racer. Annotators generated at least three
queries for each sense, selecting three images for
each query as gold standard examples of the sense.
During annotation, four senses could not be asso-
ciated with any queries that produced high-quality
images. In total, 2594 images were gathered, with
an average of 8.36 images per sense. The query data
and unrated images are included in the data set, but
were not used further in Ka-boom! experiments.

Game players were drawn from a small group of
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Figure 3: Players’ average WSD accuracy within a
single game relative to the number of flights seen

Accuracy

Method All Noun Verb

Ka-boom! 0.766 0.803 0.559
Wordrobe 0.603 0.659 0.313

MFS 0.678 0.702 0.588
Random 0.322 0.325 0.312

Table 5: Sense disambiguation accuracies

fluent English speakers and were free to recruit other
players. A total of 19 players participated. Unlike
Puzzle Racer, players were not compensated. Each
context was seen in at least six games.

WSD performance is measured using the tradi-
tional precision and recall definitions and the F1
measure of the two (Navigli, 2009); because all
items are annotated, precision and recall are equiv-
alent and we report performance as accuracy. Per-
formance is measured relative to two baselines: (1)
a baseline that picks the sense of the lemma that is
most frequent in SemCor (Miller et al., 1993), de-
noted as MFS, and (2) a baseline equivalent to per-
formance if players had randomly clicked on im-
ages, denoted as Random.5

6.2 Results

Two analyses were performed. Because Ka-
boom! continuously revises the annotation during
gameplay based on which pictures players spare,
the first analysis assesses how the accuracy changes

5This baseline is similar to random sense selection but takes
into account differences in the number of pictures per sense.

with respect to the length of one Ka-boom! game.
The second analysis measures the accuracy with re-
spect to the number of games played per context.

In the first analysis, each context’s annotation was
evaluated using the most-probable sense after each
flight of gameplay. Figure 3 shows results after six
games were played. Players were highly accurate
at playing, surpassing the MFS baseline after see-
ing two flights of pictures (i.e., two pictures for each
sense). Accuracy remained approximately equiva-
lent after three rounds for noun lemmas, while verb
lemmas showed a small drop-off in performance.
We believe that the increased rate at which images
occur on screen likely caused lower performance,
where players were unable to react quickly enough.
Many noun lemmas had easily-recognizable associ-
ated images, so higher-speed game play may still be
accurate. In contrast, verbs were more general (e.g.,
“decide,” “concern,” and “include”), which required
more abstract thinking in order to recognize an asso-
ciated picture; as the game speed increased, players
were not able to identify these associated pictures as
easily, causing slightly decreased performance.

Table 5 shows the players’ disambiguation accu-
racy after three flights in comparison to the play-
ers’ accuracy with Wordrobe and the two baselines.
Ka-boom! provides an increased performance over
Wordrobe that is statistically significant at p <
0.01.6 Ka-boom! also provides a performance in-
crease over the MFS baseline, though it is statisti-
cally significant only at p = 0.14. The time required
to gather annotations after three flights varied based
on the number of senses, but was under a minute
in all cases, which puts the rate of annotation on par
with that of expert-based annotation (Krishnamurthy
and Nicholls, 2000).

In the second analysis, disambiguation accuracy
was measured based on the number of games played
for a context.7 Because the provided Wordrobe
data set has 3.2 games played per context on aver-
age, results are reported only for the subset of con-
texts played in at least four Wordrobe games in or-
der to obtain consistent performance estimates. Ka-

6We note that, although Venhuizen et al. (2013) report a
higher accuracy for Wordrobe in their original experiments
(85.7 F1), that performance was measured on a different data
set and used six games per context.

7In all cases, players played at most one game per context.
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Figure 4: Average WSD accuracy as a function of
the number of games played for a context

boom! annotations are recorded after three flights
were seen in each game. Figure 4 shows the perfor-
mance relative to the number of annotators for both
Ka-boom! and Wordrobe, i.e., the number of games
played for that context by different players.

For nouns, Ka-boom! is able to exceed the MFS
baseline after only two games are played. For both
nouns and verbs, multiple rounds of Ka-boom! game
play improve performance. In contrast to Ka-
Boom!, Wordrobe accuracy declines as the number
of players increases; when multiple players disagree
on the sense, no clear majority emerges in Wor-
drobe, lowering the accuracy of the resulting anno-
tation. In contrast, a single player in Ka-boom! pro-
duces multiple sense judgments for a context in a
single game via interacting with each flight of im-
ages. These interactions provide a robust distribu-
tional annotation over senses that can be easily ag-
gregated with other players’ judgments to produce a
higher-quality single sense annotation. This analysis
suggests that Ka-boom! can produce accurate anno-
tations with just a few games per context, removing
the need for many redundant annotations and im-
proving the overall annotation throughput.

7 Conclusion and Future Work

In this work we have presented a new model of lin-
guistic Games with a Purpose focused on annota-
tion using video games. Our contributions show
that designing linguistic annotation tasks as video
games can produce high-quality annotations. In the
first game, Puzzle Racer, we demonstrated that game

play can produce a high-quality library of images as-
sociated with WordNet senses, equivalent to those
produced by expert annotators. Moreover, Puzzle
Racer reduces the cost of producing an equivalent
resource via crowdsourcing by at least 73% while
providing similar-quality image ratings. In the sec-
ond game, Ka-boom!, we demonstrated that a video
game could be used to perform accurate word sense
annotation with a large improvement over the MFS
baseline and a statistically significant improvement
over current game-based WSD.

While not all linguistic annotations tasks are eas-
ily representable as video games, our two games
provide an important starting point for building new
types of NLP games with a purpose based on video
games mechanics. Software for both games will be
open-sourced, providing a new resource for future
game development and extensions of our work. Fur-
thermore, the multiple data sets produced by this
work are available at http://lcl.uniroma1.
it/videogames, providing (1) a sense-image
mapping from hundreds of senses to tens of thou-
sands of images, (2) word labels for most images
in our dataset, (3) Web queries associated with all
senses, and (4) image-based word sense annotations.

Based on our results, three directions for future
work are planned. The two games presented here
focus on concepts that can be represented visually
and thus lend themselves to annotations for lexi-
cal semantics. However, the fact that the games
are graphical does not prevent them from showing
textual items (see Vannella et al. (2014)) and more
apt video games could be developed for text-based
annotations such as PP-attachment or pronoun res-
olution. Therefore, in our first future work, we
plan to develop new types of video games for tex-
tual items as well as extend the current games for
new semantic tasks such as selectional preferences
and frame annotation. Second, we plan to scale
up both games to a broader audience such as Face-
book, creating a larger sense-image library and a
standard platform for releasing video games with a
purpose. Third, we plan to build multilingual games
using the images from Puzzle Racer, which provide
a language-independent concept representation, and
could therefore be used to enable the annotation and
validation of automatically-created knowledge re-
sources (Hovy et al., 2013).
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2010. Predicting protein structures with a multiplayer
online game. Nature, 466(7307):756–760.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. ImageNet: A large-scale hier-
archical image database. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255.

Philip Edmonds and Adam Kilgarriff. 2002. Introduc-
tion to the special issue on evaluating word sense dis-
ambiguation systems. Natural Language Engineering,
8(4):279–291.

Katrin Erk and Diana McCarthy. 2009. Graded word
sense assignment. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 440–449, Singapore.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2012. Measuring word meaning in context. Computa-
tional Linguistics, 39(3):511–554.

Christiane Fellbaum, Joachim Grabowski, and Shari Lan-
des. 1998. Performance and confidence in a semantic
annotation task. In Christiane Fellbaum, editor, Word-
Net: An electronic lexical database, pages 217–237.
MIT Press.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Yansong Feng and Mirella Lapata. 2013. Automatic
caption generation for news images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
35(4):797–812.

Tiziano Flati and Roberto Navigli. 2013. SPred: Large-
scale Harvesting of Semantic Predicates. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1222–1232,
Sofia, Bulgaria.
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