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Abstract

This paper identifies and examines the key
principles underlying building a state-of-the-
art grammatical error correction system. We
do this by analyzing the Illinois system that
placed first among seventeen teams in the re-
cent CoNLL-2013 shared task on grammatical
error correction.

The system focuses on five different types
of errors common among non-native English
writers. We describe four design principles
that are relevant for correcting all of these er-
rors, analyze the system along these dimen-
sions, and show how each of these dimensions
contributes to the performance.

1 Introduction

The field of text correction has seen an increased
interest in the past several years, with a focus on
correcting grammatical errors made by English as
a Second Language (ESL) learners. Three competi-
tions devoted to error correction for non-native writ-
ers took place recently: HOO-2011 (Dale and Kil-
garriff, 2011), HOO-2012 (Dale et al., 2012), and
the CoNLL-2013 shared task (Ng et al., 2013). The
most recent and most prominent among these, the
CoNLL-2013 shared task, covers several common
ESL errors, including article and preposition usage
mistakes, mistakes in noun number, and various verb
errors, as illustrated in Fig. 1.1 Seventeen teams that

1The CoNLL-2014 shared task that completed at the time of
writing this paper was an extension of the CoNLL-2013 com-
petition (Ng et al., 2014) but addressed all types of errors. The
Illinois-Columbia submission, a slightly extended version of the

Nowadays *phone/phones *has/have many
functionalities, *included/including *∅/a
camera and *∅/a Wi-Fi receiver.

Figure 1: Examples of representative ESL errors.

participated in the task developed a wide array of ap-
proaches that include discriminative classifiers, lan-
guage models, statistical machine-translation sys-
tems, and rule-based modules. Many of the systems
also made use of linguistic resources such as addi-
tional annotated learner corpora, and defined high-
level features that take into account syntactic and se-
mantic knowledge.

Even though the systems incorporated similar re-
sources, the scores varied widely. The top system,
from the University of Illinois, obtained an F1 score
of 31.202, while the second team scored 25.01 and
the median result was 8.48 points.3 These results
suggest that there is not enough understanding of
what works best and what elements are essential for
building a state-of-the-art error correction system.

In this paper, we identify key principles for build-
ing a robust grammatical error correction system and
show their importance in the context of the shared
task. We do this by analyzing the Illinois system
and evaluating it along several dimensions: choice

Illinois CoNLL-2013 system, ranked at the top. For a descrip-
tion of the Illinois-Columbia submission, we refer the reader to
Rozovskaya et al. (2014a).

2The state-of-the-art performance of the Illinois system dis-
cussed here is with respect to individual components for differ-
ent errors. Improvements in Rozovskaya and Roth (2013) over
the Illinois system that are due to joint learning and inference
are orthogonal, and the analysis in this paper still applies there.

3F1 might not be the ideal metric for this task but this was
the one chosen in the evaluation. See more in Sec. 6.
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of learning algorithm; choice of training data (native
or annotated learner data); model adaptation to the
mistakes made by the writers; and the use of linguis-
tic knowledge. For each dimension, several imple-
mentations are compared, including, when possible,
approaches chosen by other teams. We also vali-
date the obtained results on another learner corpus.
Overall, this paper makes two contributions: (1) we
explain the success of the Illinois system, and (2) we
provide an understanding and qualitative analysis of
different dimensions that are essential for success in
this task, with the goal of aiding future research on
it. Given that the Illinois system has been the top
system in four competitive evaluations over the last
few years (HOO and CoNLL), we believe that the
analysis we propose will be useful for researchers in
this area.

In the next section, we present the CoNLL-2013
competition. Sec. 3 gives an overview of the ap-
proaches adopted by the top five teams. Sec. 4 de-
scribes the Illinois system. In Sec. 5, the analysis of
the Illinois system is presented. Sec. 6 offers a brief
discussion, and Sec. 7 concludes the paper.

2 Task Description

The CoNLL-2013 shared task focuses on five
common mistakes made by ESL writers: arti-
cle/determiner, preposition, noun number, verb
agreement, verb form. The training data of the
shared task is the NUCLE corpus (Dahlmeier et al.,
2013), which contains essays written by learners of
English (we also refer to it as learner data or shared
task training data). The test data consists of 50
essays by students from the same linguistic back-
ground. The training and the test data contain 1.2M
and 29K words, respectively.

Table 1 shows the number of errors by type and
the error rates. Determiner errors are the most com-
mon and account for 42.1% of all errors in training.
Note that the test data contains a much larger pro-
portion of annotated mistakes; e.g. determiner errors
occur four times more often in the test data than in
the training data (only 2.4% of noun phrases in the
training data have determiner errors, versus 10% in
the test data). The differences might be attributed
to differences in annotation standards, annotators,
or writers, as the test data was annotated at a later
time. The shared task provided two sets of test an-

Error Number of errors and error rates
Train Test

Art. 6658 (2.4%) 690 (10.0%)
Prep. 2404 (2.0%) 311 (10.7%)
Noun 3779 (1.6%) 396 (6.0%)
Verb agr. 1527 (2.0%) 124 (5.2%)
Verb form 1453 (0.8%) 122 (2.5%)

Table 1: Statistics on annotated errors in the CoNLL-2013
shared task data. Percentage denotes the error rates, i.e. the
number of erroneous instances with respect to the total number
of relevant instances in the data.

notations: the original annotated data and a set with
additional revisions that also includes alternative an-
notations proposed by participants. Clearly, having
alternative answers is the right approach as there are
typically multiple ways to correct an error. How-
ever, because the alternatives are based on the error
analysis of the participating systems, the revised set
may be biased (Ng et al., 2013). Consequently, we
report results on the original set.

3 Model Dimensions

Table 2 summarizes approaches and methodologies
of the top five systems. The prevailing approach
consists in building a statistical model either on
learner data or on a much larger corpus of native En-
glish data. For native data, several teams make use
of the Web 1T 5-gram corpus (henceforth Web1T,
(Brants and Franz, 2006)). NARA employs a statis-
tical machine translation model for two error types;
two systems have rule-based components for se-
lected errors. Based on the analysis of the Illinois
system, we identify the following, inter-dependent,
dimensions that will be examined in this work:
1. Learning algorithm: Most of the teams, includ-
ing Illinois, built statistical models. We show that
the choice of the learning algorithm is very impor-
tant and affects the performance of the system.
2. Adaptation to learner errors: Previous stud-
ies, e.g. (Rozovskaya and Roth, 2011) showed
that adaptation, i.e. developing models that utilize
knowledge about error patterns of the non-native
writers, is extremely important. We summarize
adaptation techniques proposed earlier and examine
their impact on the performance of the system.
3. Linguistic knowledge: It is essential to use some
linguistic knowledge when developing error correc-
tion modules, e.g., to identify which type of verb
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System Error Approach

Illinois (Rozovskaya et al., 2013)
Art. AP model on NUCLE with word, POS, shallow parse features
Prep. NB model trained on Web1T and adapted to learner errors
Noun/Agr./Form NB model trained on Web1T

NTHU (Kao et al., 2013) All Count model with backoff trained on Web1T

HIT (Xiang et al., 2013) Art./Prep./Noun ME on NUCLE with word, POS, dependency features
Agr./Form Rule-based

NARA (Yoshimoto et al., 2013)
Art./Prep. SMT model trained on learner data from Lang-8 corpus
Noun ME model on NUCLE with word, POS and dependency features
Agr./Form Treelet LM on Gigaword and Penn TreeBank corpora

UMC (Xing et al., 2013)
Art./Prep. Two LMs – on NUCLE and Web1T corpus – with voting
Noun Rules and ME model on NUCLE + LM trained on Web1T
Agr./Form ME model on NUCLE (agr.) and rules (form)

Table 2: Top systems in the CoNLL-2013 shared task. The second column indicates the error type; the third column describes
the approach adopted by the system. ME stands for Maximum Entropy; LM stands for language model; SMT stands for Statistical
Machine Translation; AP stands for Averaged Perceptron; NB stands for Naı̈ve Bayes.

Classifier
Art. Prep. Noun Agr. Form

Train 254K 103K 240K 75K 175K
Test 6K 2.5K 2.6K 2.4K 4.8K

Table 3: Number of candidate words by classifier type.

error occurs in a given context, before the appropri-
ate correction module is employed. We describe and
evaluate the contribution of these elements.
4. Training data: We discuss the advantages of
training on learner data or native English data in the
context of the shared task and in broader context.

4 The Illinois System

The Illinois system consists of five machine-learning
models, each specializing in correcting one of the er-
rors described above. The words that are selected as
input to a classifier are called candidates (Table 3).
In the preposition system, for example, candidates
are determined by surface forms. In other systems,
determining the candidates might be more involved.

All modules take as input the corpus documents
pre-processed with a part-of-speech tagger4 (Even-
Zohar and Roth, 2001) and shallow parser5 (Pun-
yakanok and Roth, 2001). In the Illinois submis-
sion, some modules are trained on native data, oth-
ers on learner data. The modules trained on learner
data make use of a discriminative algorithm, while

4http://cogcomp.cs.illinois.edu/page/
software view/POS

5http://cogcomp.cs.illinois.edu/page/
software view/Chunker

native-trained modules make use of the Naı̈ve Bayes
(NB) algorithm. The Illinois system has an option
for a post-processing step where corrections that al-
ways result in a false positive in training are ignored
but this option is not used here.

4.1 Determiner Errors

The majority of determiner errors involve articles,
although some errors also involve pronouns. The
Illinois system addresses only article errors. Can-
didates include articles (“a”,“an”,“the”)6 and omis-
sions, by considering noun-phrase-initial contexts
where an article is likely to be omitted. The con-
fusion set for articles is thus {a, the, ∅}. The ar-
ticle classifier is the same as the one in the HOO
shared tasks (Rozovskaya et al., 2012; Rozovskaya
et al., 2011), where it demonstrated superior per-
formance. It is a discriminative model that makes
use of the Averaged Perceptron algorithm (AP, (Fre-
und and Schapire, 1996)) implemented with LBJava
(Rizzolo and Roth, 2010) and is trained on learner
data with rich features and adaptation to learner er-
rors. See Sec. 5.2 and Sec. 5.3.

4.2 Preposition Errors

Similar to determiners, we distinguish three types of
preposition mistakes: choosing an incorrect prepo-
sition, using a superfluous preposition, and omitting
a preposition. In contrast to determiners, for learn-
ers of many first language backgrounds, most of the
preposition errors are replacements, i.e., where the

6The variants “a” and “an” are collapsed to one class.
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“Hence, the environmental factors also *contributes/
contribute to various difficulties, *giving/given prob-
lems in nuclear technology.”
Error Confusion set
Agr. {INF=contribute, S=contributes}
Form {INF=give, ED=given, ING=giving, S=gives }

Table 4: Confusion sets for agreement and form. For irreg-
ular verbs, the second candidate in the confusion set for Verb
form is the past participle.

author correctly recognized the need for a prepo-
sition, but chose the wrong one (Leacock et al.,
2010). However, learner errors depend on the first
language; in NUCLE, spurious prepositions occur
more frequently: 29% versus 18% of all preposition
mistakes in other learner corpora (Rozovskaya and
Roth, 2010a; Yannakoudakis et al., 2011).

The Illinois preposition classifier is a NB model
trained on Web1T that uses word n-gram features
in the 4-word window around the preposition. The
4-word window refers to the four words before and
the four words after the preposition, e.g. “problem
as the search of alternative resources to the” for the
preposition “of”. Features consist of word n-grams
of various lengths spanning the target preposition.
For example, “the search of” is a 3-gram feature.
The model is adapted to likely preposition confu-
sions using the priors method (see Sec. 5.2). The
Illinois model targets replacement errors of the 12
most common English prepositions. Here we aug-
ment it to identify spurious prepositions. The con-
fusion set for prepositions is as follows: {in, of, on,
for, to, at, about, with, from, by, into, during, ∅}.

4.3 Agreement and Form Errors

The Illinois system implements two verb modules –
agreement and form – that consist of the following
components: (1) candidate identification; (2) deter-
mining the relevant module for each candidate based
on verb finiteness; (3) correction modules for each
error type. The confusion set for verbs depends on
the target word and includes its morphological vari-
ants (Table 4). For irregular verbs, the past partici-
ple form is included, while the past tense form is not
(i.e. “given” is included but “gave” is not), since
tense errors are not part of the task. To generate
morphological variants, the system makes use of a
morphological analyzer verbMorph; it assumes (1)
a list of valid verb lemmas (compiled using a POS-

Dimension Systems used in the comparison
Learn. alg. (Sec. 5.1) NTHU, UMC
Adaptation (Sec. 5.2) Error inflation: HIT
Ling. knowledge Cand. identification: NTHU, HIT
(Sec. 5.3) Verb finiteness: NTHU
Train. data (Sec. 5.4) HIT, NARA

Table 5: System comparisons. Column 1 indicates the di-
mension, and column 2 lists systems whose approaches provide
a relevant point of comparison.

tagged version of the NYT section of the Gigaword
corpus) and (2) a list of irregular English verbs.7

Candidate Identification stage selects the set of
words that are presented as input to the classifier.
This is a crucial step: errors missed at this stage will
not be detected by the later stages. See Sec. 5.3.
Verb Finiteness is used in the Illinois system to sep-
arately process verbs that fulfill different grammati-
cal functions and thus are marked for different gram-
matical properties. See Sec. 5.3.
Correction Modules The agreement module is a bi-
nary classifier. The form module is a 4-class system.
Both classifiers are trained on the Web1T corpus.

4.4 Noun Errors
Noun number errors involve confusing singular and
plural noun forms (e.g. “phone” instead of “phones”
in Fig. 1) and are the second most common error
type in the NUCLE corpus after determiner mistakes
(Table 1). The Illinois noun module is trained on the
Web1T corpus using NB. Similar to verbs, candi-
date identification is an important step in the noun
classifier. See Sec. 5.3.

5 System Analysis

In this section, we evaluate the Illinois system along
the four dimensions identified in Sec. 3, compare
its components to alternative configurations imple-
mented by other teams, and present additional exper-
iments that further analyze each dimension. While a
direct comparison with other systems is not always
possible due to other differences between the sys-
tems, we believe that these results are still useful.
Table 5 lists systems used for comparion. It is im-
portant to note that the dimensions are not indepen-
dent. For instance, there is a correlation between
algorithm choice and training data.

7The tool and more detail about it can be found at
http://cogcomp.cs.illinois.edu/page/publication view/743
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Results are reported on the test data using F1 com-
puted with the CoNLL scorer (Dahlmeier and Ng,
2012). Error-specific results are generated based on
the output of individual modules. Note that these
are not directly comparable to error-specific results
in the CoNLL overview paper: the latter are approx-
imate as the organizers did not have the error type
information for corrections in the output. The com-
plete system includes the union of corrections made
by each of these modules, where the corrections are
applied in order. Ordering overlapping candidates8

might potentially affect the final output, when mod-
ules correctly identify an error but propose differ-
ent corrections, but this does not happen in practice.
Modules that are part of the Illinois submission are
marked with an asterisk in all tables.

To demonstrate that our findings are not spe-
cific to CoNLL, we also show results on the FCE
dataset. It is produced by learners from seventeen
first language backgrounds and contains 500,000
words from the Cambridge Learner Corpus (CLC)
(Yannakoudakis et al., 2011). We split the corpus
into two equal parts – training and test. The statis-
tics are shown in Appendix Tables A.16 and A.17.

5.1 Dim. 1: Learning Algorithm

Rozovskaya and Roth (2011, Sec. 3) discuss the re-
lations between the amount of training data, learn-
ing algorithms, and the resulting performance. They
show that on training sets of similar sizes, discrimi-
native classifiers outperform other machine learning
methods on this task. Following these results, the
Illinois article module that is trained on the NUCLE
corpus uses the discriminative approach AP. Most of
the other teams that train on the NUCLE corpus also
use a discriminative method.

However, when a very large native training set
such as the Web1T corpus is available, it is often ad-
vantageous to use it. The Web1T corpus is a collec-
tion of n-gram counts of length one to five over a cor-
pus of 1012 words. Since the corpus does not come
with complete sentences, it is not straightforward to
make use of a discriminative classifier because of
the limited window provided around each example:
training a discriminative model would limit the sur-

8Overlapping candidates are included in more than one
module: if “work” is tagged as NN, it is included in the noun
module, but also in the form module (as a valid verb lemma).

rounding context features to a 2-word window. Be-
cause we wish to make use of the context features
that extend beyond the 2-word window, it is only
possible to use count-based methods, such as NB or
LM. Several teams make use of the Web1T corpus:
UMC uses a count-based LM for article, preposition,
and noun number errors; NTHU addresses all errors
with a count-based model with backoff, which is es-
sentially a variation of a language model with back-
off. The Illinois system employs the Web1T corpus
for all errors, except articles, using NB.

Training Naı̈ve Bayes for Deletions and Inser-
tions The reason for not using the Web1T corpus
for article errors is that training NB on Web1T for
deletions and insertions presents a problem, and the
majority of article errors are of this type. Recall that
Web1T contains only n-gram counts, which makes it
difficult to estimate the prior count for the ∅ candi-
date. (With access to complete sentences, the prior
of ∅ is estimated by counting the total number of
∅ candidates; e.g., in case of articles, the number of
NPs with ∅ article is computed.) We solve this prob-
lem by treating the article and the word following it
as one target. For instance, to estimate prior counts
for the article candidates in front of the word “cam-
era” in “including camera”, we obtain counts for
“camera”, “a camera”, “the camera”. In the case of
the ∅ candidate, the word “camera” acts as the tar-
get. Thus, the confusion set for the article classifier
is modified as follows: instead of the three articles
(as shown in Sec. 4.1), each member of the confu-
sion set is a concatenation of the article and the word
that follows it, e.g. {a camera, the camera, cam-
era}. The counts for contextual features are obtained
similarly, e.g. a feature that includes a preceding
word would correspond to the count of “including
x”, where x can take any value from the confusion
set. The above solution allows us to train NB for ar-
ticle errors and to extend the preposition classifier to
handle extraneous preposition errors (Table 6).

Rozovskaya and Roth (2011) study several algo-
rithms trained on the Web1T corpus and observe
that, when evaluated with the same context win-
dow size, NB performs better than other count-based
methods. In order to show the impact of the algo-
rithm choice, in Table 6, we compare LM and NB
models. Both models use word n-grams spanning
the target word in the 4-word window. We train LMs
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Error Model F1
CoNLL FCE

Art. LM 21.11 24.15
NB 32.45 30.78

Prep. LM 12.09 30.01
NB 14.04 29.40

Noun LM 40.72 32.41
NB* 42.60 34.40

Agr. LM 20.65 33.53
NB* 26.46 36.42

Form LM 13.40 08.46
NB* 14.50 12.16

Table 6: Comparison of learning models. Web1T corpus.
Modules that are part of the Illinois submission are marked with
an asterisk.

Source Candidates
ED INF ING S

ED 0.99675 0.00192 0.00103 0.00030
INF 0.00177 0.99630 0.00168 0.00025
ING 0.00124 0.00447 0.99407 0.00022
S 0.00054 0.00544 0.00132 0.99269

Table 7: Priors confusion matrix used for adapting NB.
Each entry shows Prob(candidate|source), where source corre-
sponds to the verb form chosen by the author.

with SRILM (Stolcke, 2002) using Jelinek-Mercer
linear interpolation as a smoothing method (Chen
and Goodman, 1996). On the CoNLL test data, NB
outperforms LM on all errors; on the FCE corpus,
NB is superior on all errors, except preposition er-
rors, where LM outperforms NB only very slightly.
We attribute this to the fact that the preposition prob-
lem has more labels; when there is a big confusion
set, more features have default smooth weights, so
there is no advantage to running NB. We found that
with fewer classes (6 rather than 12 prepositions),
NB outperforms LM. It is also possible that when
we have a lot of labels, the theoretical difference be-
tween the algorithms disappears. Note that NB can
be improved via adaptation (next section) and then
it outperforms the LM also for preposition errors.

5.2 Dim. 2: Adaptation to Learner Errors

In the previous section, the models were trained on
native data. These models have no notion of the er-
ror patterns of the learners. Here we discuss model
adaptation to learner errors, i.e. developing models
that utilize the knowledge about the types of mis-
takes learners make. Adaptation is based on the fact

that learners make mistakes in a systematic manner,
e.g. errors are influenced by the writer’s first lan-
guage (Gass and Selinker, 1992; Ionin et al., 2008).

There are different ways to adapt a model that de-
pend on the type of training data (learner or native)
and the algorithm choice. The key application of
adaptation is for models trained on native English
data, because the learned models do not know any-
thing about the errors learners make. With adapta-
tion, models trained on native data can use the au-
thor’s word (the source word) as a feature and thus
propose a correction based on what the author orig-
inally wrote. This is crucial, as the source word is
an important piece of information (Rozovskaya and
Roth, 2010b). Below, several adaptation techniques
are summarized and evaluated. The Illinois system
makes use of adaptation in the article model via the
inflation method and adapts its NB preposition clas-
sifier trained on Web1T with the priors method.
Adapting NB The priors method (Rozovskaya and
Roth, 2011, Sec. 4) is an adaptation technique for a
NB model trained on native English data; it is based
on changing the distribution of priors over the cor-
rection candidates. Candidate prior is a special pa-
rameter in NB; when NB is trained on native data,
candidate priors correspond to the relative frequen-
cies of the candidates in the native corpus and do
not provide any information on the real distribution
of mistakes and the dependence of the correction on
the word used by the author.

In the priors method, candidate priors are changed
using an error confusion matrix based on learner
data that specifies how likely each confusion pair is.
Table 7 shows the confusion matrix for verb form
errors, computed on the NUCLE data. Adapted pri-
ors are dependent on the author’s original verb form
used: let s be a form of the verb appearing in the
source text, and c a correction candidate. Then the
adapted prior of c given s is:

prior(c|s) = C(s, c)

C(s)

where C(s) denotes the number of times s appeared
in the learner data, and C(s, c) denotes the number
of times c was the correct form when s was used by
a writer. The adapted priors differ by the source: the
probability of candidate INF when the source form
is S, is more than twice than when the source form is
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Error Model
F1

CoNLL FCE
Train Test

Art. NB 18.28 32.45 30.78
NB-adapted 19.18 34.49 31.76

Prep. NB 09.03 14.04 29.40
NB-adapted* 10.94 12.14 32.22

Noun NB* 23.06 42.60 34.40
NB-adapted 22.89 42.31 32.38

Agr. NB* 16.72 26.46 36.42
NB-adapted 17.62 23.46 38.57

Form NB* 11.93 14.50 12.16
NB-adapted 14.63 18.35 16.67

Table 8: Adapting NB with the priors method. All models
are trained on the Web1T corpus. Modules that are part of the
Illinois submission are marked with an asterisk.

ED; the probability that S is the correct form is very
high, which reflects the low error rates.

Table 8 compares NB and NB-adapted models.
Because of the dichotomy in the error rates in
CoNLL training and test data, we also show exper-
iments using 5-fold cross-validation on the training
data. Adaptation always helps on the CoNLL train-
ing data and the FCE data (except noun errors), but
on the test data it only helps on article and verb form
errors. This is due to discrepancies in the error rates,
as adaptation exploits the property that learner errors
are systematic. Indeed, when priors are estimated on
the test data (in 5-fold cross-validation), the perfor-
mance improves, e.g. the preposition module attains
an F1 of 18.05 instead of 12.14.

Concerning lack of improvement on noun num-
ber errors, we hypothesize that these errors differ
from the other mistakes in that the appropriate form
strongly depends on the surface form of the noun,
which would, in turn, suggest that the dependency
of the label on the grammatical form of the source
that the adaptation is trying to discover is weak. In-
deed, the prior distribution of {singular, plural} la-
bel space does not change much when the source
feature is taken into account. The unadapted priors
for “singular” and “plural” are 0.75 and 0.25, respec-
tively. Similarly, the adapted priors (singular|plural)
and (plural|singular) are 0.034 and 0.016, respec-
tively. In other words, the unadapted prior probabil-
ity for “plural” is three times lower than for “singu-
lar”, which does not change much with adaptation.
This is different for other errors. For instance, in
case of verb agreement, the unadapted prior for “plu-

ral” is 0.617, more than three times than the “sin-
gular” prior of 0.20. With adaptation, these priors
become almost the same (0.016 and 0.012).
Adapting AP The AP is a discriminative learning
algorithm and does not use priors on the set of can-
didates. In order to reflect our estimate of the error
distribution, the AP algorithm is adapted differently,
by introducing into the native data artificial errors,
in a rate that reflects the errors made by the ESL
writers (Rozovskaya and Roth, 2010b). The idea is
to simulate learner errors in training, through arti-
ficial mistakes (also produced using an error confu-
sion matrix).9 The original method was proposed for
models trained on native data. This technique can
be further enhanced using the error inflation method
(Rozovskaya et al., 2012, Sec. 6) applied to models
trained on native or learner data.

The Illinois system uses error inflation in its ar-
ticle classifier. Because this classifier is trained on
learner data, the source article can be used as a fea-
ture. However, since learner errors are sparse, the
source feature encourages the model to abstain from
flagging a mistake, which results in low recall. The
error inflation technique addresses this problem by
boosting the proportion of errors in the training data.
It does this by generating additional artificial errors
using the error distribution from the training set.

Table 9 shows the results of adapting the AP clas-
sifier using error inflation. (We omit noun results,
since the noun AP model performs better without
the source feature, which is similar to the noun NB
model, as discussed above.) The inflation method
improves recall and, consequently, F1. It should be
noted that although inflation also decreases preci-
sion it is still helpful. In fact, because of the low
error rates, performance on the CoNLL dataset with
natural errors is very poor, often resulting in F1 be-
ing equal to 0 due to no errors being detected.
Inflation vs. Sampling To demonstrate the impact
of error inflation, we compare it against sampling,
an approach used by other teams – e.g. HIT – that
improves recall by removing correct examples in
training. The HIT article model is similar to the

9The idea of using artificial errors goes back to Izumi et al.
(2003) and was also used in Foster and Andersen (2009). The
approach discussed here refers to the adaptation method in Ro-
zovskaya and Roth (2010b) that generates artificial errors using
the distribution of naturally-occurring errors.
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Error Model F1
CoNLL FCE

Art. AP (natural errors) 07.06 27.65
AP (infl. const. 0.9)* 24.61 30.96

Prep. AP (natural errors) 0.0 14.69
AP (infl. const. 0.7) 07.37 34.77

Agr. AP (natural errors) 0.0 08.05
AP (infl. const. 0.8) 17.06 31.03

Form AP (natural errors) 0.0 01.56
AP (infl. const. 0.9) 10.53 09.43

Table 9: Adapting AP using error inflation. Models are
trained on learner data with word n-gram features and the source
feature. Inflation constant shows how many correct instances
remain (e.g. 0.9 indicates that 90% of correct examples are un-
changed, while 10% are converted to mistakes.) Modules that
are part of the Illinois submission are marked with an asterisk.

Infl. constant F1
Sampling Inflation

0.90 23.22 24.61
0.85 27.75 29.29
0.80 30.04 33.47
0.70 33.02 35.52
0.60 32.78 35.03

Table 10: Comparison of the inflation and sampling meth-
ods on article errors (CoNLL). The proportion of errors in
training in each row is identical.

Illinois model but scored three points below. Ta-
ble 10 shows that sampling falls behind the inflation
method, since it considerably reduces the training
size to achieve similar error rates. The proportion of
errors in training in each row is identical: sampling
achieves the error rates by removing correct exam-
ples, whereas the inflation method converts some
positive examples to artificial mistakes. Inflation
constant shows how many correct instances remain;
smaller inflation values correspond to more erro-
neous instances in training; the sampling approach,
correspondingly, removes more positive examples.

To summarize, we have demonstrated the impact
of error inflation by comparing it to a similar method
used by another team; we have also shown that fur-
ther improvements can be obtained by adapting NB
to learner errors using the priors method, when train-
ing and test data exhibit similar error patterns.

5.3 Dim. 3: Linguistic Knowledge

The use of linguistic knowledge is important in sev-
eral components of the error correction system: fea-
ture engineering, candidate identification, and spe-

Error Features F1
CoNLL FCE

Art. n-gram 24.61 30.96
n-gram+POS+chunk* 33.50 35.66

Agr.
n-gram 17.06 31.03
n-gram+POS 24.14 35.29
n-gram+POS+syntax 27.93 41.23

Table 11: Feature evaluation. Models are trained on learner
data, use the source word and error inflation. Modules that are
part of the Illinois submission are marked with an asterisk.

cial techniques for correcting verb errors.
Features It is known from many NLP tasks that
feature engineering is important, and this is the case
here. Note that this is relevant only when training on
learner data, as models trained on Web1T can make
use of n-gram features only but for the NUCLE cor-
pus we have several layers of linguistic annotation.10

We found that for article and agreement errors, using
deeper linguistic knowledge is especially beneficial.
The article features in the Illinois module, in addi-
tion to the surface form of the context, encode POS
and shallow parse properties. These features are pre-
sented in Rozovskaya et al. (2013, Table 3) and Ap-
pendix Table A.19. The Illinois agreement module
is trained on Web1T but further analysis reveals that
it is better to train on learner data with rich features.
The word n-gram and POS agreement features are
the same as those in the article module. Syntactic
features encode properties of the subject of the verb
and are presented in Rozovskaya et al. (2014b, Table
7) and Appendix Table A.18; these are based on the
syntactic parser (Klein and Manning, 2003) and the
dependency converter (Marneffe et al., 2006).

Table 11 shows that adding rich features is help-
ful. Notably, adding deeper syntactic knowledge
to the agreement module is useful, although parse
features are likely to contain more noise.11 Foster
(2007) and Lee and Seneff (2008) observe a degrade
in performance on syntactic parsers due to grammat-
ical noise that also includes agreement errors. For
articles, we chose to add syntactic knowledge from
shallow parse as it is likely to be sufficient for arti-
cles and more accurate than full-parse features.
Candidate Identification for errors on open-class

10Feature engineering will also be relevant when training on
a native corpus that has linguistic annotation.

11Parse features have also been found useful in preposition
error correction (Tetreault et al., 2010).
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words is rarely discussed but is a crucial step: it is
not possible to identify the relevant candidates us-
ing a closed list of words, and the procedure needs
to rely on pre-processing tools, whose performance
on learner data is suboptimal.12 Rozovskaya et al.
(2014b, Sec. 5.1) describe and evaluate several can-
didate selection methods for verbs. The Illinois sys-
tem implements their best method that addresses
pre-processing errors, by selecting words tagged as
verbs as well as words tagged as NN, whose lemma
is on the list of valid verb lemmas (Sec. 4.3).

Following descriptions provided by several teams,
we evaluate several candidate selection methods for
nouns. The first method includes words tagged as
NN or NNS that head an NP. NTHU and HIT use
this method; NTHU obtained the second best noun
score, after the Illinois system; its model is also
trained on Web1T. The second method includes all
words tagged as NN and NNS and is used in several
other systems, e.g. SZEG, (Berend et al., 2013).

The above procedures suffer from pre-processing
errors. The Illinois method addresses this problem
by adding words that end in common noun suffixes,
e.g. “ment”, “ments”, and “ist”. The percentage of
noun errors selected as candidates by each method
and the impact of each method on the performance
are shown in Table 12. The Illinois method has the
best result on both datasets; on CoNLL, it improves
F1 score by 2 points and recovers 43% of the candi-
dates that are missed by the first approach. On FCE,
the second method is able to recover more erroneous
candidates, but it does not perform as well as the
last method, possibly, due to the number of noisy
candidates it generates. To conclude, pre-processing
mistakes should be taken into consideration, when
correcting errors, especially on open-class words.
Using Verb Finiteness to Correct Verb Errors As
shown in Table 4, the surface realizations that cor-
respond to the agreement candidates are a subset of
the possible surface realizations of the form classi-
fier. One natural approach, thus, is to train one clas-
sifier to predict the correct surface form of the verb.
However, the same surface realization may corre-
spond to multiple grammatical properties. This ob-

12Candidate selection is also difficult for closed-class errors
in the case of omissions, e.g. articles, but article errors have
been studied rather extensively, e.g. (Han et al., 2006), and we
have no room to elaborate on it here.

Candidate Error recall (%) F1
ident. method CoNLL FCE CoNLL FCE
NP heads 87.72 92.32 40.47 34.16
All nouns 89.50 95.29 41.08 33.16
Nouns+heuristics* 92.84 94.86 42.60 34.40

Table 12: Nouns: effect of candidate identification methods
on the correction performance. Models are trained using NB.
Error recall denotes the percentage of nouns containing number
errors that are selected as candidates. Modules that are part of
the Illinois submission are marked with an asterisk.

Training method F1
CoNLL FCE

One classifier 16.43 21.14
Finiteness-based training (I) 18.59 27.72
Finiteness-based training (II) 21.08 29.98

Table 13: Improvement due to separate training for verb
errors. Models are trained using the AP algorithm.

servation motivates the approach that corrects agree-
ment and form errors separately (Rozovskaya et al.,
2014b). It uses the linguistic notion of verb finite-
ness (Radford, 1988) that distinguishes between fi-
nite and non-finite verbs, each of which fulfill differ-
ent grammatical functions and thus are marked for
different grammatical properties.

Verb finiteness is used to direct each verb to the
appropriate classifier. The candidates for the agree-
ment module are verbs that take agreement markers:
the finite surface forms of the be-verbs (“is”, “are”,
“was”, and “were”), auxiliaries “have” and “has”,
and finite verbs tagged as VB and VBZ that have ex-
plicit subjects (identified with the parser). The form
candidates are non-finite verbs and some of the verbs
whose finiteness is ambiguous.

Table 13 compares the two approaches: when all
verbs are handled together; and when verbs are pro-
cessed separately. All of the classifiers use surface
form and POS features of the words in the 4-word
window around the verb. Several subsets of these
features were tried; the single classifier uses the best
combination, which is the same word and POS fea-
tures shown in Appendix Table A.19. Finiteness-
based classifier (I) uses the same features for agree-
ment and form as the single classifier.

When training separately, we can also explore
whether different errors benefit from different fea-
tures; finiteness-based classifier (II) optimizes fea-
tures for each classifier. The differences in the fea-
ture sets are minor and consist of removing several
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unigram word and POS features of tokens that do
not appear immediately next to the verb. Recall from
the discussion on features that the agreement module
can be further improved by adding syntactic knowl-
edge. In the next section, it is shown that an even
better approach is to train on learner data for agree-
ment mistakes and on native data for form errors.
The results in Table 13 are for AP models but sim-
ilar improvements due to separate training are ob-
served for NB models trained on Web1T. Note that
the NTHU system also corrects all verb errors us-
ing a model trained on Web1T but handles all these
errors together; its verb module scored 8 F1 points
below the Illinois one. While there are other differ-
ences between the two systems, the results suggest
that part of the improvement within the Illinois sys-
tem is indeed due to handling the two errors sepa-
rately.

5.4 Dim. 4: Training Data

NUCLE is a large corpus produced by learners of the
same language background as the test data. Because
of its large size, training on this corpus is a natural
choice. Indeed, many teams follow this approach.
On the other hand, an important issue in the CoNLL
task is the difference between the training and test
sets, which has impact on the selection of the train-
ing set – the large Web1T has more coverage and
allows for better generalization. We show that for
some errors it is especially advantageous to train on
a larger corpus of native data. It should be noted
that while we refer to the Web1T corpus as “native”,
it certainly contains data from language learners; we
assume that the noise can be neglected.

Table 14 compares models trained on native and
learner data in their best configurations based on
the training data. Overall, we find that Web1T is
clearly preferable for noun errors. We attribute this
to the observation that noun number usage strongly
depends on the surface form of the noun, and not
just the contextual cues and syntactic structure. For
example, certain nouns in English tend to be used
exclusively in singular or plural form. Thus, con-
siderably more data compared to other error types is
required to learn model parameters.

On article and preposition errors, native-trained
models perform slightly better on CoNLL, while
learner-trained models are better on FCE. We con-

Error Train. Learning Features F1
data algorithm CoNLL FCE

Art.
Native NB-adapt. n-gram 34.49 31.76
Learner AP-infl.* +POS+chunk 33.50 35.66

Prep.
Native LM; NB-adapt. n-gram 12.09 32.22
Learner AP-infl. n-gram 10.26 33.93

Noun
Native NB* n-gram 42.60 32.38
Learner AP-infl. +POS 19.22 17.28

Agr.
Native NB-adapt. n-gram 23.46 38.57
Learner AP-infl. +POS+syntax 27.93 41.23

Form
Native NB-adapt. n-gram 18.35 16.67
Learner AP-infl. +POS 12.32 12.02

Table 14: Choice of training data: learner vs. native
(Web1T). For prepositions, LM is chosen for CoNLL, and NB-
adapted for FCE. Modules that are part of the Illinois submis-
sion are marked with an asterisk.

jecture that the FCE training set is more similar to
the respective test data and thus provides an advan-
tage over training on native data.

On verb agreement errors, native-trained models
perform better than those trained on learner data,
when the same n-gram features are used. However,
when we add POS and syntactic knowledge, train-
ing on learner data is advantageous. Finally, for verb
form errors, there is an advantage when training on
a lot of native data, although the difference is not
as substantial as for noun errors. This suggests that
unlike agreement mistakes that are better addressed
using syntax, form errors, similarly to nouns, benefit
from training on a lot of data with n-gram features.

To summarize, choice of the training data is an
important consideration for building a robust sys-
tem. Researchers compared native- and learner-
trained models for prepositions (Han et al., 2010;
Cahill et al., 2013), while the analysis in this work
addresses five error types – showing that errors be-
have differently – and evaluates on two corpora.13

6 Discussion

In Table 15, we show the results of the system,
where the best modules are selected based on the
performance on the training data. We also show the
Illinois modules (without post-processing). The fol-
lowing changes are made with respect to the Illinois
submission: the preposition system is based on an
LM and enhanced to handle spurious preposition er-
rors (thus the Illinois result of 7.10 shown here is

13For studies that directly combine native and learner data in
training, see Gamon (2010) and Dahlmeier and Ng (2011).
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Error Illinois submission This work
Model F1 Model F1

Art. AP-infl. 33.50 AP-infl. 33.50
Prep. NB-adapt. 07.10 LM 12.09
Noun NB 42.60 NB 42.60
Agr. NB 26.14 AP-infl. 27.93
Form NB 14.50 NB-adapt. 18.35
All 31.43 31.75

Table 15: Results on CoNLL of the Illinois system (with-
out post-processing) and this work. NB and LM models are
trained on Web1T; AP models are trained on NUCLE. Modules
different from the Illinois submission are in bold.

different from the 12.14 in Table 8); the agreement
classifier is trained on the learner data using AP with
rich features and error inflation; the form classifier
is adapted to learner mistakes, whereas the Illinois
submission trains NB without adaptation. The key
improvements are observed with respect to least fre-
quent errors, so the overall improvement is small.
Importantly, the Illinois system already takes into
account the four dimensions analyzed in this paper.

In CoNLL-2013, systems were compared using
F1. Practical systems, however, should be tuned
for good precision to guarantee that the overall qual-
ity of the text does not go down. Clearly, optimiz-
ing for F1 does not ensure that the system improves
the quality of the text (see Appendix B). A differ-
ent evaluation metric based on the accuracy of the
data is proposed in Rozovskaya and Roth (2010b).
For further discussion of evaluation metrics, see also
Wagner (2012) and Chodorow et al. (2012).

It is also worth noting that the obtained results
underestimate the performance because the agree-
ment on what constitutes a mistake can be quite low
(Madnani et al., 2011), so providing alternative cor-
rections is important. The revised annotations ad-
dress this problem. The Illinois system improves
its F1 from 31.20 to 42.14 on revised annotations.
However, these numbers are still an underestimation
because the analysis typically eliminates precision
errors but not recall errors. This is not specific to
CoNLL: an error analysis of the false positives in
CLC that includes the FCE showed an increase in
precision from 33% to 85% and 33% to 75% for
preposition and article errors (Gamon, 2010).

An error analysis of the training data also al-
lows us to determine prominent groups of system
errors and identify areas for potential improvement,

which we outline below. Cascading NLP errors:
In the example below, the Illinois system incorrectly
changes “need” to “needs” as it considers “victim”
to be the subject of that verb: “Also, not only the kid-
nappers and the victim needs to be tracked down, but
also jailbreakers.” Errors in interacting linguis-
tic structures: The Illinois system considers every
word independently and thus cannot handle interact-
ing phenomena. In the example below, the article
and the noun number classifiers propose corrections
that result in an ungrammatical structure “such a sit-
uations”: “In such situation, individuals will lose
their basic privacy.” This problem is addressed via
global models (Rozovskaya and Roth, 2013) and re-
sults in an improvement over the Illinois system. Er-
rors due to limited context: The Illinois system
does not consider context beyond sentence level. In
the example below, the system incorrectly proposes
to delete “the” but the wider context indicates that
the definite article is more appropriate here: “We
have to admit that how to prevent the abuse and how
to use it reasonably depend on a sound legal system,
and it means surveillance has its own restriction.”

7 Conclusion

We identified key design principles in developing a
state-of-the-art error correction system. We did this
through analysis of the top system in the CoNLL-
2013 shared task along several dimensions. The
key dimensions that we identified and analyzed con-
cern the choice of a learning algorithm, adaptation
to learner mistakes, linguistic knowledge, and the
choice of the training data. We showed that the de-
cisions in each case depend both on the type of a
mistake and the specific setting, e.g. how much an-
notated learner data is available. Furthermore, we
provided points of comparison with other systems
along these four dimensions.
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Appendix A Features and Additional
Information about the Data

Classifier
Art. Prep. Noun Agr. Form

Train 43K 20K 39K 22K 37K
Test 43K 20K 39K 22K 37K

Table A.16: Number of candidate words by classifier type
in training and test data (FCE).

Error Number of errors and error rate
Train Test

Art. 2336 (5.4%) 2290 (5.3%)
Prep. 1263 (6.4%) 1205 (6.1%)
Noun 858 (2.2%) 805 (2.0%)
Verb agr. 319 (1.5%) 330 (1.4%)
Verb form 104 (0.3%) 127 (0.3%)

Table A.17: Statistics on annotated errors in the FCE cor-
pus. Percentage denotes the error rates, i.e. the number of er-
roneous instances with respect to the total number of relevant
instances in the data.

Features Description

(1) subjHead, subjPOS
the surface form and
the POS tag of the
subject head

(2) subjDet determiner of the
subject NP

(3) subjDistance
distance between the
verb and the subject
head

(4) subjNumber

Sing – singular pro-
nouns and nouns; Pl
– plural pronouns
and nouns

(5) subjPerson

3rdSing – “she”,
“he”, “it”, singular
nouns; Not3rdSing –
“we”, “you”, “they”,
plural nouns; 1stSing
– “I”

(6) conjunctions (1)&(3); (4)&(5)

Table A.18: Verb agreement features that use syntactic
knowledge.

Appendix B Evaluation Metrics

Here, we discuss the CoNLL-2013 shared task eval-
uation metric and provide a little bit more detail on
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Figure 2: Precision/Recall curves by error type.

the performance of the Illinois modules in this con-
text. As shown in Table 1 in Sec. 2, over 90% of
words (about 98% in training) are used correctly.
The low error rates are the key reason the error cor-
rection task is so difficult: it is quite challenging for
a system to improve over a writer that already per-
forms at the level of over 90%. Indeed, very few
NLP tasks already have systems that perform at that
level. The error sparsity makes it very challenging
to identify mistakes accurately. In fact, the highest
precision of 46.45%, as calculated by the shared task
evaluation metric, is achieved by the Illinois system.
However, once the precision drops below 50%, the
system introduces more mistakes than it identifies.

We can look at individual modules and see
whether for any type of mistake the system
improves the quality of the text. Fig. 2 shows Preci-
sion/Recall curves for the system in Table 15. It is
interesting to note that performance varies widely
by error type. The easiest are noun and article usage
errors: for nouns, we can do pretty well at the recall
point 20% (with the corresponding precision of
over 60%); for articles, the precision is around 50%
at the recall value of 20%. For agreement errors,
we can get a precision of 55% with a very high
threshold (identifying only 5% of mistakes). Fi-
nally, on two mistakes – preposition and verb form
– the system never achieves a precision over 50%.

432



Feature
type

Feature
group Features

Word n-
gram

wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB,
w2BwBwA, wBwAw2A, wAw2Aw3A, w4Bw3Bw2BwB, w3Bw2BwBwA, w2BwBwAw2A,
wBwAw2Aw3A, wAw2Aw3w4A

POS pB, p2B, p3B, pA, p2A, p3A, pBpA, p2BpB, pAp2A, pBwB, pAwA, p2Bw2B, p2Aw2A,
p2BpBpA, pBpAp2A, pAp2Ap3A

Chunk

NP1
headWord, npWords, NC, adj&headWord, adjTag&headWord, adj&NC, adjTag&NC,
npTags&headWord, npTags&NC

NP2 headWord&headPOS, headNumber

wordsAfterNP headWord&wordAfterNP, npWords&wordAfterNP, headWord&2wordsAfterNP,
npWords&2wordsAfterNP, headWord&3wordsAfterNP, npWords&3wordsAfterNP

wordBeforeNP wB&fi ∀i ∈ NP1

Verb verb, verb&fi ∀i ∈ NP1

Preposition prep&fi ∀i ∈ NP1

Table A.19: Features used in the article error correction system. wB and wA denote the word immediately before and after
the target, respectively; and pB and pA denote the POS tag before and after the target. headWord denotes the head of the NP
complement. NC stands for noun compound and is active if second to last word in the NP is tagged as a noun. Verb features are
active if the NP is the direct object of a verb. Preposition features are active if the NP is immediately preceded by a preposition.
Adj feature is active if the first word (or the second word preceded by an adverb) in the NP is an adjective. NpWords and npTags
denote all words (POS tags) in the NP.
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