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Abstract

Previous work on Recursive Neural Networks
(RNNs) shows that these models can produce
compositional feature vectors for accurately
representing and classifying sentences or im-
ages. However, the sentence vectors of previ-
ous models cannot accurately represent visu-
ally grounded meaning. We introduce the DT-
RNN model which uses dependency trees to
embed sentences into a vector space in order
to retrieve images that are described by those
sentences. Unlike previous RNN-based mod-
els which use constituency trees, DT-RNNs
naturally focus on the action and agents in
a sentence. They are better able to abstract
from the details of word order and syntactic
expression. DT-RNNs outperform other re-
cursive and recurrent neural networks, kernel-
ized CCA and a bag-of-words baseline on the
tasks of finding an image that fits a sentence
description and vice versa. They also give
more similar representations to sentences that
describe the same image.

1 Introduction

Single word vector spaces are widely used (Turney
and Pantel, 2010) and successful at classifying sin-
gle words and capturing their meaning (Collobert
and Weston, 2008; Huang et al., 2012; Mikolov et
al., 2013). Since words rarely appear in isolation,
the task of learning compositional meaning repre-
sentations for longer phrases has recently received a
lot of attention (Mitchell and Lapata, 2010; Socher
et al., 2010; Socher et al., 2012; Grefenstette et al.,
2013). Similarly, classifying whole images into a

fixed set of classes also achieves very high perfor-
mance (Le et al., 2012; Krizhevsky et al., 2012).
However, similar to words, objects in images are of-
ten seen in relationships with other objects which are
not adequately described by a single label.

In this work, we introduce a model, illustrated in
Fig. 1, which learns to map sentences and images
into a common embedding space in order to be able
to retrieve one from the other. We assume word and
image representations are first learned in their re-
spective single modalities but finally mapped into a
jointly learned multimodal embedding space.

Our model for mapping sentences into this space
is based on ideas from Recursive Neural Networks
(RNNs) (Pollack, 1990; Costa et al., 2003; Socher
et al., 2011b). However, unlike all previous RNN
models which are based on constituency trees (CT-
RNNs), our model computes compositional vector
representations inside dependency trees. The com-
positional vectors computed by this new dependency
tree RNN (DT-RNN) capture more of the meaning
of sentences, where we define meaning in terms of
similarity to a “visual representation” of the textual
description. DT-RNN induced vector representa-
tions of sentences are more robust to changes in the
syntactic structure or word order than related mod-
els such as CT-RNNs or Recurrent Neural Networks
since they naturally focus on a sentence’s action and
its agents.

We evaluate and compare DT-RNN induced rep-
resentations on their ability to use a sentence such as
“A man wearing a helmet jumps on his bike near a
beach.” to find images that show such a scene. The
goal is to learn sentence representations that capture
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A man wearing a helmet jumps on his bike near a beach.

Compositional Sentence Vectors

Two airplanes parked in an airport.

A man jumping his downhill bike.

Image Vector Representation

A small child sits on a cement wall near white flower.

Multi-Modal 
Representations

Figure 1: The DT-RNN learns vector representations for sentences based on their dependency trees. We learn to
map the outputs of convolutional neural networks applied to images into the same space and can then compare both
sentences and images. This allows us to query images with a sentence and give sentence descriptions to images.

the visual scene described and to find appropriate
images in the learned, multi-modal sentence-image
space. Conversely, when given a query image, we
would like to find a description that goes beyond a
single label by providing a correct sentence describ-
ing it, a task that has recently garnered a lot of at-
tention (Farhadi et al., 2010; Ordonez et al., 2011;
Kuznetsova et al., 2012). We use the dataset intro-
duced by (Rashtchian et al., 2010) which consists of
1000 images, each with 5 descriptions. On all tasks,
our model outperforms baselines and related mod-
els.

2 Related Work

The presented model is connected to several areas of
NLP and vision research, each with a large amount
of related work to which we can only do some justice
given space constraints.

Semantic Vector Spaces and Their Composition-
ality. The dominant approach in semantic vec-
tor spaces uses distributional similarities of single
words. Often, co-occurrence statistics of a word and
its context are used to describe each word (Turney
and Pantel, 2010; Baroni and Lenci, 2010), such
as tf-idf. Most of the compositionality algorithms
and related datasets capture two-word compositions.
For instance, (Mitchell and Lapata, 2010) use two-
word phrases and analyze similarities computed by
vector addition, multiplication and others. Compo-
sitionality is an active field of research with many
different models and representations being explored
(Grefenstette et al., 2013), among many others. We
compare to supervised compositional models that

can learn task-specific vector representations such as
constituency tree recursive neural networks (Socher
et al., 2011b; Socher et al., 2011a), chain structured
recurrent neural networks and other baselines. An-
other alternative would be to use CCG trees as a
backbone for vector composition (K.M. Hermann,
2013).

Multimodal Embeddings. Multimodal embed-
ding methods project data from multiple sources
such as sound and video (Ngiam et al., 2011) or im-
ages and text. Socher et al. (Socher and Fei-Fei,
2010) project words and image regions into a com-
mon space using kernelized canonical correlation
analysis to obtain state of the art performance in an-
notation and segmentation. Similar to our work, they
use unsupervised large text corpora to learn seman-
tic word representations. Among other recent work
is that by Srivastava and Salakhutdinov (2012) who
developed multimodal Deep Boltzmann Machines.
Similar to their work, we use techniques from the
broad field of deep learning to represent images and
words.

Recently, single word vector embeddings have
been used for zero shot learning (Socher et al.,
2013c). Mapping images to word vectors enabled
their system to classify images as depicting objects
such as ”cat” without seeing any examples of this
class. Related work has also been presented at NIPS
(Socher et al., 2013b; Frome et al., 2013). This work
moves zero-shot learning beyond single categories
per image and extends it to unseen phrases and full
length sentences, making use of similar ideas of se-
mantic spaces grounded in visual knowledge.
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Detailed Image Annotation. Interactions be-
tween images and texts is a growing research field.
Early work in this area includes generating single
words or fixed phrases from images (Duygulu et al.,
2002; Barnard et al., 2003) or using contextual in-
formation to improve recognition (Gupta and Davis,
2008; Torralba et al., 2010).

Apart from a large body of work on single object
image classification (Le et al., 2012), there is also
work on attribute classification and other mid-level
elements (Kumar et al., 2009), some of which we
hope to capture with our approach as well.

Our work is close in spirit with recent work in de-
scribing images with more detailed, longer textual
descriptions. In particular, Yao et al. (2010) describe
images using hierarchical knowledge and humans in
the loop. In contrast, our work does not require hu-
man interactions. Farhadi et al. (2010) and Kulkarni
et al. (2011), on the other hand, use a more automatic
method to parse images. For instance, the former ap-
proach uses a single triple of objects estimated for an
image to retrieve sentences from a collection written
to describe similar images. It forms representations
to describe 1 object, 1 action, and 1 scene. Kulkarni
et al. (2011) extends their method to describe an im-
age with multiple objects. None of these approaches
have used a compositional sentence vector repre-
sentation and they require specific language gener-
ation techniques and sophisticated inference meth-
ods. Since our model is based on neural networks in-
ference is fast and simple. Kuznetsova et al. (2012)
use a very large parallel corpus to connect images
and sentences. Feng and Lapata (2013) use a large
dataset of captioned images and experiments with
both extractive (search) and abstractive (generation)
models.

Most related is the very recent work of Hodosh et
al. (2013). They too evaluate using a ranking mea-
sure. In our experiments, we compare to kernelized
Canonical Correlation Analysis which is the main
technique in their experiments.

3 Dependency-Tree Recursive Neural
Networks

In this section we first focus on the DT-RNN model
that computes compositional vector representations
for phrases and sentences of variable length and syn-

tactic type. In section 5 the resulting vectors will
then become multimodal features by mapping im-
ages that show what the sentence describes to the
same space and learning both the image and sen-
tence mapping jointly.

The most common way of building representa-
tions for longer phrases from single word vectors is
to simply linearly average the word vectors. While
this bag-of-words approach can yield reasonable
performance in some tasks, it gives all the words the
same weight and cannot distinguish important dif-
ferences in simple visual descriptions such as The
bike crashed into the standing car. vs. The car
crashed into the standing bike..

RNN models (Pollack, 1990; Goller and Küchler,
1996; Socher et al., 2011b; Socher et al., 2011a) pro-
vided a novel way of combining word vectors for
longer phrases that moved beyond simple averag-
ing. They combine vectors with an RNN in binary
constituency trees which have potentially many hid-
den layers. While the induced vector representations
work very well on many tasks, they also inevitably
capture a lot of syntactic structure of the sentence.
However, the task of finding images from sentence
descriptions requires us to be more invariant to syn-
tactic differences. One such example are active-
passive constructions which can collapse words such
as “by” in some formalisms (de Marneffe et al.,
2006), relying instead on the semantic relationship
of “agent”. For instance, The mother hugged her
child. and The child was hugged by its mother.
should map to roughly the same visual space. Cur-
rent Recursive and Recurrent Neural Networks do
not exhibit this behavior and even bag of words rep-
resentations would be influenced by the words was
and by. The model we describe below focuses more
on recognizing actions and agents and has the po-
tential to learn representations that are invariant to
active-passive differences.

3.1 DT-RNN Inputs: Word Vectors and
Dependency Trees

In order for the DT-RNN to compute a vector repre-
sentation for an ordered list of m words (a phrase or
sentence), we map the single words to a vector space
and then parse the sentence.

First, we map each word to a d-dimensional vec-
tor. We initialize these word vectors with the un-
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A man wearing a helmet jumps on his bike near a beach

det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 2: Example of a full dependency tree for a longer sentence. The DT-RNN will compute vector representations
at every word that represents that word and an arbitrary number of child nodes. The final representation is computed
at the root node, here at the verb jumps. Note that more important activity and object words are higher up in this tree
structure.

supervised model of Huang et al. (2012) which can
learn single word vector representations from both
local and global contexts. The idea is to construct a
neural network that outputs high scores for windows
and documents that occur in a large unlabeled corpus
and low scores for window-document pairs where
one word is replaced by a random word. When
such a network is optimized via gradient descent the
derivatives backpropagate into a word embedding
matrix A which stores word vectors as columns. In
order to predict correct scores the vectors in the ma-
trix capture co-occurrence statistics. We use d = 50
in all our experiments. The embedding matrix X
is then used by finding the column index i of each
word: [w] = i and retrieving the corresponding col-
umn xw from X . Henceforth, we represent an input
sentence s as an ordered list of (word,vector) pairs:
s = ((w1, xw1), . . . , (wm, xwm)).

Next, the sequence of words (w1, . . . , wm) is
parsed by the dependency parser of de Marneffe
et al. (2006). Fig. 2 shows an example. We can
represent a dependency tree d of a sentence s as
an ordered list of (child,parent) indices: d(s) =
{(i, j)}, where every child word in the sequence
i = 1, . . . ,m is present and has any word j ∈
{1, . . . ,m} ∪ {0} as its parent. The root word has
as its parent 0 and we notice that the same word can
be a parent between zero and m number of times.
Without loss of generality, we assume that these in-
dices form a tree structure. To summarize, the input
to the DT-RNN for each sentence is the pair (s, d):
the words and their vectors and the dependency tree.

3.2 Forward Propagation in DT-RNNs

Given these two inputs, we now illustrate how the
DT-RNN computes parent vectors. We will use the
following sentence as a running example: Students1
ride2 bikes3 at4 night5. Fig. 3 shows its tree
and computed vector representations. The depen-

Students                 bikes           night

ride 
at          x1

x2

x3

x4

x5

h1

h2

h3

h4

h5

Figure 3: Example of a DT-RNN tree structure for com-
puting a sentence representation in a bottom up fashion.

dency tree for this sentence can be summarized by
the following set of (child, parent) edges: d =
{(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.

The DT-RNN model will compute parent vectors
at each word that include all the dependent (chil-
dren) nodes in a bottom up fashion using a com-
positionality function gθ which is parameterized by
all the model parameters θ. To this end, the algo-
rithm searches for nodes in a tree that have either
(i) no children or (ii) whose children have already
been computed and then computes the correspond-
ing vector.

In our example, the words x1, x3, x5 are leaf
nodes and hence, we can compute their correspond-
ing hidden nodes via:

hc = gθ(xc) = f(Wvxc) for c = 1, 3, 5, (1)

where we compute the hidden vector at position c
via our general composition function gθ. In the case
of leaf nodes, this composition function becomes
simply a linear layer, parameterized by Wv ∈ Rn×d,
followed by a nonlinearity. We cross-validate over
using no nonlinearity (f = id), tanh, sigmoid or
rectified linear units (f = max(0, x), but generally
find tanh to perform best.

The final sentence representation we want to com-
pute is at h2, however, since we still do not have h4,
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we compute that one next:

h4 = gθ(x4, h5) = f(Wvx4 +Wr1h5), (2)

where we use the same Wv as before to map the
word vector into hidden space but we now also have
a linear layer that takes as input h5, the only child
of the fourth node. The matrix Wr1 ∈ Rn×n is used
because node 5 is the first child node on the right
side of node 4. Generally, we have multiple matri-
ces for composing with hidden child vectors from
the right and left sides: Wr· = (Wr1, . . . ,Wrkr) and
Wl· = (Wl1, . . . ,Wlkl). The number of needed ma-
trices is determined by the data by simply finding
the maximum numbers of left kl and right kr chil-
dren any node has. If at test time a child appeared
at an even large distance (this does not happen in
our test set), the corresponding matrix would be the
identity matrix.

Now that all children of h2 have their hidden vec-
tors, we can compute the final sentence representa-
tion via:

h2 = gθ(x2, h1, h3, h4) = (3)

f(Wvx2 +Wl1h1 +Wr1h3 +Wr2h4).

Notice that the children are multiplied by matrices
that depend on their location relative to the current
node.

Another modification that improves the mean
rank by approximately 6 in image search on the dev
set is to weight nodes by the number of words under-
neath them and normalize by the sum of words under
all children. This encourages the intuitive desidera-
tum that nodes describing longer phrases are more
important. Let `(i) be the number of leaf nodes
(words) under node i and C(i, y) be the set of child
nodes of node i in dependency tree y. The final com-
position function for a node vector hi becomes:

hi = f


 1

`(i)


Wvxi +

∑

j∈C(i)

`(j)Wpos(i,j)hj




 ,

(4)
where by definition `(i) = 1 +

∑
j∈C(i) `(j) and

pos(i, j) is the relative position of child j with re-
spect to node i, e.g. l1 or r2 in Eq. 3.

3.3 Semantic Dependency Tree RNNs
An alternative is to condition the weight matrices
on the semantic relations given by the dependency

parser. We use the collapsed tree formalism of
the Stanford dependency parser (de Marneffe et al.,
2006). With such a semantic untying of the weights,
the DT-RNN makes better use of the dependency
formalism and could give active-passive reversals
similar semantic vector representation. The equation
for this semantic DT-RNN (SDT-RNN) is the same
as the one above except that the matrices Wpos(i,j)
are replaced with matrices based on the dependency
relationship. There are a total of 141 unique such
relationships in the dataset. However, most are very
rare. For examples of semantic relationships, see
Fig. 2 and the model analysis section 6.7.

This forward propagation can be used for com-
puting compositional vectors and in Sec. 5 we will
explain the objective function in which these are
trained.

3.4 Comparison to Previous RNN Models
The DT-RNN has several important differences to
previous RNN models of Socher et al. (2011a) and
(Socher et al., 2011b; Socher et al., 2011c). These
constituency tree RNNs (CT-RNNs) use the follow-
ing composition function to compute a hidden par-
ent vector h from exactly two child vectors (c1, c2)

in a binary tree: h = f

(
W

[
c1
c2

])
, where W ∈

Rd×2d is the main parameter to learn. This can be
rewritten to show the similarity to the DT-RNN as
h = f(Wl1c1 +Wr1c2). However, there are several
important differences.

Note first that in previous RNN models the par-
ent vectors were of the same dimensionality to be
recursively compatible and be used as input to the
next composition. In contrast, our new model first
maps single words into a hidden space and then par-
ent nodes are composed from these hidden vectors.
This allows a higher capacity representation which
is especially helpful for nodes that have many chil-
dren.

Secondly, the DT-RNN allows for n-ary nodes in
the tree. This is an improvement that is possible even
for constituency tree CT-RNNs but it has not been
explored in previous models.

Third, due to computing parent nodes in con-
stituency trees, previous models had the problem
that words that are merged last in the tree have a
larger weight or importance in the final sentence rep-
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Figure 4: The architecture of the visual model. This model has 3 sequences of filtering, pooling and local contrast
normalization layers. The learnable parameters are the filtering layer. The filters are not shared, i.e., the network is
nonconvolutional.

resentation. This can be problematic since these are
often simple non-content words, such as a leading
‘But,’. While such single words can be important for
tasks such as sentiment analysis, we argue that for
describing visual scenes the DT-RNN captures the
more important effects: The dependency tree struc-
tures push the central content words such as the main
action or verb and its subject and object to be merged
last and hence, by construction, the final sentence
representation is more robust to less important ad-
jectival modifiers, word order changes, etc.

Fourth, we allow some untying of weights de-
pending on either how far away a constituent is from
the current word or what its semantic relationship is.

Now that we can compute compositional vector
representations for sentences, the next section de-
scribes how we represent images.

4 Learning Image Representations with
Neural Networks

The image features that we use in our experiments
are extracted from a deep neural network, replicated
from the one described in (Le et al., 2012). The net-
work was trained using both unlabeled data (random
web images) and labeled data to classify 22,000 cat-
egories in ImageNet (Deng et al., 2009). We then
used the features at the last layer, before the classi-
fier, as the feature representation in our experiments.
The dimension of the feature vector of the last layer
is 4,096. The details of the model and its training
procedures are as follows.

The architecture of the network can be seen in
Figure 4. The network takes 200x200 pixel images
as inputs and has 9 layers. The layers consist of

three sequences of filtering, pooling and local con-
trast normalization (Jarrett et al., 2009). The pooling
function is L2 pooling of the previous layer (taking
the square of the filtering units, summing them up
in a small area in the image, and taking the square-
root). The local contrast normalization takes inputs
in a small area of the lower layer, subtracts the mean
and divides by the standard deviation.

The network was first trained using an unsuper-
vised objective: trying to reconstruct the input while
keeping the neurons sparse. In this phase, the net-
work was trained on 20 million images randomly
sampled from the web. We resized a given image
so that its short dimension has 200 pixels. We then
cropped a fixed size 200x200 pixel image right at the
center of the resized image. This means we may dis-
card a fraction of the long dimension of the image.

After unsupervised training, we used Ima-
geNet (Deng et al., 2009) to adjust the features in the
entire network. The ImageNet dataset has 22,000
categories and 14 million images. The number of
images in each category is equal across categories.
The 22,000 categories are extracted from WordNet.

To speed up the supervised training of this net-
work, we made a simple modification to the algo-
rithm described in Le et al. (2012): adding a “bottle-
neck” layer in between the last layer and the classi-
fier. to reduce the number of connections. We added
one “bottleneck” layer which has 4,096 units in be-
tween the last layer of the network and the softmax
layer. This newly-added layer is fully connected to
the previous layer and has a linear activation func-
tion. The total number of connections of this net-
work is approximately 1.36 billion.
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The network was trained again using the super-
vised objective of classifying the 22,000 classes in
ImageNet. Most features in the networks are local,
which allows model parallelism. Data parallelism
by asynchronous SGD was also employed as in Le
et al. (2012). The entire training, both unsupervised
and supervised, took 8 days on a large cluster of ma-
chines. This network achieves 18.3% precision@1
on the full ImageNet dataset (Release Fall 2011).

We will use the features at the bottleneck layer as
the feature vector z of an image. Each scaled and
cropped image is presented to our network. The net-
work then performs a feedforward computation to
compute the values of the bottleneck layer. This
means that every image is represented by a fixed
length vector of 4,096 dimensions. Note that during
training, no aligned sentence-image data was used
and the ImageNet classes do not fully intersect with
the words used in our dataset.
5 Multimodal Mappings
The previous two sections described how we can
map sentences into a d = 50-dimensional space and
how to extract high quality image feature vectors of
4096 dimensions. We now define our final multi-
modal objective function for learning joint image-
sentence representations with these models. Our
training set consists of N images and their feature
vectors zi and each image has 5 sentence descrip-
tions si1, . . . , si5 for which we use the DT-RNN to
compute vector representations. See Fig. 5 for ex-
amples from the dataset. For training, we use a max-
margin objective function which intuitively trains
pairs of correct image and sentence vectors to have
high inner products and incorrect pairs to have low
inner products. Let vi = WIzi be the mapped image
vector and yij = DTRNNθ(sij) the composed sen-
tence vector. We define S to be the set of all sentence
indices and S(i) the set of sentence indices corre-
sponding to image i. Similarly, I is the set of all im-
age indices and I(j) is the image index of sentence
j. The set P is the set of all correct image-sentence
training pairs (i, j). The ranking cost function to
minimize is then: J(WI , θ) =

∑

(i,j)∈P

∑

c∈S\S(i)
max(0,∆− vTi yj + vTi yc)

+
∑

(i,j)∈P

∑

c∈I\I(j)
max(0,∆− vTi yj + vTc yj), (5)

where θ are the language composition matrices,
and both second sums are over other sentences com-
ing from different images and vice versa. The hyper-
parameter ∆ is the margin. The margin is found via
cross validation on the dev set and usually around 1.

The final objective also includes the regulariza-
tion term λ/left(‖θ‖22 + ‖WI‖F ). Both the visual
model and the word vector learning require a very
large amount of training data and both have a huge
number of parameters. Hence, to prevent overfitting,
we assume their weights are fixed and only train the
DT-RNN parameters WI . If larger training corpora
become available in the future, training both jointly
becomes feasible and would present a very promis-
ing direction. We use a modified version of Ada-
Grad (Duchi et al., 2011) for optimization of both
WI and the DT-RNN as well as the other baselines
(except kCCA). Adagrad has achieved good perfor-
mance previously in neural networks models (Dean
et al., 2012; Socher et al., 2013a). We modify it
by resetting all squared gradient sums to 1 every 5
epochs. With both images and sentences in the same
multimodal space, we can easily query the model for
similar images or sentences by finding the nearest
neighbors in terms of negative inner products.

An alternative objective function is based on the
squared loss J(WI , θ) =

∑
(i,j)∈P ‖vi − yj‖22. This

requires an alternating minimization scheme that
first trains only WI , then fixes WI and trains the
DT-RNN weights θ and then repeats this several
times. We find that the performance with this ob-
jective function (paired with finding similar images
using Euclidean distances) is worse for all models
than the margin loss of Eq. 5. In addition kCCA
also performs much better using inner products in
the multimodal space.

6 Experiments

We use the dataset of Rashtchian et al. (2010) which
consists of 1000 images, each with 5 sentences. See
Fig. 5 for examples.

We evaluate and compare the DT-RNN in three
different experiments. First, we analyze how well
the sentence vectors capture similarity in visual
meaning. Then we analyze Image Search with
Query Sentences: to query each model with a sen-
tence in order to find an image showing that sen-
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1. A woman and her dog watch the cameraman in their living with wooden floors.
2. A woman sitting on the couch while a black faced dog runs across the floor.
3. A woman wearing a backpack sits on a couch while a small dog runs on the hardwood floor next to her.
4. A women sitting on a sofa while a small Jack Russell walks towards the camera.
5. White and black small dog walks toward the camera while woman sits on couch, desk and computer seen 
    in the background as well as a pillow, teddy bear and moggie toy on the wood floor.

1. A man in a cowboy hat check approaches a small red sports car.
2. The back and left side of a red Ferrari and two men admiring it.
3. The sporty car is admired by passer by.
4. Two men next to a red sports car in a parking lot.
5. Two men stand beside a red sports car.

Figure 5: Examples from the dataset of images and their sentence descriptions (Rashtchian et al., 2010). Sentence
length varies greatly and different objects can be mentioned first. Hence, models have to be invariant to word ordering.

tence’s visual ‘meaning.’ The last experiment De-
scribing Images by Finding Suitable Sentences does
the reverse search where we query the model with an
image and try to find the closest textual description
in the embedding space.

In our comparison to other methods we focus on
those models that can also compute fixed, continu-
ous vectors for sentences. In particular, we compare
to the RNN model on constituency trees of Socher
et al. (2011a), a standard recurrent neural network;
a simple bag-of-words baseline which averages the
words. All models use the word vectors provided by
Huang et al. (2012) and do not update them as dis-
cussed above. Models are trained with their corre-
sponding gradients and backpropagation techniques.
A standard recurrent model is used where the hidden
vector at word index t is computed from the hidden
vector at the previous time step and the current word
vector: ht = f(Whht−1 + Wxxt). During training,
we take the last hidden vector of the sentence chain
and propagate the error into that. It is also this vector
that is used to represent the sentence.

Other possible comparisons are to the very differ-
ent models mentioned in the related work section.
These models use a lot more task-specific engineer-
ing, such as running object detectors with bounding
boxes, attribute classifiers, scene classifiers, CRFs
for composing the sentences, etc. Another line of
work uses large sentence-image aligned resources
(Kuznetsova et al., 2012), whereas we focus on eas-
ily obtainable training data of each modality sepa-
rately and a rather small multimodal corpus.

In our experiments we split the data into 800 train-
ing, 100 development and 100 test images. Since
there are 5 sentences describing each image, we

have 4000 training sentences and 500 testing sen-
tences. The dataset has 3020 unique words, half of
which only appear once. Hence, the unsupervised,
pre-trained semantic word vector representations are
crucial. Word vectors are not fine tuned during train-
ing. Hence, the main parameters are the DT-RNN’s
Wl·,Wr· or the semantic matrices of which there are
141 and the image mappingWI . For both DT-RNNs
the weight matrices are initialized to block identity
matrices plus Gaussian noise. Word vectors and hid-
den vectors are set o length 50. Using the develop-
ment split, we found λ = 0.08 and the learning rate
of AdaGrad to 0.0001. The best model uses a mar-
gin of ∆ = 3.

Inspired by Socher and Fei-Fei (2010) and Ho-
dosh et al. (2013) we also compare to kernelized
Canonical Correlation Analysis (kCCA). We use the
average of word vectors for describing sentences and
the same powerful image vectors as before. We
use the code of Socher and Fei-Fei (2010). Tech-
nically, one could combine the recently introduced
deep CCA Andrew et al. (2013) and train the re-
cursive neural network architectures with the CCA
objective. We leave this to future work. With lin-
ear kernels, kCCA does well for image search but
is worse for sentence self similarity and describing
images with sentences close-by in embedding space.
All other models are trained by replacing the DT-
RNN function in Eq. 5.

6.1 Similarity of Sentences Describing the
Same Image

In this experiment, we first map all 500 sentences
from the test set into the multi-modal space. Then
for each sentence, we find the nearest neighbor sen-
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Sentences Similarity for Image
Model Mean Rank
Random 101.1
BoW 11.8
CT-RNN 15.8
Recurrent NN 18.5
kCCA 10.7
DT-RNN 11.1
SDT-RNN 10.5

Image Search
Model Mean Rank
Random 52.1
BoW 14.6
CT-RNN 16.1
Recurrent NN 19.2
kCCA 15.9
DT-RNN 13.6
SDT-RNN 12.5

Describing Images
Model Mean Rank
Random 92.1
BoW 21.1
CT-RNN 23.9
Recurrent NN 27.1
kCCA 18.0
DT-RNN 19.2
SDT-RNN 16.9

Table 1: Left: Comparison of methods for sentence similarity judgments. Lower numbers are better since they indicate
that sentences describing the same image rank more highly (are closer). The ranks are out of the 500 sentences in the
test set. Center: Comparison of methods for image search with query sentences. Shown is the average rank of the
single correct image that is being described. Right: Average rank of a correct sentence description for a query image.

tences in terms of inner products. We then sort
these neighbors and record the rank or position of
the nearest sentence that describes the same im-
age. If all the images were very unique and the vi-
sual descriptions close-paraphrases and consistent,
we would expect a very low rank. However, usually
a handful of images are quite similar (for instance,
there are various images of airplanes flying, parking,
taxiing or waiting on the runway) and sentence de-
scriptions can vary greatly in detail and specificity
for the same image.

Table 1 (left) shows the results. We can see that
averaging the high quality word vectors already cap-
tures a lot of similarity. The chain structure of a
standard recurrent neural net performs worst since
its representation is dominated by the last words in
the sequence which may not be as important as ear-
lier words.

6.2 Image Search with Query Sentences

This experiment evaluates how well we can find im-
ages that display the visual meaning of a given sen-
tence. We first map a query sentence into the vector
space and then find images in the same space using
simple inner products. As shown in Table 1 (center),
the new DT-RNN outperforms all other models.

6.3 Describing Images by Finding Suitable
Sentences

Lastly, we repeat the above experiments but with
roles reversed. For an image, we search for suitable
textual descriptions again simply by finding close-
by sentence vectors in the multi-modal embedding
space. Table 1 (right) shows that the DT-RNN again
outperforms related models. Fig. 2assigned to im-

Image Search
Model mRank
BoW 24.7
CT-RNN 22.2
Recurrent NN 28.4
kCCA 13.7
DT-RNN 13.3
SDT-RNN 15.8

Describing Images
Model mRank
BoW 30.7
CT-RNN 29.4
Recurrent NN 31.4
kCCA 38.0
DT-RNN 26.8
SDT-RNN 37.5

Table 2: Results of multimodal ranking when models are
trained with a squared error loss and using Euclidean dis-
tance in the multimodal space. Better performance is
reached for all models when trained in a max-margin loss
and using inner products as in the previous table.

ages. The average ranking of 25.3 for a correct sen-
tence description is out of 500 possible sentences. A
random assignment would give an average ranking
of 100.

6.4 Analysis: Squared Error Loss vs. Margin
Loss

We analyze the influence of the multimodal loss
function on the performance. In addition, we com-
pare using Euclidean distances instead of inner prod-
ucts. Table 2 shows that performance is worse for all
models in this setting.

6.5 Analysis: Recall at n vs Mean Rank

Hodosh et al. (2013) and other related work use re-
call at n as an evaluation measure. Recall at n cap-
tures how often one of the top n closest vectors were
a correct image or sentence and gives a good intu-
ition of how a model would perform in a ranking
task that presents n such results to a user. Below, we
compare three commonly used and high performing
models: bag of words, kCCA and our SDT-RNN on
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A gray convertible sports car is parked in front of the trees.
A close-up view of the headlights of a blue old-fashioned car.
Black shiny sports car parked on concrete driveway.
Five cows grazing on a patch of grass between two roadways.

A jockey rides a brown and white horse in a dirt corral.
A young woman is riding a Bay hose in a dirt riding-ring.
A white bird pushes a miniature teal shopping cart.
A person rides a brown horse.

A motocross bike with rider flying through the air.
White propeller plane parked in middle of grassy field.
The white jet with its landing gear down flies in the blue sky.
An elderly woman catches a ride on the back of the bicycle.

A green steam train running down the tracks.
Steamy locomotive speeding thou the forest.
A steam engine comes down a train track near trees.
A double decker bus is driving by Big Ben in London.

People in an outrigger canoe sail on emerald green water.
Two people sailing a small white sail boat.
behind a cliff, a boat sails away
Tourist move in on Big Ben on a typical overcast London day.

A group of people sitting around a table on a porch.
A group of four people walking past a giant mushroom.
A man and women smiling for the camera in a kitchen.
A group of men sitting around a table drinking while a man behind 
stands pointing.

Figure 6: Images and their sentence descriptions assigned by the DT-RNN.

Image Search
Model mRank 4 R@1 5 R@5 5 R@10 5
BoW 14.6 15.8 42.2 60.0
kCCA 15.9 16.4 41.4 58.0
SDT-RNN 12.5 16.4 46.6 65.6

Describing Images
BoW 21.1 19.0 38.0 57.0
kCCA 18.0 21.0 47.0 61.0
SDT-RNN 16.9 23.0 45.0 63.0

Table 3: Evaluation comparison between mean rank of
the closest correct image or sentence (lower is better 4)
with recall at different thresholds (higher is better, 5).
With one exception (R@5, bottom table), the SDT-RNN
outperforms the other two models and all other models
we did not include here.

this different metric. Table 3 shows that the mea-
sures do correlate well and the SDT-RNN also per-
forms best on the multimodal ranking tasks when
evaluated with this measure.

6.6 Error Analysis

In order to understand the main problems with the
composed sentence vectors, we analyze the sen-
tences that have the worst nearest neighbor rank be-
tween each other. We find that the main failure mode
of the SDT-RNN occurs when a sentence that should
describe the same image does not use a verb but the
other sentences of that image do include a verb. For
example, the following sentence pair has vectors that
are very far apart from each other even though they
are supposed to describe the same image:

1. A blue and yellow airplane flying straight down
while emitting white smoke

2. Airplane in dive position

Generally, as long as both sentences either have a
verb or do not, the SDT-RNN is more robust to dif-
ferent sentence lengths than bag of words represen-
tations.

6.7 Model Analysis: Semantic Composition
Matrices

The best model uses composition matrices based on
semantic relationships from the dependency parser.
We give some insights into what the model learns
by listing the composition matrices with the largest
Frobenius norms. Intuitively, these matrices have
learned larger weights that are being multiplied with
the child vector in the tree and hence that child will
have more weight in the final composed parent vec-
tor. In decreasing order of Frobenius norm, the re-
lationship matrices are: nominal subject, possession
modifier (e.g. their), passive auxiliary, preposition
at, preposition in front of, passive auxiliary, passive
nominal subject, object of preposition, preposition
in and preposition on.

The model learns that nouns are very important as
well as their spatial prepositions and adjectives.

7 Conclusion

We introduced a new recursive neural network
model that is based on dependency trees. For eval-
uation, we use the challenging task of mapping sen-
tences and images into a common space for finding
one from the other. Our new model outperforms
baselines and other commonly used models that can
compute continuous vector representations for sen-
tences. In comparison to related models, the DT-
RNN is more invariant and robust to surface changes
such as word order.
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