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Abstract

Standard agreement measures for interannota-
tor reliability are neither necessary nor suffi-
cient to ensure a high quality corpus. In a case
study of word sense annotation, conventional
methods for evaluating labels from trained an-
notators are contrasted with a probabilistic an-
notation model applied to crowdsourced data.
The annotation model provides far more in-
formation, including a certainty measure for
each gold standard label; the crowdsourced
data was collected at less than half the cost of
the conventional approach.

1 Introduction

The quality of annotated data for computational lin-
guistics is generally assumed to be good enough
if a few annotators can be shown to be consistent
with one another. Standard practice relies on met-
rics that measure consistency, either in an absolute
way, or in a chance-adjusted fashion. Such mea-
sures, however, merely report how often annota-
tors agree, with no direct measure of corpus qual-
ity, nor of the quality of individual items. We ar-
gue that high chance-adjusted interannotator agree-
ment is neither necessary nor sufficient to ensure
high quality gold-standard labels. We contrast the
use of agreement metrics with the use of probabilis-
tic models to draw inferences about annotated data
where the items have been labeled by many anno-
tators. A probabilistic model to fit many annota-
tors’ observed labels produces much more informa-
tion about the annotated corpus. In particular, there
will be a confidence estimate for each ground truth
label.

Probabilistic models of agreement and gold-
standard inference have been used in psychomet-
rics and marketing since the 1950s (e.g., IRT mod-
els or Bradley-Terry models) and in epidemiology
since the 1970s (e.g., diagnostic disease prevalence
models). More recently, crowdsourcing has moti-
vated their application to data annotation for ma-
chine learning. The model we apply here (Dawid
and Skene, 1979) assumes that annotators differ
from one another in their accuracy at identifying the
true label values, and that these true values occur at
certain rates (their prevalence).

To contrast the two approaches to creation of an
annotated corpus, we present a case study of word
sense annotation. The items that were annotated are
occurrences of words in their sentence contexts, and
each label is a WordNet sense (Miller, 1995). Each
item has sense labels from up to twenty-five different
annotators, collected through crowdsourcing. Ap-
plication of an annotation model does not require
this many labels per item, and crowdsourced annota-
tion data does not require a probabilistic model. The
case study, however, shows how the two benefit each
other.

MASC (Manually Annotated Sub-Corpus of the
Open American National Corpus) contains a sub-
sidiary word sense sentence corpus that consists of
approximately one thousand sentences per word for
116 words. Word senses were annotated in their sen-
tence contexts using WordNet sense labels. Chance-
adjusted agreement levels ranged from very high to
chance levels, with similar variation for pairwise
agreement (Passonneau et al., 2012a). As a result,
the annotations for certain words appear to be low
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quality.1 Our case study shows how we created
a more reliable word sense corpus for a randomly
selected subset of 45 of the same words, through
crowdsourcing and application of the Dawid and
Skene model. The model yields a certainty measure
for each labeled instance. For most instances, the
certainty of the estimated true labels is high, even
on words where pairwise and chance-adjusted agree-
ment of trained annotators were both low.

The paper first summarizes the limitations of
agreement metrics, then presents the Dawid and
Skene model. The next two sections present a case
study of the crowdsourced data, and the annotation
results. While many of the MASC words had low
agreement from trained annotators on the small pro-
portion of the data where agreement was assessed,
the same words have many instances with highly
confident labels estimated from the crowdsourced
annotations. In the discussion section, we compare
the model-based labels to the labels from the trained
annotators. The final sections present related work
and our conclusions.

2 Agreement Metrics versus a Model

A high-confidence ground truth label for each an-
notated instance is the ultimate goal of annotation,
but can often be impractical or infeasible to achieve.
On the grounds that more knowledge is always bet-
ter, we argue that it is desirable to provide a confi-
dence measure for each estimated label. This section
first presents the case that the conventional steps to
compute agreement provide at best an indirect mea-
sure of confidence on labels. We then present the
Dawid and Skene model (1979), which estimates a
probability of each label value on every instance. To
motivate its application to the crowdsourced sense
labels, we work through an example to show how
true labels are inferred, and to illustrate that infor-
mation about the true label is derived from both ac-
curate and inaccurate annotators. With many anno-
tators to compare, the value of gathering a label can
be quantified using information gain and mutual in-
formation, as illustrated in Section 2.2.2.

1One potential use for the words with low agreement is to
investigate whether features of the WordNet definitions, or sen-
tence contexts, or both, correlate with low agreement.

2.1 Pairwise and Chance-Adjusted Agreement
Measures

Current best practice for creating annotation stan-
dards involves iteration over four steps: 1) design
or redesign the annotation task, 2) write or revise
guidelines to instruct annotators how to carry out
the task, possibly with some training, 3) have two or
more annotators work independently to annotate a
sample of data, 4) measure the interannotator agree-
ment on the data sample. Once the desired agree-
ment has been obtained, the final step is to create a
gold standard dataset where each item is annotated
by a single annotator. How much chance-adjusted
agreement is sufficient has been much debated (Art-
stein and Poesio, 2008; di Eugenio and Glass, 2004;
di Eugenio, 2000; Bruce and Wiebe, 1998). Surpris-
ingly, little attention has been devoted to the ques-
tion of whether the agreement subset is a represen-
tative sample of the corpus. Without such an assur-
ance, there is little justification to take interannota-
tor agreement as a quality measure of the corpus as a
whole. Given the influence that a gold standard cor-
pus can have on progress in our field, it is not clear
that agreement measures on a corpus subset provide
a sufficient guarantee of corpus quality.

While it is taken for granted that some annotators
perform better than others,2 agreement metrics do
not differentiate annotators. Since there are many
ways to be inaccurate, and only one way to be accu-
rate, it is assumed that if annotators have high pair-
wise or chance-adjusted agreement, then the anno-
tation must be accurate. This is not necessarily a
correct inference, as we show below. If two annota-
tors do not agree well, this method does not identify
whether one annotator is more accurate. More im-
portantly, no information is gained about the quality
of the ground truth labels.

To assess the limitations of agreement metrics,
consider how they are computed and what they mea-
sure. Let i ∈ 1:I represent the items, j ∈ 1:J the
annotators, k ∈ 1:K the label classes in a categorical
labeling scheme (e.g., word senses), and yi,j ∈ 1:K
the observed labels from annotator j for item i. As-
sume every annotator labels every item exactly once

2Some researchers believe that all that is needed is one trust-
worthy annotator, which begs the question of how trust is as-
sessed.
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(we later relax this constraint).
Agreement: Pairwise agreement Am,n between

two annotators m,n ∈ 1:J is defined as the pro-
portion of items i ∈ 1:I for which the annotators
supplied the same label,

Am,n = 1
I

∑I
i=1 I(yi,m = yi,n),

where I(s) = 1 if s is true and 0 otherwise. In other
words, Am,n is the maximum likelihood estimate of
chance of agreement in a binomial model.

Pairwise agreement can be extended to the full set
of annotators by averaging over all

(
J
2

)
pairs:

A = 1

(J2)

∑J−1
m=1

∑J
n=m+1Am,n.

In sum, A is the proportion of all pairs of items that
annotators agreed on. It does not take into account
the proportion of each label from 1:K in the data.

Chance-Adjusted Agreement: Agreement coeffi-
cients measure the proportion of observed agree-
ments that are above the proportion expected by
chance. Given an estimate Am,n of the probabil-
ity that two annotators m,n ∈ 1:J will agree on
a label and an estimate of the probability Cm,n that
they will agree by chance, chance-adjusted agree-
ment IAm,n ∈ [−1, 1] is defined by

IAm,n =
Am,n−Cm,n

1−Cm,n
.

Chance agreement takes into account the prevalence
of the individual labels in 1:K. Specifically, it is de-
fined to be the probability that a pair of labels drawn
at random for two annotators will agree. There are
two common ways to define this draw. Cohen’s
κ statistic (Cohen, 1960) assumes each annotator
draws uniformly at random from her set of labels.
Letting ψj,k = 1

I

∑I
i=1 I(yi,j = k) be the propor-

tion of the label k in annotator j’s labels, this notion
of chance agreement for a pair of annotators m,n is
estimated as the product of their proportions ψ:

Cm,n =
∑K

k=1 ψm,k × ψn,k.

Krippendorff’s α, another chance-adjusted metric in
wide use, assumes each annotator draws uniformly
at random from the pooled set of labels from all an-
notators (Krippendorff, 1980). Letting φk be the
proportion of label k in the entire set of labels, this

alternative estimate, C ′m,n =
∑K

k=1 φ
2
k, does not de-

pend on the identity of the annotators m and n.

Agreement coefficients suffer from multiple
shortcomings. (1) They are intrinsically pairwise,
although one can compare to a voted consensus or
average over multiple pairwise agreements. (2) In
agreement-based analyses, two wrongs make a right
in the sense that if two annotators both make the
same mistake, they agree. If annotators are 80%
accurate on a binary task, then chance agreement
on the wrong category occurs at a 4% rate. (3)
Chance-adjusted agreement reduces to simple agree-
ment as chance agreement approaches zero. When
chance agreement is high, even high-accuracy an-
notators can have low chance-adjusted agreement,
as when the data is skewed towards a few values,
a typical case for NLP tasks. Feinstein and Ci-
cchetti (1990) referred to this as the paradox of
κ (see section 6). For example, in a binary task
with 95% prevalence of one category, two 90%
accurate annotators would have negative chance-
adjusted agreements of 0.9−(.952+.052)

1−(.952+.052)
= −.053.

Thus high chance-adjusted interannotator agreement
is not a necessary condition for a high-quality cor-
pus. An alternative metric discussed in Section 6
addresses skewed prevalence of label values, but has
not been adopted in the NLP community (Gwet,
2008). (4) Interannotator agreement statistics im-
plicitly assume annotators are unbiased; if they are
biased in the same direction, e.g., the most preva-
lent category, then agreement is an overestimate of
their accuracy. In the extreme case, in a binary la-
beling task, two adversarial annotators who always
provide the wrong answer have a chance-adjusted
agreement of 100%. (5) Item-level effects such as
difficulty can inflate levels of agreement-in-error.
For example, in a named-entity corpus one of the
co-authors helped collect for MUC, hard-to-identify
names have correlated false negatives among an-
notators, leading to higher agreement-in-error than
would otherwise be expected. (6) Interannotator
agreement statistics are rarely computed with con-
fidence intervals, which can be quite wide even un-
der optimistic assumptions of no annotator bias or
item-level effects. Given a sample of 100 anno-
tations, if the true gold standard categories were
known (as opposed to being themselves estimated as

313



in our setup here), an annotator getting 80 out of 100
items correct would produce a 95% interval for ac-
curacy of roughly (74%, 86%).3 Agreement statis-
tics have even wider error bounds. This introduces
enough uncertainty to span the rather arbitrary deci-
sion boundaries for acceptability employed for inter-
annotator agreement statistics. Note that bootstrap-
ping is a reliable method to compute confidence in-
tervals (Efron and Tibshirani, 1986). Briefly, given
a sample of size N , a large number of samples of
size N are drawn randomly with replacement from
the original sample, the statistic of interest is com-
puted for each random draw, and the mean ± 1.96
standard deviations gives the estimated value and its
approximate 95% confidence interval.

2.2 A Probabilistic Annotation Model

A probabilistic model provides a recipe to randomly
“generate” a dataset from a set of model parame-
ters and constants.4,5 The utility of such a model lies
in its ability to support meaningful inferences from
data, such as an estimate of the true prevalence of
each category. Dawid and Skene (1979) proposed a
model to determine a consensus among patient his-
tories taken by multiple doctors. Inference is driven
by accuracies and biases estimated for each annota-
tor on a per-category basis. A graphical sketch of
the model is shown in Figure 1.

Let K be the number of possible labels or cat-
egories for an item, I the number of items to an-
notate, J the number of annotators, and N the to-
tal number of labels provided by annotators, where
each annotator may label each instance zero or more
times. Because the data is not a simple I × J data
matrix where every annotator labels every item ex-
actly once, a database-like indexing scheme is used
in which each annotation n is represented as a tu-
ple of an item ii[n] ∈ 1:I , an annotator jj[n] ∈ 1:J ,
and a label y[n] ∈ 1:K.6 Figure 2 illustrates how the

3If items are not independent, as assumed here, the interval
becomes wider.

4In a Bayesian setting, model parameters are also modeled
as randomly generated from a prior distribution.

5The size constants defining the data collection are not gen-
erated as part of the model. In a “discriminative” model, only
the outcomes and parameters are generated in this sense, not the
predictors (i.e., features).

6For the data indexing, we use jj and ii to avoid confusion
with the I items and J annotators of the model.
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Figure 1: Graphical model sketch of the Dawid-
Skene model enhanced with Dirichlet priors.
Sizes: J number of annotators, K number of cat-
egories, I number of items, N number of labels
collected. Estimated parameters: ✓ annotator ac-
curacies/biases, ⇡ category prevalence, z true cat-
egory. Observed data: y labels. Hyperpriors: ↵
accuracies/biases, � prevalence.

Skene (1979) proposed a model to determine a
consensus among patient histories taken by mul-
tiple doctors. Inference is driven by accuracies
and biases estimated for each annotator on a per-
category basis. A graphical sketch of the model is
shown in Figure 1.

Let K be the number of possible labels or cate-
gories for an item, I the number of items to anno-
tate, J the number of annotators, and N the total
number of labels provided by annotators, where
each annotator may label each instance zero or
more times. Because the data is not a simple
I ⇥ J data matrix where every annotator labels
every item exactly once, a database-like indexing
scheme is used in which each annotation n is rep-
resented as a tuple made up of an item ii[n] 2 1:I ,
an annotator jj[n] 2 1:J , and a label y[n] 2 1:K.6

As illustrated in Table 1, we assemble the annota-
tions in a database-like table where each row is an
annotation, and the values in each column are in-
dices over the items, annotators, and labels. For

6For the data indexing, we use jj and ii to avoid confu-
sion with the I items and J annotators of the model.

n iin jjn yn
1 1 1 4
2 1 3 1
3 192 17 5
...

...
...

...

Table 1: Table of annotations y indexed by word
instance ii and annotator jj.

example, the first two rows show that on item 1,
annotators 1 and 3 assigned labels 4 and 1, respec-
tively. The third row says that for item 192 anno-
tator 17 provided label 5.

Dawid and Skene’s model includes parameters

• zi 2 1:K for the true category of item i,

• ⇡k 2 [0, 1] for the probability that an item is
of category k, subject to

PK
k=1 ⇡k = 1, and

• ✓j,k,k0 2 [0, 1] for the probabilty that annota-
tor j assigns the label k0 to an item whose true
category is k, subject to

PK
k0=1 ✓j,k,k0 = 1.

The generative model first selects the true cate-
gory for item i according to the prevalence of cat-
egories,

zi ⇠ Categorical(⇡).
The observed labels yn are generated based on
annotator jj[n]’s responses ✓jj[n], z[ii[n]] to items
ii[n] whose true category is z[ii[n]],

yn ⇠ Categorical(✓jj[n], z[ii[n]]).

We use additively smoothed maximum likelihood
estimation (MLE) to stabilize inference. This is
equivalent to maximum a posteriori (MAP) estima-
tion in a Bayesian model with Dirichlet priors,

✓j,k ⇠ Dirichlet(↵k)

⇡ ⇠ Dirichlet(�).

The unsmoothed MLE is equivalent to the MAP es-
timate when ↵k and � are unit vectors. For our
experiments, we added a fractional count to each
of these vectors, corresponding to a very small de-
gree of additive smoothing applied to the MLE.

2.2.1 Estimated Senses
Given a set of annotators’ labels for a word in-
stance, the prevalence of senses, and the annota-
tors’ accuracies and biases, Bayes’s rule can be
used to estimate the true sense of each instance.

p(zi|y, ✓,⇡) / p(zi|⇡) p(y|zi, ✓)
= ⇡z[i]

Y

ii[n]=i

✓jj[n],z[i],y[n].

Figure 1: Graphical model sketch of the Dawid and
Skene model enhanced with Dirichlet priors. Sizes: J
number of annotators, K number of categories, I num-
ber of items, N number of labels collected. Estimated
parameters: θ annotator accuracies/biases, π category
prevalence, z true category. Observed data: y labels.
Hyperpriors: α accuracies/biases, β prevalence.

n iin jjn yn
1 1 1 4
2 1 3 1
3 192 17 5
...

...
...

...

Figure 2: Table of annotations y indexed by word in-
stance ii and annotator jj.

annotations can be assembled in a table where each
row is an annotation, and the column values are in-
dices over items, annotators, and labels. The first
two rows show that on item 1, annotators 1 and 3
assigned labels 4 and 1, respectively. The third row
says that for item 192 annotator 17 provided label 5.

Dawid and Skene’s model includes parameters

• zi ∈ 1:K for the true category of item i,

• πk ∈ [0, 1] for the probability that an item is of
category k, subject to

∑K
k=1 πk = 1, and

• θj,k,k′ ∈ [0, 1] for the probabilty that annota-
tor j assigns the label k′ to an item whose true
category is k, subject to

∑K
k′=1 θj,k,k′ = 1.

The generative model first selects the true category
for item i according to the prevalence of categories,

zi ∼ Categorical(π).
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The observed labels yn are generated based on an-
notator jj[n]’s responses θjj[n], z[ii[n]] to items ii[n]
whose true category is z[ii[n]],

yn ∼ Categorical(θjj[n], z[ii[n]]).

We use additively smoothed maximum likelihood
estimation (MLE) to stabilize inference.

θj,k ∼ Dirichlet(αk)

π ∼ Dirichlet(β).

The unsmoothed MLE is equivalent to the MAP esti-
mate when αk and β are unit vectors.

2.2.1 Estimated Senses
Given a set of annotators’ labels for a word in-

stance, the prevalence of senses, and the annotators’
accuracies and biases, Bayes’s rule can be used to
estimate the true sense of each instance.

p(zi|y, θ, π) ∝ p(zi|π) p(y|zi, θ)
= πz[i]

∏

ii[n]=i

θjj[n],z[i],y[n].

As a simple example, consider K = 2 outcomes
with prevalences π1 = 0.2, and π2 = 0.8. Suppose
three annotators with response matrices

θ1=

[
.75 .25
.40 .60

]
θ2=

[
.65 .35
.30 .70

]
θ3=

[
.9 .1
.2 .8

]

supplied labels y1 = 1, y2 = 1, and y3 = 2 for word
instance i, respectively. Then

Pr[zi=1|y, θ, π] ∝ π1 θ1,1,1 θ2,1,1 θ3,1,2 = .00975

Pr[zi=2|y, θ, π] ∝ π2 θ1,2,1 θ2,2,1 θ3,2,2 = .0768.

By normalizing (and rounding),

Pr[zi = 1|y, θ, π] = .00975

.00975 + .0768
= .11

Pr[zi = 2|y, θ, π] = .0768

.00975 + .0768
= .89

Although the majority vote on i is for category 1, the
estimated probability that the category is 1 is only
0.11, given the adjustments for annotators’ accura-
cies and biases.

Comparison to voting. On the log scale, the an-
notation model is similar to a weighted additive vot-
ing scheme with maximum weight zero and no min-
imum weight; if u ∈ (0, 1], then log u ∈ (−∞, 0].

As we discuss in the next section, the important dif-
ference is that the weighting is based on the true
category, allowing the model to adjust for annotator
bias.

Spam annotators. The Dawid and Skene model
adjusts for annotations from noisy annotators. In the
limit, a label for a word instance from an annotator
whose response is independent of the true category
provides no information about the true sense of that
instance, and such a label provides no impact on the
resulting category estimate. For example, in a binary
task, a label from an annotator with response matrix

θj =

[
0.9 0.1
0.9 0.1

]

provides no information on the true category. The
model cancels the effect of such an annotator’s label
because Pr[zi = 1|y′, θj , π] = Pr[zi = 1|π], which
follows from the fact that

π1 × θj,1,1
π2 × θj,2,1

=
π1
π2
.

Biased Annotators. Biased annotators can have
low accuracy and low agreement with other anno-
tators, yet still provide a great deal of information
about the true label. For example, in a binary task,
a positively biased annotator will return relatively
more false positives and relatively fewer false neg-
atives compared to an unbiased one. As shown in
Section 4.2, our word sense task had fairly small es-
timated biases toward the high-frequency senses in
most cases. Other tasks, such as ordinal ranking of
author certainty for assertions, show systematically
biased annotators. Annotators may be biased toward
one end of an ordinal scale, or toward the center.
These kinds of biases are apparent in the annota-
tors in the annotation task described in (Rzhetsky
et al., 2009), where biologists labeled sentences in
biomedical research articles on a 1 to 7 scale of po-
larity and certainty.

Adversarial Annotators. An adversarial annota-
tor who always returns the wrong answer exhibits an
extreme bias. In a binary annotation case, it is clear
how perfectly adversarial answers provide the same
information as perfectly cooperative answers. Al-
though it is possible to estimate the response matrix
of an adversarial annotator, if too many of the anno-
tators are adversarial, the Dawid and Skene model
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cannot separate the truth from the lies. None of the
data sets we have collected showed any evidence of
adversarial labeling.

2.2.2 How Much Information is in a Label?
By comparing the uncertainty before and after in-

cluding a new label from an annotator, we can mea-
sure the reduction in uncertainty provided by the an-
notator’s label. By considering the expected reduc-
tion in uncertainty due to observing a label from an
annotator, we can quantify how much information
the label is expected to provide.

Entropy. The information-theoretic notion of en-
tropy makes the notion of uncertainty precise (Cover
and Thomas, 1991). IfZi is the random variable cor-
responding to the true label of word instance i with
K possible labels and probability mass function pZi ,
its entropy is

H[Zi] = −
∑K

k=1 pZi
(k) log pZi

(k).

Conditional Entropy. Consider a label Yn = k′

from annotator j = jjn for item i = iin. The en-
tropy of Zi conditioned on the observed label is

H[Zi|Yn=k′]
=−∑K

k=1 pZi|Yn(k|k′) log pZi|Yn(k|k′).

Conditional entropy is defined by the expected en-
tropy of Zi after observing Yn,

H[Zi|Yn] =
∑K

k′=1 pYn(k
′) H[Zi|Yn=k′].

Conditional entropy can be generalized in the ob-
vious way to condition on more than one observed
label, for instance to compute the expected entropy
of Zi after observing two labels, Yn and Yn′ .

Mutual Information. Mutual information is the
expected reduction in entropy in the state of Zi after
observing one or more labels,

I[Zi; Yn] = H[Zi]− H[Zi|Yn].

Gibbs’ inequality ensures that mutual information is
positive. In theory at least, it never hurts to observe
a label (in expectation), no matter how bad the an-
notator is. In practice, we may not have an accu-
rate estimate of an annotator’s response probabili-
ties pYn|Zi

. Using log base 2, which measures in-
formation in bits, consider the three hypothetical an-
notators illustrated above. Clearly the most accurate

confusion matrix is θ3. The conditional entropies of
a new label for the three cases are, respectively, 0.71,
0.60 and 0.47 and the mutual information values are
0.01, 0.13 and 0.25.

Kinds of Annotators. A spam annotator pro-
vides zero information about a category, because
H[Zi|Yn] = H[Zi]. Spam annotators provide
the minimum possible mutual information, i.e.,
I[Zi;Yn] = 0.

A perfectly accurate annotator is one for whom
Pr[Yi = k|Zi] is 1 if k = Zi and 0 otherwise. For
such annotators, observing their label removes all
uncertainty, so that H[Zi|Yn] = 0. A perfect an-
notator provides maximum mutual information, i.e.,
I[Zi; Yn] = H[Zi].

A highly biased and hence inaccurate annotator
can provide as much information as a more accurate
annotator. This demonstrates that weighted voting
schemes are not the correct approach to inference
for true category labels.

2.2.3 Implementation and Priors
The results in this paper were derived by ex-

pectation maximization using software written in
R. The code is distributed with the data under an
open-source license.7 Other implementations of the
Dawid and Skene model should produce the same
penalized maximum likelihood (equivalently maxi-
mum a posteriori) estimates.

The very weak Dirichlet priors added only arith-
metic stabilization to the inferences, allowing an
identified penalized maximum likelihood estimate in
cases where an annotator did not label any instances
of some sense for a word.

Bayesian posterior means provide similar results
for this model; full Bayes would also quantify es-
timation uncertainty, which as noted above, is sub-
stantial for the data sizes discussed here. Carpenter
(2008) discusses a more general approach based on a
hierarchical model for the accuracy/bias parameters
θ.

Modeling a random effect per item, such as
item difficulty, widens confidence intervals on ac-
curacies/biases, because observed labels may be
the result of item ease/difficulty or annotator ac-
curacy/bias. This would have been more realis-
tic, and would have provided additional information,

7URL not given yet to preserve anonymity.
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Senses
Word Pos All Used α Agr.
late adj 9 7 0.85 0.90
high adj 7 5 0.84 0.91
long adj 8 7 0.67 0.81
full adj 9 8 0.57 0.69
poor adj 11 9 0.57 0.66
fair adj 10 8 0.54 0.70
common adj 12 6 0.40 0.53
particular adj 7 5 0.20 0.48
normal adj 4 4 0.02 0.38
work noun 8 7 0.70 0.80
number noun 7 7 0.62 0.95
book noun 12 9 0.60 0.84
image noun 17 9 0.57 0.71
paper noun 10 7 0.57 0.66
board noun 9 8 0.56 0.80
time noun 12 8 0.56 0.63
sense noun 8 5 0.54 0.65
way noun 19 12 0.49 0.62
window noun 10 8 0.48 0.62
date noun 11 7 0.47 0.57
land noun 14 10 0.47 0.55
life noun 26 14 0.43 0.52
control noun 13 9 0.34 0.47
level noun 10 7 0.21 0.44
color noun 12 7 0.15 0.66
family noun 14 8 0.14 0.32
live verb 14 7 0.69 0.78
read verb 13 9 0.64 0.89
appear verb 7 7 0.63 0.73
meet verb 19 11 0.58 0.66
serve verb 19 14 0.57 0.67
suggest verb 5 4 0.56 0.78
add verb 10 6 0.55 0.72
fold verb 8 5 0.52 0.72
wait verb 7 4 0.49 0.65
show verb 13 11 0.46 0.53
tell verb 10 8 0.44 0.59
lose verb 16 10 0.43 0.59
know verb 13 10 0.38 0.52
say verb 14 11 0.37 0.56
find verb 19 14 0.28 0.38
help verb 9 6 0.26 0.58
kill verb 14 12 0.26 0.76
win verb 11 5 0.25 0.72
ask verb 6 6 0.20 0.45

Figure 3: Krippendorff’s α and pairwise agreement for
the 45 MASC words in the crowdsourcing study, with
number of WordNet senses available and used. Pair-
wise agreement was computed according to the formula
in Section 2.

but we felt the increased model complexity, espe-
cially with multivariate outputs, would distract from
our main point in contrasting model-based inference
with agreement statistics.

3 Two Data Collections

3.1 MASC Word Sense Sentence Corpus
To motivate our case study, we briefly discuss some
of the limitations of the MASC word sense sentence
corpus, which is an addendum to the MASC cor-
pus.8 For convenience, we refer here to the word
sense sentence corpus as the MASC corpus. This
is a 1.3 million word corpus with approximately
one thousand sentences per word, for 116 words
nearly evenly balanced among nouns, adjectives and
verbs (Passonneau et al., 2012a). Each sentence is
drawn from the MASC corpus or the Open Ameri-
can National Corpus, exemplifies at least one of the
116 MASC words, and has been annotated by trained
annotators who used WordNet senses as annotation
labels. The annotation process is described in de-
tail in (Passonneau et al., 2012a; Passonneau et al.,
2012b).

The annotators were college students from Vas-
sar, Barnard, and Columbia who were given general
training in the annotation process, then were trained
together on each word with a sample of fifty sen-
tences, which included discussion with Christiane
Fellbaum, one of the designers of WordNet. After
the pre-annotation sample, annotators worked inde-
pendently to label 1,000 sentences for each word
using an annotation tool that presented the Word-
Net senses and example usages, plus four variants of
none of the above. For each word, 100 of the 1,000
sentences were annotated by two to four annotators
to assess inter-annotator reliability.

Figure 3 shows 45 randomly selected MASC
words that were re-annotated using crowdsourcing.
Shown are the part of speech, the number of Word-
Net senses, the number of senses used by annota-
tors, the α value, and pairwise agreement. While the
MASC word sense data demonstrates that annota-
tors can agree on words with many senses, there are
many words with low agreement, and correspond-
ingly questionable ground truth labels. There is no
correlation between the agreement and number of

8http://www.anc.org/data/masc/
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available senses, or senses used by annotators (Pas-
sonneau et al., 2012a).

Due to limited resources, the project deviated
from best practice in having only a single round of
annotation per word, and no iteration to achieve an
agreement threshold. All annotators, however, had
at least two phases of training, and most annotated
several rounds. Below we use mutual information to
show that the quality of the crowdsourced labels is
equivalent to or superior than labels from the trained
MASC annotators.

3.2 Crowdsourced Word Sense Annotation
To collect the data, we relied on Amazon Me-
chanical Turk, a crowdsourcing marketplace that is
used extensively in the NLP community (Callison-
Burch and Dredze, 2010). Human Intelligence Tasks
(HITs) are presented to Turkers by requesters. Cer-
tain aspects of the task were the same as for the
MASC data: 45 randomly selected MASC words
were used, sentences were drawn from the same
pool, and the annotation labels were the same Word-
Net 3.0 senses. Instead of collecting a single la-
bel for most instances, however, we collected up to
twenty-five. Other differences from the MASC data
collection were: the annotators were not trained;
the annotation interface differed, though it presented
the same information; the sets of sentences were
not identical; annotators labeled any number of in-
stances for a word up to the limit of 25 labels per
word; finally, the Turkers were not instructed to be-
come familiar with WordNet.

In each HIT, Turkers were presented with ten sam-
ple sentences for each word, with the word’s senses
listed below each sentence. A short paragraph of in-
structions indicated there would be up to 100 HITs
for each word. To encourage Turkers to do multiple
HITs per word, so we could estimate annotator ac-
curacies more tightly, the instructions indicated that
Turkers could expect their time per HIT to decrease
with increasing familiarity with the word’s senses.

Most but not all crowdsourced instances had also
been annotated by the trained annotators. Fig-
ures 7a-7b in Section 5, which compares the ground
truth labels from the trained annotators with the
crowdsourced labels, indicates for each word how
many instances were annotated in common (e.g.,
960 for board (verb)). Sentences were drawn from
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Figure 4: Prevalence estimates for 4 words: the x-axis
is the sense number, and the y-axis the proportion of
instances assigned that sense. MASC FREQ: frequency
of each sense in the singly-annotated instances from the
trained MASC annotators; AMT MAJ: frequency of each
majority vote sense for instances annotated by≈25 Turk-
ers; AMT MLE: estimated probability of each sense for
instances annotated by ≈25 Turkers, using MLE.
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Sense ≥ 0.99 Prop.
0 9 0.01
1 461 0.48
2 135 0.14
3 107 0.11
4 50 0.05
5 50 0.05
6 93 0.10

SubTot. 905 0.94
(Rest 62 0.06)
Total 962 1.00

(a) add (verb): 94%

Sense ≥ 0.99 Prop.
0 19 0.02
1 68 0.07
2 19 0.02
3 83 0.09
4 173 0.18
5 190 0.20
6 133 0.14
7 236 0.25
8 5 0.01

SubTot. 926 0.97
(Rest 33 0.03)
Total 959 1.00

(b) date (noun): 97%

Sense ≥ 0.99 Prop.
0 0 0.00
1 279 0.30
2 82 0.09
3 201 0.21
4 24 0.03
5 0 0.00
6 169 0.18
7 0 0.00
8 5 0.01

SubTot. 760 0.81
(Rest 180 0.19)
Total 940 1.00

(c) help (verb): 81%

Sense ≥ 0.99 Prop.
0 6 0.01
1 348 0.36
2 177 0.18
3 9 0.01
4 251 0.26
5 0 0
6 0 0
7 6 0.01
8 6 0.01

SubTot. 803 0.83
(Rest 163 0.17)
Total 966 1.00

(d) ask (verb): 83%

Figure 5: Proportion of instances where posterior probabilities ≥ 0.99

the same pool but in a few cases, the overlap is sig-
nificantly less than the full 900-1,000 instances (e.g.,
work (noun) with 380).

Given 1,000 instances per word for a category
whose prevalence is as low as 0.10 (100 examples
expected), the 95% interval for sample prevalence,
assuming examples are independent, will be 0.10 ±
0.06. We collected between 20 and 25 labels per
item to get reasonable confidence intervals for the
true label, and so that future models could incor-
porate item difficulty. The large number of labels
sharpens our estimates of the true category signif-
icantly, as estimated error goes down as O(1/√n)
with n independent annotations. Confidence inter-
vals must be expanded as correlation among annota-
tor responses increases due to item-level effects such
as difficulty or subject matter.

Requesters can control many aspects of HITs. To
ensure a high proportion of instances with high qual-
ity inferred labels, we piloted the HIT design with
two trials of two and three words each, and dis-
cussed both with Turkers on the Turker Nation mes-
sage board. The HIT title we chose–For American
English Word Mavens–targeted Turkers with an in-
herent interest in words and meanings, and we re-
cruited Turkers with high performance ratings and a
long history of good work. The final procedure and
payment were as follows. To avoid spam workers,
we required Turkers to have a 98% lifetime approval
rating and to have successfully completed 20,000
HITs. HITs were automatically approved after fif-
teen minutes. We monitored performance of Turk-

ers across HITs by comparing individual Turker’s la-
bels to the current majority labels. Turkers with very
poor performance were warned to take more care, or
be blocked from doing further HITs. Of 228 Turk-
ers, five were blocked, with one subsequently un-
blocked. The blocked Turker data is included with
the other Turker data in our analyses and in the full
data release. As noted above, the model-based ap-
proach to annotation is effective at adjusting for in-
accurate annotators.

4 Results

4.1 Estimates for Prevalence and Labels
Modeling annotators as having distinct biases and
accuracies should match the intuitions of anyone
who has compared the results of more than one an-
notator on a task. The power of the Dawid and Skene
model, however, shows up in the estimates it yields
for category prevalence and for the true labels on
each instance. Figure 4 contrasts three ways to es-
timate sense prevalence, illustrated with four of the
crowdsourced words. AMT MLE is the model esti-
mate from Turkers’ labels. MASC FREQ is a naive
rate from the trained annotators’ label distributions,
rather than a true estimate. Majority voted labels
for Turkers (AMT MAJ) are closer to the model esti-
mates than MASC FREQ, but do not take annotators’
biases into account.

The plots for the four words in Figure 4 are or-
dered by their α scores for the 100 instances that
were annotated in common by four trained anno-
tators: add (0.55) > date (0.47) > help (0.26) >
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(a) Four of 57 annotators for add (verb)

(b) Four of 49 annotators for help (verb)

Figure 6: Example confusion matrices of estimated annotator accuracies and biases

ask (0.20). The prevalence estimates diverge less
on words where the agreement is higher. Notably,
the plots for the first three words demonstrate one
or more senses where the AMT MLE estimate dif-
fers markedly from all other estimates. In Figure 4a,
the AMT MLE estimate for sense 1 is much lower
(0.51) than the other two measures. In Figure 4b,
the AMT MLE estimate for sense 4 is much closer to
MASC FREQ than AMT MAJ, which sugggests that
some Turkers are biased against sense 4. The AMT
MLE estimates for senses 1, 6 and 7 are distinctive.
For help, the AMT MLE estimates for senses 1 and
6 are particularly distinctive. For ask senses 2 and
4, the divergence of the AMT MAJ estimates is again
evidence of bias in some Turkers.

The estimates of label quality on each item are
perhaps the strongest reason for turning to model-
based approaches to assess annotated data. For the
same four words, Figure 5 shows the proportion of
all instances that had an estimated true label where
the label probability was greater than or equal to
0.99. This proportion ranges from 97% for date
to 81% for help. Even for help, of the remaining
19% of instances of less confident estimated labels,
13% have posterior probabilities greater than 0.75.
Figure 5 also shows that the high quality labels for

each word are distributed across many of the senses.
Of the 45 words studied here, 20 had α scores less
than 0.50 from the trained annotators. For 42 of the
same 45 words, 80% of the inferred true labels have
a probability higher than 0.99.

4.2 Annotator Accuracy and Bias
Figure 6 shows confusion matrices in the form of
heatmaps that plot annotator responses by the esti-
mated true labels. Darker cells have higher probabil-
ities. Perfect response accuracy (agreement with the
inferred true label) would yield black squares on the
diagonal and white on the off-diagonal. Figure 6a
and Figure 6b show heatmaps for four annotators
for the two words of the four that had the highest
and third highest α values.

The two figures show that the Turkers were gener-
ally more accurate on add (verb) than on help (verb),
which is consistent with the differences in the inter-
annotator agreement of trained annotators on these
two words. In contrast to what can be learned from
agreement metrics, inference based on the annota-
tion model provides estimates of bias towards spe-
cific values. Figure 6a shows the bias of these anno-
tators to overuse WordNet sense 1 for help. Further,
there were no assignments of senses 6 or 8 for this
word. The figures provide a succinct visual sum-
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mary that there were more differences across the
four annotators for help than for add, with more
bias towards overuse of not only sense 1, but also
senses 2 (annotators 8 and 41) and 3 (annotator 9).
When annotator 8 uses sense 1, the true label is often
sense 6, thus illustrating how annotators provide in-
formation about the true label even from inaccurate
responses.

Mean accuracies per word ranged from 0.86 to
0.05, with most words showing a large spread across
senses, and higher mean accuracy for the more fre-
quent senses. Mean accuracy for add was 0.90 for
sense 1, 0.79 for sense 2, and much lower for senses
6 (0.29) and 7 (0.19). For help, mean accuracy was
best on sense 1 (0.73), which was also the most fre-
quent, but it was also quite good on sense 4 (0.64),
which was much less frequent. Mean accuracies on
senses of help ranged from 0.11 (senses 5, 7, and
other) to 0.73 (sense 1).

5 Discussion

For many of the words, the model yields the same la-
bel values as the trained annotator on a large major-
ity of instances, yet for nearly as many words there
is more disparity. After we discuss how the model-
based and trained annotators labels line up with each
other, we argue that the model estimates are bet-
ter. The two sets of labels cannot be differentiated
from one another by mutual information. In contrast
to the model estimates, the trained annotator labels
have no confidence value, and no estimate for the
trained annotator’s accuracy. We conclude the sec-
tion with a cost comparison.

Figure 7 compares how many instances have the
same labels from the trained annotators and of Turk-
ers (blue); from the trained annotators and the model
(red), and from the Turker Plurality and the model
(green). Recall that about ninety percent of the in-
stances labled by trained annotators have a single
label; for the ten percent with two to four annota-
tors, we used the majority label if there was one,
else gave each tied sense a proportional amount of
the vote. Figure 7a shows 22 words where all three
comparisons have about the same relative propor-
tion in common (70%-98% on average). Here sets
with the least overlap are the trained annotators com-
pared with the model, with the exception of win-

dow (noun). The bottom figure shows the 23 words
where the proportion in common is relatively lower
(35%-75% on average), mostly due to the two com-
parisons for the trained annotators. Across the 45
words, the proportion of instances that had the same
labels assigned by the trained annotators and the
model does not correlate with the α scores for the
words, or with pairwise agreement

Previous work has shown that model-based esti-
mates are superior to majority-voting (Snow et al.,
2008). Figure 7 shows that the trained annotators’
labels match the model (red bars) consistently less
often than they match the Turker plurality, which is
often a majority (blue bars). There are a fair number
of cases, however, with a large disparity between the
trained annotators and Turkers. This is most appar-
ent when the green bar is much higher than the red
or blue bars. For the word meet (verb), for exam-
ple, in 19% of cases the trained annotator used sense
4 of WordNet 3.0 (glossed as “fill or meet a want
or need”) where the the plurality of Turkers selected
sense 5 (glossed as “satisfy a condition or restric-
tion”). Notably, in WordNet 3.1, two of the Word-
Net 3.0 senses for meet (verb) have been removed,
including the sense 5 that the Turkers favored in our
data. A similar situation occurs with date (noun):
17% of cases where the trained annotator used sense
4, the plurality of Turkers used sense 5; the former
sense 4 is no longer in WordNet 3.0.

For the trained annotators, interannotator agree-
ment and pairwise agreement varied widely, as
shown in Figure 3. Measures of the information pro-
vided by labels from Turkers and trained annotators
give a similarly wide range across both groups. Fig-
ure 8 shows a histogram of estimated mutual infor-
mation for Turkers and MASC annotators across the
four words. The most striking feature of these plots
is the large variation in mutual information scores
within both groups of annotators for each word (note
that date and help had many more trained annotators
than add or ask). There is no evidence that a label
from a trained annotator provides more information
than a Turker’s. Thus we conclude that a model-
based label derived from many Turkers is preferable
to a label from a single trained annotator.

In contrast to current best practice, an annotation
model yields far more information about the most
essential aspect of annotation efforts, namely how
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Figure 7: Proportion of instances labeled by both trained annotators and Turkers (total instances in parentheses) where
the trained annotator label matches the Turker plurality (blue), where the trained annotator label matches the model
(red), and where the Turker plurality matches the model (green)

much uncertainty is associated with each gold stan-
dard label. In our case, the richer information comes
at a lower cost. Over the course of a five-year pe-
riod that included development of the infrastructure,
17 undergraduates who annotated the 116 MASC
words were paid an estimated total of $80,000 for
116 words× 1000 sentences per word, which comes
to a unit cost of $0.70 per ground truth label. In a 12
month period with 6 months devoted to infrastruc-
ture and trial runs, we paid 228 Turkers a total of
$15,000 for 45 words × 1000 sentences per word,
for a unit cost of $0.33 per ground truth label. In
short, the AMT data cost less than half the trained
annotator data.

For annotation tasks such as this one, where each
candidate word has multiple class labels, the com-
parison between the two methods of data collection
shows that the model-based estimates from crowd-
sourced data have at least the same quality, if not
higher, for less cost. The fact that each label has
an associated confidence makes them more valuable
because the end user can choose how to handle la-
bels with lower certainty: for example, to assign
them less weight in evaluating word sense disam-

biguation systems, or to eliminate them from train-
ing for statistical approaches to building such sys-
tems. Each word here has a distinct set of classes,
and the results from both the trained annotators and
model indicate that some sets of sense labels led
to greater agreement or a higher proportion of high
confidence labels. In many cases, results for the
words with fewer high confidence labels could be
improved by revising the sense inventories, as sug-
gested by the examples with meet (verb) and date
(noun).

6 Related Work

Alternative metrics to measure association of raters
on binary data have been proposed to overcome de-
ficiencies in κ when there is data skew. The G-
index (Holley and Guildford, 1964; Vegelius, 1981),
for example, is argued to improve over the Matthews
Correlation Coefficient (Matthews, 1975). Feinstein
and Cicchetti (1990) outline the undesirable behav-
ior that κ-like metrics will have lower values when
there is high agreement on highly skewed data. κ as-
sumes that chance agreement on the more prevalent
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class becomes high. Gwet (2008) presents a met-
ric that estimates the likelihood of chance agreement
based on the assumption that chance agreement oc-
curs only when annotators assign labels randomly,
which is estimated from the data. Klebanov and
Beigman (2009) make a related assumption that an-
notators agree on easy cases and behave randomly
on hard cases, and propose a model to estimate the
proportion of hard cases.

Model-based gold-standard estimation such as
(Dawid and Skene, 1979) has long been the stan-
dard in epidemiology, and has been applied to dis-
ease prevalence estimation (Albert and Dodd, 2008)
and also to many other problems such as human an-
notation of craters in images of Venus (Smyth et al.,
1995). Smyth et al. (1995), Rogers et al. (2010),
and Raykar et al. (2010) all discuss the advantages
of learning and evaluation with probabilistically an-
notated corpora. Rzhetsky et al. (2009) and White-
hill et al. (2009) estimate annotation models without
gold-standard supervision, but neither models anno-
tator biases, which are critical for estimating true la-
bels.

Perhaps the first application of Dawid and Skene’s
model to NLP data was the Bruce and Wiebe (1999)
investigation of word sense. Much later, Snow et al.
(2008) used the same model to show that combin-
ing noisy crowdsourced annotations produced data
of equal quality to five distinct published gold stan-
dards, including an example of word sense. Both
works estimate the Dawid and Skene model using
supervised gold-standard category data, which al-
lows direct estimation of annotator accuracy and
bias. Hovy et al. (2013) recently presented a much
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Figure 8: Histograms of mutual information estimates
for the four example words; trained annotators are in the
top row and Turkers in the bottom.

simpler model to filter out spam annotators. Crowd-
sourcing is now so widespread that NAACL 2010
sponsored a workshop on “Creating Speech and
Language Data with Amazon’s Mechanical Turk”
and in 2011, TREC added a crowdsourcing track.

Active learning is an alternative method to anno-
tate corpora, thus the Troia project (Ipeirotis et al.,
2010) is a web service implementation of a maxi-
mum a posteriori estimator for the Dawid and Skene
model, with a decision-theoretic module for active
learning to select the next item to label. They draw
on the Sheng et al. (2008) model to actively select
the next label to elicit, which provides a very simple
estimate of expected accuracy for a given number of
labels. This essentially provides a statistical power
calculation for annotation tasks. Because it is explic-
itly designed to measure reduction in uncertainty,
mutual information should be the ideal choice for
guiding such active labeling (MacKay, 1992). Such
a strategy of selecting features with maximal mutual
information has proven effective in greedy feature-
selection strategies for classifiers, despite the fact
that the objective function was classification accu-
racy, not entropy (Yang and Pedersen, 1997; For-
man, 2003).

7 Conclusion

Interannotator agreement applies to a set of annota-
tions, and provides no information about individual
instances. When two or more annotators have very
high interannotator agreement on a task, unless they
have perfect accuracy, there will be instances where
they agreed incorrectly, and no way to predict which
instances these are. Moreover, for many semantic
annotation tasks, high κ is impractical. In addition,
there is often a pragmatic dimension where labels
represent community-established conventions of us-
age. In such cases, no one individual can reliably
assign labels because the ground truth derives from
consensus among the community of language users.
Word sense annotation is such a task.

An annotation model applied to the type of crowd-
sourced labels collected here provides more knowl-
edge and higher quality gold standard labels at
lower cost than the conventional method used in
the MASC project. Those who would use the cor-
pus for training benefit because they can differen-
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tiate high from low confidence labels. Those who
would use such a corpus for cross-site evaluations
of word sense disambiguation systems benefit be-
cause there are more evaluation options. Where the
most probable label is relatively uncertain, systems
can be penalized less for an incorrect but close re-
sponse. Crowdsourcing has already made it possible
to annotate corpora more cheaply, and wider use of
annotation models in NLP should lead to more con-
fidence from users in the corpora we create.
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