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Abstract

We develop parsing oracles for two trans-
ition-based dependency parsers, including the
arc-standard parser, solving a problem that
was left open in (Goldberg and Nivre, 2013).
We experimentally show that using these or-
acles during training yields superior parsing
accuracies on many languages.

1 Introduction
Greedy transition-based dependency parsers (Nivre,
2008) incrementally process an input sentence from
left to right. These parsers are very fast and
provide competitive parsing accuracies (Nivre et al.,
2007). However, greedy transition-based parsers
still fall behind search-based parsers (Zhang and
Clark, 2008; Huang and Sagae, 2010) with respect
to accuracy.

The training of transition-based parsers relies on
a component called the parsing oracle, which maps
parser configurations to optimal transitions with re-
spect to a gold tree. A discriminative model is then
trained to simulate the oracle’s behavior. A parsing
oracle is deterministic if it returns a single canon-
ical transition. Furthermore, an oracle is partial if it
is defined only for configurations that can reach the
gold tree, that is, configurations representing pars-
ing histories with no mistake. Oracles that are both
deterministic and partial are called static. Tradition-
ally, only static oracles have been exploited in train-
ing of transition-based parsers.

Recently, Goldberg and Nivre (2012; 2013)
showed that the accuracy of greedy parsers can be
substantially improved without affecting their pars-
ing speed. This improvement relies on the intro-
duction of novel oracles that are nondeterministic

and complete. An oracle is nondeterministic if it re-
turns the set of all transitions that are optimal with
respect to the gold tree, and it is complete if it is
well-defined and correct for every configuration that
is reachable by the parser. Oracles that are both non-
deterministic and complete are called dynamic.

Goldberg and Nivre (2013) develop dynamic or-
acles for several transition-based parsers. The con-
struction of these oracles is based on a property of
transition-based parsers that they call arc decompos-
ition. They also prove that the popular arc-standard
system (Nivre, 2004) is not arc-decomposable, and
they leave as an open research question the construc-
tion of a dynamic oracle for the arc-standard system.
In this article, we develop one such oracle (§4) and
prove its correctness (§5).

An extension to the arc-standard parser was
presented by Sartorio et al. (2013), which relaxes
the bottom-up construction order and allows mixing
of bottom-up and top-down strategies. This parser,
called here the LR-spine parser, achieves state-of-
the-art results for greedy parsing. Like the arc-stand-
ard system, the LR-spine parser is not arc-decom-
posable, and a dynamic oracle for this system was
not known. We extend our oracle for the arc-stand-
ard system to work for the LR-spine system as well
(§6).

The dynamic oracles developed by Goldberg and
Nivre (2013) for arc-decomposable systems are
based on local properties of computations. In con-
trast, our novel dynamic oracle algorithms rely on
arguably more complex structural properties of com-
putations, which are computed through dynamic
programming. This leaves open the question of
whether a machine-learning model can learn to ef-
fectively simulate such complex processes: will the
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benefit of training with the dynamic oracle carry
over to the arc-standard and LR-spine systems? We
show experimentally that this is indeed the case (§8),
and that using the training-with-exploration method
of (Goldberg and Nivre, 2013) with our dynamic
programming based oracles yields superior parsing
accuracies on many languages.

2 Arc-Standard Parser

In this section we introduce the arc-standard parser
of Nivre (2004), which is the model that we use in
this article. To keep the notation at a simple level,
we only discuss the unlabeled version of the parser;
however, a labeled extension is used in §8 for our
experiments.

2.1 Preliminaries and Notation

The set of non-negative integers is denoted as N0.
For i, j ∈ N0 with i ≤ j, we write [i, j] to denote
the set {i, i + 1, . . . , j}. When i > j, [i, j] denotes
the empty set.

We represent an input sentence as a string w =
w0 · · ·wn, n ∈ N0, where token w0 is a special
root symbol, and each wi with i ∈ [1, n] is a lex-
ical token. For i, j ∈ [0, n] with i ≤ j, we write
w[i, j] to denote the substring wiwi+1 · · ·wj of w.

We write i → j to denote a grammatical de-
pendency of some unspecified type between lexical
tokens wi and wj , where wi is the head and wj is the
dependent. A dependency tree for w is a directed,
ordered tree t = (Vw, A), such that Vw = [0, n] is
the set of nodes, A ⊆ Vw×Vw is the set of arcs, and
node 0 is the root. Arc (i, j) encodes a dependency
i → j, and we will often use the latter notation to
denote arcs.

2.2 Transition-Based Dependency Parsing

We assume the reader is familiar with the formal
framework of transition-based dependency parsing
originally introduced by Nivre (2003); see Nivre
(2008) for an introduction. We only summarize here
our notation.

Transition-based dependency parsers use a stack
data structure, where each stack element is associ-
ated with a tree spanning (generating) some sub-
string of the input w. The parser processes the in-
put string incrementally, from left to right, applying
at each step a transition that updates the stack and/or

consumes one token from the input. Transitions may
also construct new dependencies, which are added to
the current configuration of the parser.

We represent the stack data structure as an
ordered sequence σ = [σd, . . . , σ1], d ∈ N0, of
nodes σi ∈ Vw, with the topmost element placed
at the right. When d = 0, we have the empty stack
σ = []. Sometimes we use the vertical bar to denote
the append operator for σ, and write σ = σ′|σ1 to
indicate that σ1 is the topmost element of σ.

The parser also uses a buffer to store the portion
of the input string still to be processed. We represent
the buffer as an ordered sequence β = [i, . . . , n] of
nodes from Vw, with i the first element of the buf-
fer. In this way β always encodes a (non-necessarily
proper) suffix of w. We denote the empty buffer as
β = []. Sometimes we use the vertical bar to denote
the append operator for β, and write β = i|β′ to in-
dicate that i is the first token of β; consequently, we
have β′ = [i+ 1, . . . , n].

When processing w, the parser reaches several
states, technically called configurations. A config-
uration of the parser relative to w is a triple c =
(σ, β,A), where σ and β are a stack and a buffer,
respectively, and A ⊆ Vw × Vw is a set of arcs. The
initial configuration for w is ([], [0, . . . , n], ∅). For
the purpose of this article, a configuration is final
if it has the form ([0], [], A), and in a final config-
uration arc set A always defines a dependency tree
for w.

The core of a transition-based parser is the set of
its transitions, which are specific to each family of
parsers. A transition is a binary relation defined
over the set of configurations of the parser. We use
symbol ` to denote the union of all transition rela-
tions of a parser.

A computation of the parser on w is a sequence
c0, . . . , cm, m ∈ N0, of configurations (defined rel-
ative to w) such that ci−1 ` ci for each i ∈ [1,m].
We also use the reflexive and transitive closure rela-
tion `∗ to represent computations. A computation is
called complete whenever c0 is initial and cm is fi-
nal. In this way, a complete computation is uniquely
associated with a dependency tree for w.

2.3 Arc-Standard Parser

The arc-standard model uses the three types of trans-
itions formally specified in Figure 1
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(σ, i|β,A) `sh (σ|i, β, A)

(σ|i|j, β,A) `la (σ|j, β,A ∪ {j → i})
(σ|i|j, β,A) `ra (σ|i, β, A ∪ {i→ j})

Figure 1: Transitions in the arc-standard model.

• Shift (sh) removes the first node in the buffer
and pushes it into the stack;

• Left-Arc (la) creates a new arc with the topmost
node on the stack as the head and the second-
topmost node as the dependent, and removes
the second-topmost node from the stack;

• Right-Arc (ra) is symmetric to la in that it cre-
ates an arc with the second-topmost node as the
head and the topmost node as the dependent,
and removes the topmost node.

Notation We sometimes use the functional nota-
tion for a transition τ ∈ {sh, la, ra}, and write
τ(c) = c′ in place of c `τ c′. Naturally, sh applies
only when the buffer is not empty, and la,ra require
two elements on the stack. We denote by valid(c)
the set of valid transitions in a given configuration.

2.4 Arc Decomposition

Goldberg and Nivre (2013) show how to derive dy-
namic oracles for any transition-based parser which
has the arc decomposition property, defined below.
They also show that the arc-standard parser is not
arc-decomposable.

For a configuration c, we write Ac to denote the
associated set of arcs. A transition-based parser is
arc-decomposable if, for every configuration c and
for every set of arcs A that can be extended to a pro-
jective tree, we have

∀(i→ j) ∈ A,∃c′[c `∗ c′ ∧ (i→ j) ∈ Ac′ ]
⇒ ∃c′′[c `∗ c′′ ∧A ⊆ Ac′′ ] .

In words, if each arc in A is individually derivable
from c, then the set A in its entirety can be derived
from c as well. The arc decomposition property
is useful for deriving dynamic oracles because it is
relatively easy to investigate derivability for single
arcs and then, using this property, draw conclusions
about the number of gold-arcs that are simultan-
eously derivable from the given configuration.

Unfortunately, the arc-standard parser is not arc-
decomposable. To see why, consider a configura-
tion with stack σ = [i, j, k]. Consider also arc set
A = {(i, j), (i, k)}. The arc (i, j) can be derived
through the transition sequence ra, ra, and the arc
(i, k) can be derived through the alternative trans-
ition sequence la, ra. Yet, it is easy to see that a con-
figuration containing both arcs cannot be reached.

As we cannot rely on the arc decomposition prop-
erty, in order to derive a dynamic oracle for the arc-
standard model we need to develop more sophistic-
ated techniques which take into account the interac-
tion among the applied transitions.

3 Configuration Loss and Dynamic Oracles
We aim to derive a dynamic oracle for the arc-stand-
ard (and related) system. This is a function that takes
a configuration c and a gold tree tG and returns a set
of transitions that are “optimal” for c with respect
to tG. As already mentioned in the introduction, a
dynamic oracle can be used to improve training of
greedy transition-based parsers. In this section we
provide a formal definition for a dynamic oracle.

Let t1 and t2 be two dependency trees over the
same stringw, with arc setsA1 andA2, respectively.
We define the loss of t1 with respect to t2 as

L(t1, t2) = |A1 \A2| . (1)

Note that L(t1, t2) = L(t2, t1), since |A1| =
|A2|. Furthermore L(t1, t2) = 0 if and only if t1
and t2 are the same tree.

Let c be a configuration of our parser relative to
input string w. We write D(c) to denote the set of
all dependency trees that can be obtained in a com-
putation of the form c `∗ cf , where cf is some final
configuration. We extend the loss function in (1) to
configurations by letting

L(c, t2) = min
t1∈D(c)

L(t1, t2) . (2)

Assume some reference (desired) dependency
tree tG for w, which we call the gold tree. Quantity
L(c, tG) can be used to compute a dynamic oracle
relating a parser configuration c to a set of optimal
actions by setting

oracle(c, tG) =

{τ | L(τ(c), tG)− L(c, tG) = 0} . (3)
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We therefore need to develop an algorithm for com-
puting (2). We will do this first for the arc-standard
parser, and then for an extension of this model.

Notation We also apply the loss function L(t, tG)
in (1) when t is a dependency tree for a substring
of w. In this case the nodes of t are a subset of
the nodes of tG, and L(t, tG) provides a count of
the nodes of t that are assigned a wrong head node,
when tG is considered as the reference tree.

4 Main Algorithm
Throughout this section we assume an arc-standard
parser. Our algorithm takes as input a projective
gold tree tG and a configuration c = (σL, β, A). We
call σL the left stack, in contrast with a right stack
whose construction is specified below.

4.1 Basic Idea

The algorithm consists of two steps. Informally, in
the first step we compute the largest subtrees, called
here tree fragments, of the gold tree tG that have
their span entirely included in the buffer β. The
root nodes of these tree fragments are then arranged
into a stack data structure, according to the order in
which they appear in β and with the leftmost root in
β being the topmost element of the stack. We call
this structure the right stack σR. Intuitively, σR can
be viewed as the result of pre-computing β by ap-
plying all sequences of transitions that match tG and
that can be performed independently of the stack in
the input configuration c, that is, σL.

In the second step of the algorithm we use dy-
namic programming techniques to simulate all com-
putations of the arc-standard parser starting in a con-
figuration with stack σL and with a buffer consisting
of σR, with the topmost token of σR being the first
token of the buffer. As we will see later, the search
space defined by these computations includes the de-
pendency trees for w that are reachable from the in-
put configuration c and that have minimum loss. We
then perform a Viterbi search to pick up such value.

The second step is very similar to standard imple-
mentations of the CKY parser for context-free gram-
mars (Hopcroft and Ullman, 1979), running on an
input string obtained as the concatenation of σL and
σR. The main difference is that we restrict ourselves
to parse only those constituents in σLσR that dom-
inate the topmost element of σL (the rightmost ele-

ment, if σL is viewed as a string). In this way, we ac-
count for the additional constraint that we visit only
those configurations of the arc-standard parser that
can be reached from the input configuration c. For
instance, this excludes the reduction of two nodes in
σL that are not at the two topmost positions. This
would also exclude the reduction of two nodes in
σR: this is correct, since the associated tree frag-
ments have been chosen as the largest such frag-
ments in β.

The above intuitive explanation will be made
mathematically precise in §5, where the notion of
linear dependency tree is introduced.

4.2 Construction of the Right Stack

In the first step we process β and construct a stack
σR, which we call the right stack associated with c
and tG. Each node of σR is the root of a tree t which
satisfies the following properties

• t is a tree fragment of the gold tree tG having
span entirely included in the buffer β;

• t is bottom-up complete for tG, meaning that
for each node i of t different from t’s root, the
dependents of i in tG cannot be in σL;

• t is maximal for tG, meaning that every super-
tree of t in tG violates the above conditions.

The stack σR is incrementally constructed by pro-
cessig β from left to right. Each node i is copied into
σR if it satisfies any of the following conditions

• the parent node of i in tG is not in β;

• some dependent of i in tG is in σL or has
already been inserted in σR.

It is not difficult to see that the nodes in σR are the
roots of tree fragments of tG that satisfy the condi-
tion of bottom-up completeness and the condition of
maximality defined above.

4.3 Computation of Configuration Loss

We start with some notation. Let `L = |σL| and
`R = |σR|. We write σL[i] to denote the i-th ele-
ment of σL and t(σL[i]) to denote the correspond-
ing tree fragment; σR[i] and t(σR[i]) have a similar
meaning. In order to simplify the specification of
the algorithm, we assume below that σL[1] = σR[1].
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Algorithm 1 Computation of the loss function for the arc-standard parser
1: T [1, 1](σL[1])← L(t(σL[1]), tG)
2: for d← 1 to `L + `R − 1 do . d is the index of a sub-anti-diagonal
3: for j ← max{1, d− `L + 1} to min{d, `R} do . j is the column index
4: i← d− j + 1 . i is the row index
5: if i < `L then . expand to the left
6: for each h ∈ ∆i,j do
7: T [i+ 1, j](h)← min{T [i+ 1, j](h), T [i, j](h) + δG(h→ σL[i+ 1])}
8: T [i+ 1, j](σL[i+ 1])← min{T [i+ 1, j](σL[i+ 1]), T [i, j](h) + δG(σL[i+ 1]→ h)}
9: if j < `R then . expand to the right

10: for each h ∈ ∆i,j do
11: T [i, j + 1](h)← min{T [i, j + 1](h), T [i, j](h) + δG(h→ σR[j + 1])}
12: T [i, j+1](σR[j + 1])← min{T [i, j+1](σR[j + 1]), T [i, j](h)+δG(σR[j + 1]→ h)}
13: return T [`L, `R](0) +

∑
i∈[1,`L] L(t(σL[i]), tG)

Therefore the elements of σR which have been con-
structed in §4.2 are σR[i], i ∈ [2, `R].

Algorithm 1 uses a two-dimensional array T of
size `L × `R, where each entry T [i, j] is an as-
sociation list from integers to integers. An entry
T [i, j](h) stores the minimum loss among depend-
ency trees rooted at h that can be obtained by run-
ning the parser on the first i elements of stack σL and
the first j elements of buffer σR. More precisely, let

∆i,j = {σL[k] | k ∈ [1, i]} ∪
{σR[k] | k ∈ [1, j]} . (4)

For each h ∈ ∆i,j , the entry T [i, j](h) is the
minimum loss among all dependency trees defined
as above and with root h. We also assume that
T [i, j](h) is initialized to +∞ (not reported in the
algorithm).

Algorithm 1 starts at the top-left corner of T , vis-
iting each individual sub-anti-diagonal of T in as-
cending order, and eventually reaching the bottom-
right corner of the array. For each entry T [i, j], the
left expansion is considered (lines 5 to 8) by com-
bining with tree fragment σL[i+ 1], through a left
or a right arc reduction. This results in the update
of T [i + 1, j](h), for each h ∈ ∆i+1,j , whenever a
smaller value of the loss is achieved for a tree with
root h. The Kronecker-like function used at line 8
provides the contribution of each single arc to the
loss of the current tree. Denoting with AG the set of

arcs of tG, such a function is defined as

δG(i→ j) =

{
0, if (i→ j) ∈ AG;
1, otherwise.

(5)

A symmetrical process is implemented for the
right expansion of T [i, j] through tree fragment
σR[j + 1] (lines 9 to 12).

As we will see in the next section, quantity
T [`L, `R](0) is the minimal loss of a tree composed
only by arcs that connect nodes in σL and σR. By
summing the loss of all tree fragments t(σL[i]) to
the loss in T [`L, `R](0), at line 13, we obtain the
desired result, since the loss of each tree fragment
t(σR[j]) is zero.

5 Formal Properties
Throughout this section we let w, tG, σL, σR and
c = (σL, β, A) be defined as in §4, but we no longer
assume that σL[1] = σR[1]. To simplify the present-
ation, we sometimes identify the tokens in w with
the associated nodes in a dependency tree for w.

5.1 Linear Trees

Algorithm 1 explores all dependency trees that can
be reached by an arc-standard parser from configur-
ation c, under the condition that (i) the nodes in the
buffer β are pre-computed into tree fragments and
collapsed into their root nodes in the right stack σR,
and (ii) nodes in σR cannot be combined together
prior to their combination with other nodes in the
left stack σL. This set of dependency trees is char-
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j4

i6 i5 i3 j5

i4 i1 j3

i2 j1 j2
σRσL

Figure 2: A possible linear tree for string pair (σL, σR),
where σL = i6i5i4i3i2i1 and σR = j1j2j3j4j5. The
spine of the tree consists of nodes j4, i3 and i1.

acterized here using the notion of linear tree, to be
used later in the correctness proof.

Consider two nodes σL[i] and σL[j] with j >
i > 1. An arc-standard parser can construct an arc
between σL[i] and σL[j], in any direction, only after
reaching a configuration in which σL[i] is at the top
of the stack and σL[j] is at the second topmost posi-
tion. In such configuration we have that σL[i] dom-
inates σL[1]. Furthermore, consider nodes σR[i] and
σR[j] with j > i ≥ 1. Since we are assuming that
tree fragments t(σR[i]) and t(σR[j]) are bottom-up
complete and maximal, as defined in §4.2, we allow
the construction of an arc between σR[i] and σR[j],
in any direction, only after reaching a configuration
in which σR[i] dominates node σL[1].

The dependency trees satisfying the restrictions
above are captured by the following definition. A
linear tree over (σL, σR) is a projective dependency
tree t for string σLσR satisfying both of the addi-
tional conditions reported below. The path from t’s
root to node σL[1] is called the spine of t.

• Every node of t not in the spine is a dependent
of some node in the spine.

• For each arc i → j in t with j in the spine, no
dependent of i can be placed in between i and
j within string σLσR.

An example of a linear tree is depicted in Figure 2.
Observe that the second condition above forbids the
reduction of two nodes i and j, in case none of these
dominates node σL[1]. For instance, the ra reduc-
tion of nodes i3 and i2 would result in arc i3 → i2
replacing arc i1 → i2 in Figure 2. The new depend-
ency tree is not linear, because of a violation of the

second condition above. Similarly, the la reduction
of nodes j3 and j4 would result in arc j4 → j3 re-
placing arc i3 → j3 in Figure 2, again a violation of
the second condition above.

Lemma 1 Any tree t ∈ D(c) can be decomposed
into trees t(σL[i]), i ∈ [1, `L], trees tj , j ∈ [1, q] and
q ≥ 1, and a linear tree tl over (σL, σR,t), where
σR,t = r1 · · · rq and each rj is the root node of tj . 2

PROOF (SKETCH) Trees t(σL[i]) are common to
every tree in D(c), since the arc-standard model can
not undo the arcs already built in the current con-
figuration c. Similar to the construction in §4.2 of
the right stack σR from tG, we let tj , j ∈ [1, q], be
tree fragments of t that cover only nodes associated
with the tokens in the buffer β and that are bottom-
up complete and maximal for t. These trees are in-
dexed according to their left to right order in β. Fi-
nally, tl is implicitly defined by all arcs of t that are
not in trees t(σL[i]) and tj . It is not difficult to see
that tl has a spine ending with node σL[1] and is a
linear tree over (σL, σR,t). �

5.2 Correctness

Our proof of correctness for Algorithm 1 is based on
a specific dependency tree t∗ for w, which we define
below. Let SL = {σL[i] | i ∈ [1, `L]} and letDL be
the set of nodes that are descendants of some node
in SL. Similarly, let SR = {σR[i] | i ∈ [1, `R]}
and let DR be the set of descendants of nodes in
SR. Note that sets SL, SR, DL and DR provide a
partition of Vw.

We choose any linear tree t∗l over (σL, σR) having
root 0, such that L(t∗l , tG) = mint L(t, tG), where
t ranges over all possible linear trees over (σL, σR)
with root 0. Tree t∗ consists of the set of nodes Vw
and the set of arcs obtained as the union of the set
of arcs of t∗l and the set of arcs of all trees t(σL[i]),
i ∈ [1, `L], and t(σR[j]), j ∈ [1, `R].

Lemma 2 t∗ ∈ D(c). 2

PROOF (SKETCH) All tree fragments t(σL[i]) have
already been parsed and are available in the stack
associated with c. Each tree fragment t(σR[j]) can
later be constructed in the computation, when a con-
figuration c′ is reached with the relevant segment of
w at the start of the buffer. Note also that parsing of
t(σR[j]) can be done in a way that does not depend
on the content of the stack in c′.
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Finally, the parsing of the tree fragments t(σR[j])
is interleaved with the construction of the arcs from
the linear tree t∗l , which are all of the form (i → j)
with i, j ∈ (SL ∪ SR). More precisely, if (i → j)
is an arc from t∗l , at some point in the computation
nodes i and j will become available at the two top-
most positions in the stack. This follows from the
second condition in the definition of linear tree. �

We now show that tree t∗ is “optimal” within the
set D(c) and with respect to tG.

Lemma 3 L(t∗, tG) = L(c, tG). 2

PROOF Consider an arbitrary tree t ∈ D(c). As-
sume the decomposition of t defined in the proof of
Lemma 1, through trees t(σL[i]), i ∈ [1, `L], trees
tj , j ∈ [1, q], and linear tree tl over (σL, σR,t).

Recall that an arc i → j denotes an ordered pair
(i, j). Let us consider the following partition for the
set of arcs of any dependency tree for w

A1 = (SL ∪DL)×DL ,

A2 = (SR ∪DR)×DR ,

A3 = (Vw × Vw) \ (A1 ∪A2) .

In what follows, we compare the losses L(t, tG) and
L(t∗, tG) by separately looking into the contribution
to such quantities due to the arcs in A1, A2 and A3.

Note that the arcs of trees t(σL[i]) are all in A1,
the arcs of trees t(σR[j]) are all in A2, and the arcs
of tree t∗l are all in A3. Since t and t∗ share trees
t(σL[i]), when restricted to arcs in A1 quantities
L(t, tG) and L(t∗, tG) are the same. When restric-
ted to arcs in A2, quantity L(t∗, tG) is zero, by con-
struction of the trees t(σR[j]). Thus L(t, tG) can not
be smaller thanL(t∗, tG) for these arcs. The difficult
part is the comparison of the contribution to L(t, tG)
and L(t∗, tG) due to the arcs in A3. We deal with
this below.

LetAS,G be the set of all arcs from tG that are also
in set (SL × SR) ∪ (SR × SL). In words, AS,G rep-
resents gold arcs connecting nodes in SL and nodes
in SR, in any direction. Within tree t, these arcs can
only be found in the tl component, since nodes in
SL are all placed within the spine of tl, or else at the
left of that spine.

Let us consider an arc (j → i) ∈ AS,G with j ∈
SL and i ∈ SR, and let us assume that (j → i) is in
t∗l . If token ai does not occur in σR,t, node i is not

in tl and (j → i) can not be an arc of t. We then
have that (j → i) contributes one unit to L(t, tG)
but does not contribute to L(t∗, tG). Similarly, let
(i → j) ∈ AS,G be such that i ∈ SR and j ∈ SL,
and assume that (i→ j) is in t∗l . If token ai does not
occur in σR,t, arc (i → j) can not be in t. We then
have that (i → j) contributes one unit to L(t, tG)
but does not contribute to L(t∗, tG).

Intuitively, the above observations mean that the
winning strategy for trees in D(c) is to move nodes
from SR as much as possible into the linear tree
component tl, in order to make it possible for these
nodes to connect to nodes in SL, in any direction. In
this case, arcs fromA3 will also move into the linear
tree component of a tree inD(c), as it happens in the
case of t∗. We thus conclude that, when restricted to
the set of arcs in A3, quantity L(t, tG) is not smal-
ler than L(t∗, tG), because stack σR has at least as
many tokens corresponding to nodes in SR as stack
σR,t, and because t∗l has the minimum loss among
all the linear trees over (σL, σR).

Putting all of the above observations together,
we conclude that L(t, tG) can not be smaller than
L(t∗, tG). This concludes the proof, since t has been
arbitrarily chosen in D(c). �

Theorem 1 Algorithm 1 computes L(c, tG). 2

PROOF (SKETCH) Algorithm 1 implements a Vi-
terbi search for trees with smallest loss among all
linear trees over (σL, σR). Thus T [`L, `R](0) =
L(t∗l , tG). The loss of the tree fragments t(σR[j])
is 0 and the loss of the tree fragments t(σL[i]) is ad-
ded at line 13 in the algorithm. Thus the algorithm
returns L(t∗, tG), and the statement follows from
Lemma 2 and Lemma 3. �

5.3 Computational Analysis

Following §4.2, the right stack σR can be easily
constructed in time O(n), n the length of the in-
put string. We now analyze Algorithm 1. For each
entry T [i, j] and for each h ∈ ∆i,j , we update
T [i, j](h) a number of times bounded by a con-
stant which does not depend on the input. Each up-
dating can be computed in constant time as well.
We thus conclude that Algorithm 1 runs in time
O(`L · `R · (`L + `R)). Quantity `L+`R is bounded
by n, but in practice the former is significantly smal-
ler. When measured over the sentences in the Penn
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Treebank, the average value of `L+`R
n is 0.29. In

terms of runtime, training is 2.3 times slower when
using our oracle instead of a static oracle.

6 Extension to the LR-Spine Parser
In this section we consider the transition-based
parser proposed by Sartorio et al. (2013), called
here the LR-spine parser. This parser is not arc-
decomposable: the same example reported in §2.4
can be used to show this fact. We therefore extend to
the LR-spine parser the algorithm developed in §4.

6.1 The LR-Spine Parser

Let t be a dependency tree. The left spine of t is
an ordered sequence 〈i1, . . . , ip〉, p ≥ 1, consisting
of all nodes in a descending path from the root of
t taking the leftmost child node at each step. The
right spine of t is defined symmetrically. We use ⊕
to denote sequence concatenation.

In the LR-spine parser each stack element σ[i] de-
notes a partially built subtree t(σ[i]) and is represen-
ted by a pair (lsi, rsi), with lsi and rsi the left and the
right spine, respectively, of t(σ[i]). We write lsi[k]
(rsi[k]) to represent the k-th element of lsi (rsi, re-
spectively). We also write r(σ[i]) to denote the root
of t(σ[i]), so that r(σ[i]) = lsi[1] = rsi[1].

Informally, the LR-spine parser uses the same
transition typologies as the arc-standard parser.
However, an arc (h → d) can now be created with
the head node h chosen from any node in the spine
of the involved tree. The transition types of the LR-
spine parser are defined as follows.

• Shift (sh) removes the first node from the buf-
fer and pushes into the stack a new element,
consisting of the left and right spines of the as-
sociated tree

(σ, i|β,A) `sh (σ|(〈i〉, 〈i〉), β, A) .

• Left-Arc k (lak) creates a new arc h → d from
the k-th node in the left spine of the topmost
tree in the stack to the head of the second ele-
ment in the stack. Furthermore, the two top-
most stack elements are replaced by a new ele-
ment associated with the resulting tree

(σ′|σ[2]|σ[1], β, A) `lak (σ′|σlak , β, A ∪ {h→ d})
where we have set h = ls1[k], d = r(σ[2]) and
σlak = (〈ls1[1], . . . , ls1[k]〉 ⊕ ls2, rs1).

• Right-Arc k (rak for short) is defined symmet-
rically with respect to lak

(σ′|σ[2]|σ[1], β, A) `rak (σ′|σrak , β, A ∪ {h→ d})

where we have set h = rs2[k], d = r(σ[1]) and
σrak = (ls2, 〈rs2[1], . . . , rs2[k]〉 ⊕ rs1).

Note that, at each configuration in the LR-spine
parser, there are |ls1| possible lak transitions, one for
each choice of a node in the left spine of t(σ[1]);
similarly, there are |rs2| possible rak transitions,
one for each choice of a node in the right spine of
t(σ[2]).

6.2 Configuration Loss

We only provide an informal description of the ex-
tended algorithm here, since it is very similar to the
algorithm in §4.

In the first phase we use the procedure of §4.2 for
the construction of the right stack σR, considering
only the roots of elements in σL and ignoring the
rest of the spines. The only difference is that each
element σR[j] is now a pair of spines (lsR,j , rsR,j).
Since tree fragment t(σR[j]) is bottom-up complete
(see §4.1), we now restrict the search space in such
a way that only the root node r(σR[j]) can take de-
pendents. This is done by setting lsR,j = rsR,j =
〈r(σR[j])〉 for each j ∈ [1, `R]. In order to simplify
the presentation we also assume σR[1] = σL[1], as
done in §4.3.

In the second phase we compute the loss of an in-
put configuration using a two-dimensional array T ,
defined as in §4.3. However, because of the way
transitions are defined in the LR-spine parser, we
now need to distinguish tree fragments not only on
the basis of their roots, but also on the basis of their
left and right spines. Accordingly, we define each
entry T [i, j] as an association list with keys of the
form (ls, rs). More specifically, T [i, j](ls, rs) is the
minimum loss of a tree with left and right spines ls
and rs, respectively, that can be obtained by running
the parser on the first i elements of stack σL and the
first j elements of buffer σR.

We follow the main idea of Algorithm 1 and ex-
pand each tree in T [i, j] at its left side, by combin-
ing with tree fragment t(σL[i+ 1]), and at its right
side, by combining with tree fragment t(σR[j + 1]).
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Tree combination deserves some more detailed dis-
cussion, reported below.

We consider the combination of a tree ta from
T [i, j] and tree t(σL[i+ 1]) by means of a left-arc
transition. All other cases are treated symmetric-
ally. Let (lsa, rsa) be the spine pair of ta, so that
the loss of ta is stored in T [i, j](lsa, rsa). Let also
(lsb, rsb) be the spine pair of t(σL[i+ 1]). In case
there exists a gold arc in tG connecting a node from
lsa to r(σL[i+ 1]), we choose the transition lak,
k ∈ [1, |lsa|], that creates such arc. In case such gold
arc does not exists, we choose the transition lak with
the maximum possible value of k, that is, k = |lsa|.
We therefore explore only one of the several pos-
sible ways of combining these two trees by means
of a left-arc transition.

We remark that the above strategy is safe. In fact,
in case the gold arc exists, no other gold arc can ever
involve the nodes of lsa eliminated by lak (see the
definition in §6.1), because arcs can not cross each
other. In case the gold arc does not exist, our choice
of k = |lsa| guarantees that we do not eliminate any
element from lsa.

Once a transition lak is chosen, as described
above, the reduction is performed and the spine
pair (ls, rs) for the resulting tree is computed from
(lsa, rsa) and (lsb, rsb), as defined in §6.1. At the
same time, the loss of the resulting tree is com-
puted, on the basis of the loss T [i, j](lsa, rsa), the
loss of tree t(σL[i+ 1]), and a Kronecker-like func-
tion defined below. This loss is then used to update
T [i+ 1, j](ls, rs).

Let ta and tb be two trees that must be combined
in such a way that tb becomes the dependent of
some node in one of the two spines of ta. Let also
pa = (lsa, rsa) and pb = (lsb, rsb) be spine pairs for
ta and tb, respectively. Recall that AG is the set of
arcs of tG. The new Kronecker-like function for the
computation of the loss is defined as

δG(pa, pb) =





0, if r(ta) < r(tb)∧
∃k[(rska → r(tb)) ∈ AG];

0, if r(ta) > r(tb)∧
∃k[(lska → r(tb)) ∈ AG];

1, otherwise.

6.3 Efficiency Improvement

The algorithm in §6.2 has an exponential behaviour.
To see why, consider trees in T [i, j]. These trees are
produced by the combination of trees in T [i − 1, j]
with tree t(σL[i]), or by the combination of trees in
T [i, j − 1] with tree t(σR[j]). Since each combin-
ation involves either a left-arc or a right-arc trans-
ition, we obtain a recursive relation that resolves into
a number of trees in T [i, j] bounded by 4i+j−2.

We introduce now two restrictions to the search
space of our extended algorithm that result in a huge
computational saving. For a spine s, we write N (s)
to denote the set of all nodes in s. We also let ∆i,j be
the set of all pairs (ls, rs) such that T [i, j](ls, rs) 6=
+∞.

• Every time a new pair (ls, rs) is created in
∆[i, j], we remove from ls all nodes different
from the root that do not have gold dependents
in {r(σL[k]) | k < i}, and we remove from
rs all nodes different from the root that do not
have gold dependents in {r(σR[k]) | k > j}.

• A pair pa = (lsa, rsa) is removed from
∆[i, j] if there exists a pair pb = (lsb, rsb)
in ∆[i, j] with the same root node as pa and
with (lsa, rsa) 6= (lsb, rsb), such that N (lsa) ⊆
N (lsb), N (rsa) ⊆ N (rsb), and T [i, j](pa) ≥
T [i, j](pb).

The first restriction above reduces the size of a spine
by eliminating a node if it is irrelevant for the com-
putation of the loss of the associated tree. The
second restriction eliminates a tree ta if there is a
tree tb with smaller loss than ta, such that in the
computations of the parser tb provides exactly the
same context as ta. It is not difficult to see that
the above restrictions do not affect the correctness of
the algorithm, since they always leave in our search
space some tree that has optimal loss.

A mathematical analysis of the computational
complexity of the extended algorithm is quite in-
volved. In Figure 3, we plot the worst case size
of T [i, j] for each value of j + i − 1, computed
over all configurations visited in the training phase
(see §7). We see that |T [i, j]| grows linearly with
j + i− 1, leading to the same space requirements of
Algorithm 1. Empirically, training with the dynamic
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Figure 3: Empirical worst case size of T [i, j] for each
value of i + j − 1 as measured on the Penn Treebank
corpus.

Algorithm 2 Online training for greedy transition-
based parsers

1: w← 0
2: for k iterations do
3: shuffle(corpus)
4: for sentencew and gold tree tG in corpus do
5: c← INITIAL(w)
6: while not FINAL(c) do
7: τp ← argmaxτ∈valid(c)w · φ(c, τ)
8: τo ← argmaxτ∈oracle(c,tG)w·φ(c, τ)
9: if τp 6∈ oracle(c, tG) then

10: w← w + φ(c, τo)− φ(c, τp)

11: τ ←
{
τp if EXPLORE

τo otherwise
12: c← τ(c)

return averaged(w)

oracle is only about 8 times slower than training with
the oracle of Sartorio et al. (2013) without exploring
incorrect configurations.

7 Training

We follow the training procedure suggested by
Goldberg and Nivre (2013), as described in Al-
gorithm 2. The algorithm performs online learning
using the averaged perceptron algorithm. A weight
vector w (initialized to 0) is used to score the valid
transitions in each configuration based on a feature
representation φ, and the highest scoring transition
τp is predicted. If the predicted transition is not
optimal according to the oracle, the weights w are
updated away from the predicted transition and to-

wards the highest scoring oracle transition τo. The
parser then moves to the next configuration, by tak-
ing either the predicted or the oracle transition. In
the “error exploration” mode (EXPLORE is true), the
parser follows the predicted transition, and other-
wise the parser follows the oracle transition. Note
that the error exploration mode requires the com-
pleteness property of a dynamic oracle.

We consider three training conditions: static, in
which the oracle is deterministic (returning a single
canonical transition for each configuration) and no
error exploration is performed; nondet, in which we
use a nondeterministic partial oracle (Sartorio et al.,
2013), but do not perform error exploration; and ex-
plore in which we use the dynamic oracle and per-
form error exploration. The static setup mirrors the
way greedy parsers are traditionally trained. The
nondet setup allows the training procedure to choose
which transition to take in case of spurious ambigu-
ities. The explore setup increases the configuration
space explored by the parser during training, by ex-
posing the training procedure to non-optimal con-
figurations that are likely to occur during parsing,
together with the optimal transitions to take in these
configurations. It was shown by Goldberg and Nivre
(2012; 2013) that the nondet setup outperforms the
static setup, and that the explore setup outperforms
the nondet setup.

8 Experimental Evaluation

Datasets Performance evaluation is carried out on
CoNLL 2007 multilingual dataset, as well as on the
Penn Treebank (PTB) (Marcus et al., 1993) conver-
ted to Stanford basic dependencies (De Marneffe
et al., 2006). For the CoNLL datasets we use gold
part-of-speech tags, while for the PTB we use auto-
matically assigned tags. As usual, the PTB parser is
trained on sections 2-21 and tested on section 23.

Setup We train labeled versions of the arc-stand-
ard (std) and LR-spine (lrs) parsers under the static,
nondet and explore setups, as defined in §7. In
the nondet setup we use a nondeterministic partial
oracle and in the explore setup we use the non-
deterministic complete oracles we present in this pa-
per. In the static setup we resolve oracle ambiguities
and choose a canonic transition sequence by attach-
ing arcs as soon as possible. In the explore setup,
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parser:train Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish PTB
UAS

std:static 81.39 75.37 90.32 85.17 78.90 85.69 79.90 77.67 82.98 77.04 89.86
std:nondet 81.33 74.82 90.75 84.80 79.92 86.89 81.19 77.51 84.15 76.85 90.56
std:explore 82.56 74.39 90.95 85.65 81.01 87.70 81.85 78.72 84.37 77.21 90.92
lrs:static 81.67 76.07 91.47 84.24 77.93 86.36 79.43 76.56 84.64 77.00 90.33
lrs:nondet 83.14 75.53 91.31 84.98 80.03 88.38 81.12 76.98 85.29 77.63 91.18
lrs:explore 84.54 75.82 91.92 86.72 81.19 89.37 81.78 77.48 85.38 78.61 91.77

LAS
std:static 71.93 65.64 84.90 80.35 71.39 84.60 72.25 67.66 78.77 65.90 87.56
std:nondet 71.09 65.28 85.36 80.06 71.47 85.91 73.40 67.77 80.06 65.81 88.30
std:explore 72.89 65.27 85.82 81.28 72.92 86.79 74.22 69.57 80.25 66.71 88.72
lrs:static 72.24 66.21 86.02 79.36 70.48 85.38 72.36 66.79 80.38 66.02 88.07
lrs:nondet 72.94 65.66 86.03 80.47 71.32 87.45 73.09 67.70 81.32 67.02 88.96
lrs:explore 74.54 66.91 86.83 82.38 72.72 88.44 74.04 68.76 81.50 68.06 89.53

Table 1: Scores on the CoNLL 2007 dataset (including punctuation, gold parts of speech) and on Penn Tree Bank
(excluding punctuation, predicted parts of speech). Label ‘std’ refers to the arc-standard parser, and ‘lrs’ refers to the
LR-spine parser. Each number is an average over 5 runs with different randomization seeds.

from the first round of training onward, we always
follow the predicted transition (EXPLORE is true).
For all languages, we deal with non-projectivity by
skipping the non-projective sentences during train-
ing but not during test. For each parsing system,
we use the same feature templates across all lan-
guages.1 The arc-standard models are trained for 15
iterations and the LR-spine models for 30 iterations,
after which all the models seem to have converged.

Results In Table 1 we report the labeled (LAS)
and unlabeled (UAS) attachment scores. As expec-
ted, the LR-spine parsers outperform the arc-stand-
ard parsers trained under the same setup. Training
with the dynamic oracles is also beneficial: despite
the arguable complexity of our proposed oracles, the
trends are consistent with those reported by Gold-
berg and Nivre (2012; 2013). For the arc-standard
model we observe that the move from a static to
a nondeterministic oracle during training improves
the accuracy for most of languages. Making use of
the completeness of the dynamic oracle and moving
to the error exploring setup further improve results.
The only exceptions are Basque, that has a small
dataset with more than 20% of non-projective sen-
tences, and Chinese. For Chinese we observe a re-
duction of accuracy in the nondet setup, but an in-
crease in the explore setup.

For the LR-spine parser we observe a practically
constant increase of performance by moving from

1Our complete code, together with the description of the fea-
ture templates, is available on the second author’s homepage.

the static to the nondeterministic and then to the er-
ror exploring setups.

9 Conclusions
We presented dynamic oracles, based on dynamic
programming, for the arc-standard and the LR-
spine parsers. Empirical evaluation on 10 languages
showed that, despite the apparent complexity of the
oracle calculation procedure, the oracles are still
learnable, in the sense that using these oracles in
the error exploration training algorithm presented in
(Goldberg and Nivre, 2012) considerably improves
the accuracy of the trained parsers.

Our algorithm computes a dynamic oracle using
dynamic programming to explore a forest of depend-
ency trees that can be reached from a given parser
configuration. For the arc-standard parser, the com-
putation takes cubic time in the size of the largest of
the left and right input stacks. Dynamic program-
ming for the simulation of arc-standard parsers have
been proposed by Kuhlmann et al. (2011). That al-
gorithm could be adapted to compute minimum loss
for a given configuration, but the running time is
O(n4), n the size of the input string: besides being
asymptotically slower by one order of magnitude, in
practice n is also larger than the stack size above.
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